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Thermodynamics is the study of the
laws which govern transformations of matter and
energy during physical and chemical changes. These
laws have their most rigorous and concise formulation
in terms of certain specialized mathematical constructs,
including partial derivatives, lincar differential forms,
and line integrals. This paper contains a condensed
treatment of some of the mathematical techniques
relevant to the study of thermodynamics. 1t has been
the writer’s experience in teaching physical chemistry
and thermodynamies courses that prior familiarity
with this mathematics greatly facilitates the student’s
subsequent progress. For then he should be able to
concentrate more on physical principles, unencumbered
by irrelevant mathematical difficulties. In addition,
the student will become more aware of the distinction
between physical inference and mathematical manipula-
tion in various steps of a derivation.

Mathematics provides a ecompact language for con-
veying quantitative ideas. A mathematical symbol
can express something which would take many pages to
say in words. By use of mathematics, a train of ab-
stract thought ¢an be broken down into a series of
short manageable steps. Otherwise, a complex logical
sequence might be beyond comprehension.

The stress in our approach is on intuitive conceptual-
ization rather than on mathematical rigor. The
reader is referred elsewhere for more rigorous treatment
of the topics covered.?

Partial Derivatives

Thermodynamic systems are characterized by certain
quantitative physical variables, such as pressure,
volume, temperature, internal energy, and entropy.
Experience has shown that it is not always possible
to vary such quantities at will, but that specification
of some results in definite values for others. Mlathe-
matieally, such a situation is expressed by saying that
functional relations exist among the variables. The
.methods of partial differentiation then become es-
“pecially appropriate.® In this first section we shall re-
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view some of the more useful results from the theory
of functions of several independent variables.

Consider first a single-valued function z of two in-
dependent variables x and y. The functional relation,
written z = f(z,y) or z = z(x,y), expresses the fact that
for a pair of numbers x, y (perhaps within a restricted
range) there exists a unique value for z. Geometri-
cally, the functional relation may be represented by a
surface in three-dimensional space.* If one of the in-
dependent variables is constrained to a constant value,
z can be considered a function of the other variable
alone. Partial derivatives can then be defined:

bz) = Iim oz + Axy) — 2z,y)
v Ax—0

oz Az

and (1)
gz) — Lim X5yt ay) — Azy)
by z Ay—+0 Ay

The subscripts z or y can be omitted, but only if there
is no ambiguity in what is being kept constant. A par-
tial derivative, like an ordinary derivative, can be
interpreted geometrically as the instantaneous slope of
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Figure 1. Graphical representation of parfial derivative. The curved
surface represents z = f{x,y) in the first quadrant. The horizontally and
vertically cross-hatched planes are y = constant, and x = constant,
respectively. Llines ab and ¢d are drawn tangent to the intersection curves;
(0z/0x]y is then equal to the slope of ab and {dz/dyl; is equal to the
slope of cd.

a curve (Fig. 1). Thus (32/01), represents the slope of
the curve cut from the surface z = f(z,y) by aplaney =
constant; similarly (92/0y). represents the slope in a
plane z = constant.

Partial derivatives are evaluated by the rules for

“For example, z = az -+ by is represented by a plane and z =
{x? + y*)i'2 by a sphere.
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ordinary differentiation, treating the appropriate vari-
ables as constants.  For examples, the pressure P of one
mole of an idcal gas is given by

P =RT/V (2)
where V is the volume, T is the absolute temperature,
and R is a universal constant. Treating P as the

dependent variable, we have
(OP/oV)r = —RT/V?
(0P/3T)y = R/V (4)

Since the partial derivatives are also functions of tle
independent variables, they may themselves be differ-
entiated to yield second (and higher) derivatives.

These are written
ACICREACON
oz \0z/,1y

0%
on 2 (2) w [3(2)]
dyoz oy \oz/, 1o T

YL

When the functlon and its derivatives are single-valued
and continuous, the order of differentiation in the mixed
derivatives is immaterial and

0% d%z .

b2y ~ yds (8)
This is always the case in thermodynamic applications.
For the above example.

