(Submit answers to Q. 2,7,8 and 9 on $12^{\text {th }}$ September 2014 during the lecture: Remember to write your group \# along with the name and entry \#)

1. Verify the recursion relation $H_{n+1}(z)-2 z H_{n}(z)+2 n H_{n-1}(z)=0$ using the first few Hermite polynomials. Establish the condition when $\int \psi_{f}^{*} z \psi_{i} d z \neq 0$.
2. In the vibrational motion of HI , the iodine atom remains stationary because of its large mass. Assume that the hydrogen atom undergoes harmonic motion and that the force constant is $317 \mathrm{~N} \mathrm{~m}^{-1}$, what is the vibrational frequency v_{0} ? What is the zero point energy if H is replaced by D ? Assume that there is no change in the force constant.
3. Show that $\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}$ (Hint: Use the operator in Cartesian coordinates.
4. In the far infrared spectrum of $\mathrm{H}^{79} \mathrm{Br}$, there is a series of lines separated by $16.72 \mathrm{~cm}^{-1}$. Calculate the values of the moment of inertia and the internuclear separation in $\mathrm{H}^{79} \mathrm{Br}$.
5. Show that $Y_{1}^{-1}(\theta, \phi)$ is normalized and it is orthogonal to $Y_{2}^{1}(\theta, \phi)$.
6. Using the uncertainty principle argue that free electrons cannot exist in the nucleus. The diameter of a typical nucleus is $10^{-14} \mathrm{~m}$.
7. For a hydrogen atom in the ground state find the classically forbidden region and calculate the probability of finding the electron in this region.
8. Where do the maxima in $r^{2} \psi_{2 s}^{2}(r)$ occur?
9. What combinations of the $d(l=2)$ atomic orbitals will produce the Cartesian function $d_{x z}=x z R_{n l}(r)$ and $d_{x y}=x y R_{n l}(r)$.
10. Consider the hygrogen wavefunction (very short answers)

$$
\psi(r, \theta, \phi)=\left(\frac{3}{1944 \pi}\right)^{1 / 2}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(4-\frac{2 r}{3 a_{0}}\right)\left(\frac{2 r}{3 a_{0}}\right) \cos \theta e^{-r / 3 a_{0}}
$$

a. Determine the values of the three quantum numbers.
b. What is the ionization energy of the electron in this atom?
c. What is the degeneracy of this electronic level?
d. Determine the position of the radial nodes.
e. Sketch the radial part of the wavefunction.
f. Plot the angular part as a function of x.
g. Evaluate the probability of finding the electron in an infinitesimal volume around $x=$ $1, y=2, z=0$.
h. To which of these states $(2 s, 2 p, 4 d, 4 f)$ would a transition occur?
i. What is the most probable point in space at which the electron will be found?

