CML 100: 2015-2016
Thermodynamics Tutorial 3
(Submit answers to Q. 4,6 on $27^{\text {th }}$ August 2014 during the lecture: Remember to write your group \# along with the name and entry \#)

1. What is the change in the boiling point of water at $100^{\circ} \mathrm{C}$ per Pa change in atmospheric pressure? Molar enthalpy of vaporization is $40.69 \mathrm{~kJ} \mathrm{~mol}-1$?
2. Calculate the equilibrium pressure for the conversion of graphite to diamond at $25^{\circ} \mathrm{C}$. The densities of graphite and diamond may be taken to be 2.25 and $3.51 \mathrm{~g} \mathrm{~cm}^{-3}$, respectively, independent of pressure, in calculating the change of ΔG with pressure. $\Delta G^{0}=$ $2900 \mathrm{~J} \mathrm{~mol}^{-1}$.
3. Ar has normal melting and boiling points of 83.8 and 87.3 K ; its triple point is at 83.8 K and 0.7 atm, and its critical temperature and pressure are 151 K and 48 atm . State whether Ar is a solid, liquid, or gas under each of the following conditions (a) 0.9 atm and 90 K (b) 0.7 atm and 80 K (c) 0.8 atm and 88 K (d) 0.8 atm and 84 K (e) 1.2 atm and 83.5 K .
4. The vapor pressure of zinc varies with temperature as

$$
\log p(\mathrm{mmHg})=-\frac{6850}{\mathrm{~T}}-0.755 \log \mathrm{~T}+11.24
$$

and that of liquid Zn as

$$
\log p(\mathrm{mmHg})=-6620 / \mathrm{T}-1.255 \log \mathrm{~T}+12.34
$$

Calculate
(a) boiling pt of Zn .
(b) the triple point.
(c) the heat of evaporation at the boiling point.
(d) heat of fusion.
(e) the difference in Cps of solid and liquid Zn .
5. On the sea bottom at the Galapagos Rift, water heated to $350^{\circ} \mathrm{C}$ gushes out of hydrothermal vents at a depth of 3000 m . Will this water boil or remain liquid at this depth? The vapor pressure of water is 163 atm at $350^{\circ} \mathrm{C}$.
6. The measured density of an equilibrium mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at $15^{\circ} \mathrm{C}$ and 1.103 bar is $3.62 \mathrm{~g} \mathrm{~L}^{-1}$, and the density at $75^{\circ} \mathrm{C}$ and 1.013 bar is $1.84 \mathrm{~g} \mathrm{~L}^{-1}$. What is the enthalpy change of the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$? State any assumptions you needed to make.