(P/OV?)r = —2RT/V? (7)
(DPJOT ) = 0 (8)
(a(aP/aV)T) _ b(aP/bT)v) " R (9)
oT v oV r ¥V -

Products of partial derivatives can be manipulated in
the sanme way as produets of ordinary derivatives, pro-

vided that the same variables are held fixed. Two use-
ful identities are
oy of _ b_u
GO.(5). - (. a0

and

o] o4 oz 1 .
)G () mme W
Thus far we have considered changes in z(x,y) brought
about by changing only one of the independent varia-
bles at a time. The more general case involves simul-
taneous variation of z and y. This could be represented
by the slope of the surface z = f(z,y) along a direction
not, in general, parallel to either eoordinate axis. Fora
function of a single independent variable y = f(z), the
inerement in ¥ brought about by an infinitesimal change
in ris given by dy = (dy/dzx)dz. Whenz = f(z,y}, the
increment in z wrought by simultaneous infinitesimal
changes in 2 and y is given by the total differential®

5 This can be shown as follows. Let
z = 2(z + 4z, y + Ay) — 2(z, y)
Adding and subtracting the quantity z(z, y + Ay} and inserting
the factors Azx/Azx and Ay/Ay, we have

Ap = [z(z+Arc,y+Ay)—2(x,y+Ay)]mH_
Az
[Z(rv, y+ Ay) — 2z, y)] A
Ay

Passing to the limit Az — O,AJ'Ay — 0, the two bracketed quantities
become partial derivatives by eqn. (1), while the increments
Az, Ay, Az become differentials dz, dy, dz.

-
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(12)

0z oz
= (5), =+ (55),

Extension of the above theory to functions of more
than two variables is straightforward. Tor a function

Za, ..., &), there are r first
ou/0x,. The

u of r variables, u = f (2,
partial derivatives Ou/dx;, Ou/Oxs, ...,
total differential is given by

ou ou
(ﬁ) dz; + (5;_»\ dzs +

(a“)dx,—- E (bu)d“ (13

Other properties have obvious analogies and neced not
be remarked upon further.

Several useful relationships among partial derivatives
can be obtained from (12). Suppose, for example, that
z(z,y) = constant. Thendz = 0and

oz 0z
52,0+ (5). =0

Rearranging we find

du =

(14)

dy _ _ (92/01),
dz = (bz/ay)z
But the ratio of dy to dxz means, in this instance, (oy/-
d1),, since z is constrained to a constant value. Thus
we arrive at the important identity
o\ _ {bz/b:z:)y R
\oz). =~ (@z/00). (1)

This relationship often enables us to evaluate physical
guantities not directly obtainable. To illustrate,

<o_T _ _(dP/V)r _RT/V* T _P
oV)e~ T (OPPTW ~ R/V "V R

(16)

which agrees with (07/dV)p calculated directly, after
solving the ideal gas equation for 7. Making use of
eqn. (11) eqn. (13) can be rearranged to

gi) SJ) (a->y =t

In the preceding discussion, the relationship among
the three variables x, y, z has been given in explicit
form, i.e., z = f(x,y). Solving for z or y, one could
alternatively write 2 = g(y,2) or y = h{z,x). Thus the
ideal gas equation could be written in any of three
ways:

(17

RT .. RT , PV
P=57V="pT="¢

(18)
In many applications it is more desirable to express
the functional relationship among z, y, and 2z in a more
symmetrical fashion. We accordingly write F(z,y,2) =
0 (for example, PV — RT = 0). In this way, the
choice of dependent and independent variables is left
free. One might choose z as the dependent variable
in one application and y in another, without needing
to reformulate the functional relationship. One would
then say, for example, that z is an implicit function of 2
and y through the relation F(z,y,2) = 0.

Implicit functions can be applied to the evaluation
of derivatives. Consider the total differential of F(x,y,
z) using eqn. (13).

oF OF
dF - (5;)1-2 dz + (a)hz dy

oF
+ (5’5),., dz =0 (19)




This vanishes since F is a constant (=0), thus dF = 0.
Suppose now that we require (dy/0x),. Since zis being
held constant, we may drop the term in dz. Thus

oF oF
(az)y..- dz + (ay)m dy =0

oy

B?c)z =
This method is useful when it is impossible or in-
convenient to solve the implicit relation for y or z.
To illustrate, suppose we wish to evaluate (0V/0T)p
for a gas obeying Dieterici’s equation of state

P(V _ b)en/KTl' = RT (22)

(20)

and
_ (dF/02),.:

(F /o). s (1)

where a and b are two additional empirical constants.
Eqn. (22) cannot be solved in closed form for either
¥V or T. But defining

F(P,V,Ty== P(V — bRV — RT =0 (23)
we have®
PV —bla . porr
(DF/bT)l"p = — —]fT—2V e IRTV __ R (24)
(QF foV)r,p = P [l - %] galRTV (25)

Whence by (21), after simplification using (22),
(?’_V - _ (oF/oThvr (R_l__a_)/(JT__i)
3T /)p (QF oV )1.p TV vV-B 2

. (26)

In most thermodynamic applications, there are alter-
native choices of the independent variables even if the
dependent variable is fixed. We next consider some
formulas arising from transformation of variables.
Suppose z = f(z,y) but z = x(u,r) and y = yluw).
If eqn. (12) is divided by du and constant v is speci-
fied, we obtain the “chain rule” for two independent

variables
22\ _ (22 (02 L (22 (% -
(—bhu), - (bz),(au)v + (by),(au)v 27)
Similarly,
22\ _ (2 (25 L (%) (%
(az‘)u - (bx),,(bv),. + (by),(bv)u 28
For a function of r independent variables u(x;, o, .. .,
Z;), the chain rule generalizes to
r
ou _ g~ Qu O (29)

of; = 0w ol

where the ¢, j = 1... r, are an alternative set of in-
dependent variables. It is seen that z could equally
well be regarded as a function of the new variables u and
Y, namely z = g(u,). The total differential ean be ex-

pressed as
_ (% o
dz = (bu),, du + (bv)u dv

after writing the total differentials dz and dy in terms

of du and dv, and eliminating among eqns. (12), (27),
and (28).

(30)

U8 T?lis. method of evaluating derivatives is entirely equivalent,
In this instance, to differentiating eqn. (23) with respect to T
at constant P, then solving for (dV/0T)p. This, in effect, re-
Taces the steps in the derivation of eqn. (21).

The following relations among the alternative in-
dependent variables are easily proved

CACHRICHAC) L
GG+ G-

Another useful formula involves a ““mixed’” pair of
independent variables, wherein we take z = h(x,u).
Dividing eqn. (12) by dx at constant u, we obtain’

.-G~ G.E)., w
or applying egn. (13)
.- &), -Gom: o

Thus if the internal energy F is given as a function of T
and V, (QE/dT)p can easily be evaluated from

OFE oF OF 1%
(ST)P = <O_T>v + (a'v)r(a—r)p

We conclude this section with a brief discussion of

(35)

homogeneous functions. A function f(z;, ..., x,) is
said to be “homogeneous of degree N’ if
fOx, .., Az = Af(zy, .., 20 (36)

where A is an arbitrary number. Thusf(z,y) = z* + ¥,
flz,y) = @+ 2% and f(z,y) = y/z are homogeneous
of degrees 2, 1, and 0, respectively. Euler’s theorem
on homogeneous functions states that
r
Py A g = Nftay .y 22) (37)
when f(x,, ..., z,) is a homogeneous function of degree

N. To prove (37), we define a new set of independent
variables

u; = Az, ¢=1...r.

Next we differentiate each side of (36) with respect to
A. The left-hand side becomes, using the chain rule
(29),

of _ 4 of dus
o ,;1 dui OA (38)
while the right-hand side gives simply
gf; N C S (39)

Equating (38) and (39), noting that du;/ON = z,, and
setting A = 1, we obtain Euler’s theorem, eqn. (37).

Homogeneous functions of degree 0 and 1 are impor-
tant in thermodynamics, especially in the study of
multicomponent systems. Corresponding to the vari-
ables z; are usually the component mole numbers n,.
Thermodynamic quantities homogeneous of degree
0 are known as intensive variables. These do not
change in value when the mole numbers are increased
in proportion, i.e.,

SOy, o) = fln,

Examples of intensive variables are temperature, pres-
sure, density, viscosity, and index of refraction.

O ) (40)

7 Note the importance of the subscripts here.
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Thermodynamic quantities homogeneous of degree 1
are known as extensive variables. These have values
proportional to the amount of matter in the system,
ie.,

gZmy, . AR = Ag{ny, ..., W) (41)
Examples of extensive variables are mass, volume, in-
ternal energy, entropy, and, of course, the mole num-

bers themselves. The ratio of two extensive variables
is again intensive, for if

y e Bl M) (42
b, ey o) = gelma. .., n) 42)
then
My, ..., an)  Aqu(ny, ..., mp)
h)\ ”.}\ny =gl~ 15 3 - ’ A
(A, » M) goe(Zny, .., M) Age(my, ..., 1)
= ki, ..., n) (43)

Thus density (mass/volume) is intensive, as are various
molar quantities, e.g., molar volume (volume/number
of moles}).

Euler's theorem is useful in relating extensive
thermodynamic variables to the corresponding partial
molal properties. To illustrate, the volume of a mix-
ture of two liquids at a fixed temperature and pressure
depends on the mole numbers n; and n., V = V(ny,n0).
By Euler’s theorem, eqn. (37), with ¥ = 1,

oV 14
om n + >

ne =V (44)

The quantities 0V /0n; and OV /On. (more precisely
OV /o)1 p.n and (OV/Ons)r.p.ny) are known as partial
molal volumes (usually abbreviated V; and 7,). The
first of these represents, for example, the change in
volume per mole when a small amount of component 1 is
added to a mixture of n; moles of component 1 plus n,
moles of component 2. Other extensive variables like-
wise have partial molal analogs, the partial molal free
energy G; being especially important in the derivation
of thermodynamic principles.

Differential Expressions
Differential quantities of the type
do(z,y) = X{z,y)dz + Y(z,y)dy (45)

known as Pfaff differential expressions, are of central
importance in thermodynamics. Two cases are to be
distinguished: (1) in which there exists some function
F(z,y) for which eqn. (45) is the total differential, and
(2) in which there exists no function of z and y which
yields (45) upon differentiation. In case (1), dg is said
to be an exact differential (or complete differential or
perfect differential) and we can write

dF(z,y) = X(z,y)dz + Yiz,y)dy {46)

In case {2), dq is called an inexact (incomplete, im-
perfect) differential.®

A differential expression can be tested for exactness
without explicit reference to the function F(z,y). Con-
sider first the case in which eqn. (45) is exact and F(z,y)
is known. We can then write the total differential

4 N
8 Some authors use the notation dg or Dg when the differential
is inexact but we shall not make this distinction.
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OF oF .
dF = (é;)y dz + (a)zdy (47)

But since this differential ex:pansion 1 unique, eqns.
(46) and (47) must be equal and we can identify

xew) = (5), ¥ew = (). (48)

Furthermore,

OX _ 2 oY _ O°F
oy  dydx' dxr  Oxdy

(49)

but as discussed earlier, mixed second derivatives of
well-behaved functions are independent of the order of
differentiation [eqn. (6)]. This leads to Euler's

reciprocity relation
X oY -
(5). - (%), )

as a necessary condition for exactness. Itisalso a suffi-
cient condition and can thus be used as a test for exact-
ness. That is to say, if eqn. (50) applies to X(z,y) and
Y(z,y), then eqn. (43) is an exact differential and there
exists some function F(z,y)® which satisfies eqn. (46).
Note however that the reciprocity criterion neither
requires nor identifies the function F(z,y).
To illustrate, let us test the differential expression

ydz + z dy (51)

for exactness. Here X(z,y) = y and Y(z,y) = z, and
o0X /oy = 0Y/0z = 1. Thus by eqn. (50), (51) must
represent the total differential of some function of z
and y. The latter is easily identified by inspection as
F(z,y) = zy since d(ry) = y dz + = dy. Again, con-
sider the differential

—(RT/P%)dP + (R/P)MT (532)

The reciprocity condition is again fulfilled since

BCDL-BEL--

and eqn. (52) is found to represent the total derivative
of V(P,T) = RT/P.

Two differential expressions for which the reciproeity
test fails are

ydr — z dy (54)

and
(RT/P)IP — R dT (55)

These are consequently inexact differentials. There
exist no functions which have total differentials (54) or
(53). ’

An inexact differential expression X dv + Y dy
(0X/dy # 0Y/0zx) can be converted into an exact one
by means of an integrating factor 1 (x,y). In that case
M (X dx + Y dy) becomes exact, i.e.,

AMX)  o(MY)

o9 oz (56)

For example, (54) can be converted into an exact differ-
ential by choosing M (z,y) = 1/z% It is easily verified

® As a proof of sufficiency, thé function
Flzy) = SX(zp)dz + SY(zy)dy — S So(z/oy)dzdy
satisfies eqn. (48) provided that eqn. (50) holds.




that

ydz —zdy _y ., 1 57
= —-xzd.r zdy (57)

dg =
q e

satisfies (50) and that it is the ‘total differential of
fz,y) = —y/x. Alternatively, the integrating factor
1/y? converts (54) to d(z/y). Likewise, multiplication
by — P turns (53) into the exact differential (52). An
integrating factor can always be found for an inexact
differential expression in two independent variables.
Evidently, the choice of M(z,y) is not unique. In fact,
M (z,y) times any funetion of F(x,y) is also an integrat-
ing factor.

The concept of exact differential is especially impor-
tant in the formulation of the first and second laws of
thermodynamics. Thus, the first law postulates that
dE = d) + dW is an exact differential even though dQ,
the increment of heat gained by a system, and dW, the
increment of work done on a system, are individually in-
exact. This constitutes a definition of the internal
energy £. The second law postulates that 1/7, the re-
ciprocal of the absolute temperature, is an integrating
factor for d@. Thus, dS = dQ/T is exact, which de-
fines the entropy S.

Many of the chemieal applications of thermodynamics
involve more than two independent variables. The
linear differential expression in » independent variables
is written

r
dQ(II) sy xr) = Z —\'i(_xl; Y x,)dx; (58)
i=1
where each of the r functions X; depends on some or all
of the z;. Recalling that the total differential of a
function F(zy, ..., z;) of these r independent variables
is given by

aF = 3 M. az; (59)

we obtain, when (38) is exact,

X,-=g’-, 1=1...r (60)
bI(
From (60) we obtain, in analogy with (50), r(r — 1)/2
reciprocity relations (one for each pair 7, 5)
oX: _ 0X;

b:r; - az;

ij=1..r {61)

Conversely, the reciprocity conditions (61) constitute a
test for exactness.

As in the case of two independent variables, an in-
tegrating factor M (z;, ..., z,) can convert an inexact
differential expression into an exact one. In contrast
to the former case, however, an integrating factor does
bot always exist. A criterion for the existence of an
Integrating factor for eqn. (58) forms the basis of
Carathéodory’s formulation of the second law of thermo-
dynamics. Before stating this important principle,
;‘{e observe that the first order partial differential equa-
ion

r
dg = ZX,'d,‘=0 (62)

i=1

(knc?wn as a Pfaff differential equation) possesses a
family of solutions of the form

Sz, ..., z,) = constant (63)

The solutions (63) are here expressed as implicit func-
tional relations among thex;. Each solution ean be rep-
resented by a surface in r-dimensional space. Cara-
théodory’s principle is now stated without proof:1

Let f(xy, ..., ) = constant he one of a family of sclutions to
r

the differential equation E Xidr; = 0 and let each solution he
i=1

represented by a surface. If there exist points P(x', ..., ')

and P"(x,”, ..., z;") m r-dimensional =pace which cannot be con-

nected by =ome one of these surfaces, then the differential expres-
¥

sion d@ = ) Xulx, possesses an integrating factor.
i=1

In the thermodynamic application of Carathéodory’s
principle, d@Q represents an increment of heat gained by a
thermodynamic system, each point P’, P”, etc., repre-
sents a possible state of the system, and each surface
represents a manifold of states accessible one from
another by adiabatic processes (those in which no heat
is transferred). The experimental fact that there exist
thermodynamic states inaccessible by adiabatic means
from a given state thus implies the existence of an
integrating factor for d@. This leads to a definition of
entropy and to a compact statement of the second law.

To conclude this section, we describe a method for
modifying a differential expression in order to change its
independent variables. Such transformations are of
considerable importance in chemical thermodynamics.
Consider a differential

df(z,y) = X(z,y)dz + Y{z,y)dy (64)
and define a function
g=1— Xz (65)
The differential of ¢ is given by
dg = df — Xdz — zdX (66)
Substituting (64) for df we obtain
dg = XNdz + Ydy — Xdz — zdX (67)
The first and third terms cancel to give
dg = Ydy — zdX (68)
The differential (68) is appropriate for a function g = ¢

(y,X) dependent upon y and X as independent variables.
Analogously one could define

h=f— Yy (69)

and obtain

dh = Xdx — ydVY (70)
showing that k = h(z,Y). It is also possible to carry
out a transformation in which both independent vari-
ables are changed, for

u=f— Xz - Yy (71)
has a total differential

dy = —adX — ydY (72)
showing that u = u(X,Y). The above are examples of

Legendre transformations, in which one or more of the
functions X, in eqn. (62) replace the corresponding x;

1 For a proof, see MaRGENAU, H., and Mureny, G- M, “Math-
ematics of Physics and Chemistry,” D. Van Nostrand & Co.,
Ine., Princeton, N. J., 1943, sect. 2.18.
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as independent variables.!' The prescription for these
transformations, as exemplified by (65), (69), and (72),
is 1o define a new function ¢ by subtracting from the
original function f products of the original and the new
independent variables.

The most important thermodynamic application of
Legendre transformations is based upon Clausius’s dif-
ferential relation,

dE = TdS — PdV (73)

which is actually a compact statement of the com-
bined first and sccond laws of thermodynamics. The
internal energy F is evidently a natural function of S
and V. Ifa natural function of S and P were required,
one would define the enthalpy

H=FE+ PV (74)
for then
dH = dE + PdV + VdP = TdS + VdP (73)

On the other hand, transformation to a function of T
and V would be accomplished by defining the Helmholtz
function

A=E-TS§ (76)
giving
dd = dE — TdS — 8dT = —8dT — PdV (7)

The remaining choice of independent variables, 7" and P,
leads to the Gibbs function or free energy
G=F+PV-T8S=H-T8S=4+4 PV (78)
with total differential
dG = —8dT + VdP (79)
The four functions, £, H, 4, and G are known collec-
tively as thermodynamic potentials. General condi-

tions for chemical equilibrium can be formulated in terms
of them.

Line Integrals

Finite quantities known as line integrals (or
curvilinear integrals) derive from differential expressions
by integration along curves in space. Before taking up

U The student familiar with analytical mechanics will recognize
that the Lagrangian and the Hamiltonian functions are connected
by a Legendre transformation. The Lagrangian depends upon
coordinates and velocities, and the Hamiltonian on coordinates
and momenta.

b X

Figure 2. Geometrical representation of the definite integral. The cross-
hatched vertical strip has an area f{x;)Ax;. The sum of the n strips with
i=0,...,n — 1 approximates the shaded area and approaches it in
the limit n — o, all Ax; — 0. According to definition {80}, the definite

integral fab fix)dx equals the shaded area.
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line integrals we shall review briefly the theory of
ordinary (Riemann) integration for functions of a single
independent variable. The definite integral of a con-
tinuous function f(x) is defined by the limit:

b ”
f flz)dr = lim lim Z flz)Az; {80}
a n—>o all Axi—0 /T3

where Az == 2; — ;-1, &, = ¢, and z, = b. The geo-
metrical mterpretation of (80), of an integral as an
area, is illustrated in Figure 2.

Another fundamental property of the definite in-
tegral, connecting the differential and integral caleulus
is given by

, .
f Ha)ls = F(b) - F(a) (s1)
a
where
L) 2 iy (s2)

This follows easily when the definition of the derivative

lim Flz) — F(zioy) -
Axi—0 Az

=) (83)

is substituted into (80). We have then

> {F(z:) — Flzioy)} = F(b) — F(a) (84)

i=1

which establishes (81). Also, using (82) in (81).
b
f dF(z) = F(b) — F(a) (83)

which expresses the definite integral entirely in terms of
the boundary values of a function.

An extension of the concept of integration to the case
of a function of more than one independent variable
invelves continuous summation of a differential ex-
pression dg(x,y) along a specified curve. For the case of
two independent variables, we define a line integral as
follows (Fig. 3)

x5
Age= f (X(oy)dz + Yzy)dy} =
cJxry
n
lim lim lim 3 i X(zop)az + Yieoyd)dy)  (36)
n—o all Axi—0 all Ayi—0 /27
where all the points z;, y, lie on a continuous curve C
connecting z', y’ (o, i) With z”, y"{zs,y.). FPossibly the
best known example of a line integral occurs in me-
chanics, where the work done on a particle is defined as

Figure 3. The line itegral, as defined in equation (86).




the line integral of force along a trajectory
Aw = fF.dr = [iFdr + F,dy + Fuz) (87)
»

A line integral, like a Riemiann integral, depends on
the sense (direction) of integration. From the defini-
tion (86) it follows that

-~

=37 B
f dg(zy) = — f do(zy) (88)
cJ oz cJ xv

It should however be noted that, in contrast to a
Riemann integral, a line integral is not represented in
any obvicus way by an area.

It is readily verified that (86) reduces to a Riemann
integral (80) when the path of integration is parallel to
either coordinate axis. For example, along the linear
path ¥y = yo = constant, (8G)} becomes

o
Age = f Xz, yo)dz (89)
xl

(since dy = 0). In general, when the curve C repre-
sents a funectional relationship

y = g(z) (90)

y can be eliminated between (86) and (90) to yield a
Riemann integral

ste = [ A Xtngton + Viean iz @

The limits on y are automatically fulfilled since y’ =
g(z’y and y* = g(z"). Alternatively one could elim-
inate = between (86) and (90) to obtain a Riemann
integral over y.

p
To\Ppme— B TPy
, .
= C/'/ A
P
To-Po T,Po

Figure 4. Three possible paths between the states Ty Py and T,P; of @
thermodynomic system.

As an illustration, we integrate the differential ex-
pression (55) along the three paths shown in Figure 4.
These line integrals

T Pl
AWV ___f

represent the work done on one mole of an ideal gas in
reversible expansion or compression. Along path A4,
(92) reduces to the sum of two Riemann integrals:

T1,Po
AWA_—.f iR_TdP Rd?% +

Tar - dTg (92)

T, Pe P
TPy Py
f 5%ZdP RdT% =RT,f %I;J~—
T1,Po 1 Py

T: P,
R dT = RT:In 3 — R(T, — To) (93)
T - P,

Along path B we obtain analogously,

AWy = R7on D — pTy — 1) (©4)
[]
To evaluate AW, we climinate 1" using the equation of
the linear path ¢

T -7y T~ T

P=P =P =P, (93)
whence
o T, =T,
7= To+ (F=p ) - P (96)
and
. 7, — Ty .
R (97)
Thus
Ale =f 510+ (B=h Ve - po] -
T, —Te
B (= P.,)
P —
= RT, ln — — RP, — )l (98)
_ R(ToP, — TlPo)ln &
P[ - Po Po
Comparing (93), (94), and (98) we see that
AWa4 &= AWg # AlWe. (99)

Thus the line inlegral depends in general on the path of
integration.

If, on the other hand, we integrate the differential
expression (52)

i R RT
AT =f 33 dT — dez (100)
Ta,Po
along the same three paths, we find
. . . RT T
Vi = a¥a = aVe= B0 B v v, aon

[using V" from the ideal gas law (2)]. In faet, eqn. (100)
evaluated along any path between T4,Pp and T',P; gives
the same result. The independence of path stems from
the fact that we are integrating an exact differential
(52) {whereas (92) contains the inexact differential (53) ].

To prove the above statement, let dg in (86) be the
total differential of a function F(z,y). Then using (48)
we can write

AF(ziy:) = X(ziy:)Azi + Y(z4y:)AY: (102)

where A F(x,y;) means F(zr,y;) — F(zi—1,yi~1). Sub-

stituting (102) in (86) we find

x7 " ”
Age = f dF{z,y) = lim Z AF(z:y:)
cJ 2y

L

= F(z",y") — F(z'y") (103)

independent of the path C. Note the correspondence
between eqns. (103) and (85). In both instances, the
value of the integral depends only on its end points.
Conversely, it can be shown that, if a line integral is
independent of path, the differential must be exact.

Of particular importance are line integrals around
closed paths, in which case the initial and final points
may be thought tc coincide. For cyclic paths, the
integral sign is usually written #. The closed curve
is by convention- traversed in the counterclockwe
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Figure 5. Line integral around closed path, as defined in equations (105}
and {106).

sense. If dg(z,y) is an exact differential, then
of daww) = f 1X(zy)z + Yopdst = 0 (104)

for an arbitrary closed path C. This is easily proved,
for dividing €' into two segments C* and C” connecting
'y’ with ”,y” (Fig. 5), we have

of do = f dg + f dg  (103)

Both since both integrals on the right hand side are
independent of path by eqn. (103), and since one is the
negative of the other by eqn. (88), we obtain eqn. (104).
When dg(r,y) is inexact, however, the cyclic integral
is, in general, different from zero.

A final connection between differential expressions
and line integrals is provided by Green’s theorem!?

CJ; {X(z,w)dz + Y(z,y)dy} =

ffs Kg%)‘ 27‘)] dz dy (106)

where the right hand side represents a double Riemann
integral over the area S enclosed by the curve C. If
Euler’s reciprocity condition (50) holds for dg(z,y),
then the right hand side of (108) vanishes and (104)
follows. Conversely if the left hand side of (106)
vanishes for arbitrary C, then the integrand of the
right hand side must vanish and (50) follows.

By Green’s theorem, certain cyclic line integrals can
be represented by areas. To illustrate, a differential
element of work done on a system in a reversible proc-
ess is given by

dW = — PdV (107)

using eqn. (106) with P and V as independent variables
(noting that the coefficient of dP is 0), we find, for the
work done in a cyelic reversible process

AWe = — Cf PV = — ff APV (108)
S

The right hand side is clearly equal to the negative of
the area S enclosed by the path C. Note that the non-
vanishing of (108) shows dW to be an inexact differ-
ential. Actually, since the dP term is lacking in eqn.
(107), AW can be represented by an area even for a non-
cyclic process. Thus we may write

2 For proof see, for example, Karran, W., “Advanced Cal-
culus,” Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1952, p. 230, »

Figure ‘6, Representation of work as aread

nr |8
Alle = — f PdV = — f P(V)dV (109
CJ PyVo Vo

where the path € determines P as a function of V.,
Since the right hand side is a Riemann integral it can be
represented by an area (Iig. 6).

To summarize several of the interrelationships dealt
with in this section, for a Pfaff differential expression

dg(z,y) = X(z,y)dx + Y(x,y)dy

any of the following statements implies the other two:
(1) There exists a function F(x,y) whose total derivative
is dg{z,y) (dg is an exact differential); (2) (OX/dy), =
(0Y/ox), (Euler's reciprocity relation): and (3)cf
dg(x,y) = 0 for an arbitrary closed path C.

AMany of the mathematical abstractions encountered
in this paper have obvious analogs in thermodynamic
terms. A pointin the xy plane can represent the state of
a thermedynamie system having two degrees of freedom.
The independent variables can be chosen from among P,
V, T, E, S, ete. A function F(x.y) corresponds to
another thermodynamic variable. It is called a fune-
tion of state since it is uniquely detcrmined by the
state of the system. An exact differential represents an
increment in a function of state whereas an inexact
differential represents an inerement in a thermodynamic
quantity not a funetion of state. A curve on the xy
plane ean represent an equilibrium process, that is, a
sequence of states between some initial and final states.
A line integral represents the change in a thermo-
dynamic quantity in the course of a process. 1f that
quantity is a function of state, the line integral ix in-
dependent of path. This is entirely reasonable since
the change in a function of state is simply the differ-
ence between its initial and final values. A line integral
around a closed path represents a cyclic proeess, one
which returns the system to its initial state. Clearly,
such a process leaves a function of state unchanged.

12 The work done in traversing the path C’ from P,V 1o P, T,
is equal to the negative of the area under C’.

Py, Vy
AWer = — f Pav
C'Y Py, Vo

The work done in returning to the original state via path C” is
equal to the area under C”,

Po, Vg PV,
AWer = — f PdV = f PdV
C'J P, V3 C*"J Py, Vo

The net work done in the cyclic process is given by
AWe = AWer + AWer

and is equal to the area enclosed by the cyclic pJath. The last
result alsotfollovg's from Green’s theorem (106).




