CYL 110: 2012-2013 Thermodynamics Tutorial 1

- 1. Dieterici's equation of state for a gas is $P(\overline{V} b)exp(a/R\overline{V}T) = RT$, where a, b, and R are constants. (a) Determine $(\partial V / \partial T)$, $(\partial T / \partial P)$, and $(\partial P / \partial V)$ and verify that $\begin{pmatrix} \partial V \\ \partial T \end{pmatrix} \begin{pmatrix} \partial T \\ \partial P \end{pmatrix} \begin{pmatrix} \partial T \\ \partial V \end{pmatrix} = 1$. (b) Show that the Dieterici critical constants are $p_c = \frac{a}{4b^2} e^{-2}$, $V_c = 2b$, $T_c = \frac{a}{4Bb}$
- 2. Deviation coefficients for real gases are defined as $\frac{T}{P} \left(\frac{\partial P}{\partial T}\right)_V$, $\frac{P}{R} \left(\frac{\partial V}{\partial T}\right)_P$, $\frac{P^2}{R} \left(\frac{\partial V}{\partial P}\right)_T$. Calculate these values for an ideal gas, a van der Waals gas, and a Dieterici gas.
- 3. (a) Express the van der Waals equation of state in virial form $P\overline{V} = RT + B\left(\frac{1}{\overline{V}}\right) + C\left(\frac{1}{\overline{V}}\right)^2 + \cdots$ and determine B and C in terms of a and b. (b) Use the virial form of the van der Waals equation to determine the Boyle temperature.
- 4. The critical pressure and temperature for hydrogen are 1.30 MPa and 33.2 K. Calculate the a and b parameters of the Redlich-Kwong equation $\left[P + \frac{a}{T^{1/2}V(V+b)}\right](\bar{V} b) = RT.$
- 5. Assume that oxygen (Tc = 154.6K, Pc = 5.046×10^6 Pa, Vc = 7.32×10^{-5} m³/mol) and water (T_c = 647.3K, P_c = 2.205×10^7 P_a, V_c = 5.6×10^{-5} m³/mol) can be considered as van der Waals fluids. a) Find the value of the reduced volume both fluids would have at T_r = 3/2 and P_r = 3. b) Find the T, P, and V of each gas at T_r = 3/2 and P_r = 3. c) If oxygen and water are both at 200 °C and 2.5 x 10^6 Pa, find their specific volumes.
- 6. A quantity of 0.850 mol of an ideal gas initially at a pressure of 15 atm and 300 K is allowed to expand isothermally until its final pressure is 1 atm. Calculate the work done if the expansion is carried out (a) against a vacuum, (b) against a constant external pressure of 1 atm, and (c) reversibly. (d) Calculate also the work done if the same process is carried out adiabatically and reversibly and comment on the difference.
- 7. Show that for an ideal gas $dq = C_V dT + RT d \ln V$ is not an exact differential, but $dz = C_V d \ln T + R d \ln V$ is an exact differential.
- A kettle containing 1 kg of boiling water is heated until evaporation is complete. Calculate w, q, ΔU for this process. Assume water vapour behaves ideally.
- 9. (a) Write the expression for dV given that V is a function of p and T. deduce an expression for d(InV) in terms of the expansion coefficient α and the isothermal compressibility κ_T .

(b) Show that $(\partial p/\partial T)_V = \alpha/\kappa_T$.

(c) Evaluate the ratio for a perfect gas. (d) For a van der Waals gas, show that $\kappa_T R = \alpha (\overline{V} - b)$.

- 10. When a fluorocarbon gas was allowed to expand reversibly and adiabatically to twice it volume the temperature fell from 298.15 to 248.44 K and its pressure fell from 1522.2 Torr to 613.85 Torr. Evaluate C_v and C_p . You may assume that the gas behaves perfectly.
- 11. Over narrow range of temperature and pressure, the differential expression for the volume of a fluid as a function of temperature and pressure can be integrated to obtain $V = K e^{-\alpha T} e^{-\kappa T}$. Show that V is a state function.
- 12. One mole of chlorine undergoes adiabatic expansion from 1 dm³ to a 10 dm³ against an external pressure of 0.1013 Mpa. What is the final temperature of gas? a = 665 dm⁶ Kpa mol⁻², b = 0.055 dm³mol⁻¹ and $C_{v,m}$ = 33.91 JK⁻¹ mol⁻²
- 13. A constant-volume perfect gas thermometer indicates a pressure of 6.69 kPa at the triple point temperature of water (273.16 K). (a) What change of pressure indicates a change of 1.00 K at this temperature? (b) What pressure indicates a temperature of 100.00°C? (c) What change of pressure indicates a change of 1.00 K at the latter temperature?

1

- 14. Derive a general relation between C_P and C_V to get the general result $C_p C_V = \left[P + \left(\frac{\partial U}{\partial V}\right)_T\right] \left(\frac{\partial V}{\partial T}\right)_P$
- 15. Show for a van der Waals gas $C_p C_V = \alpha^2 T V / \kappa_T$. You will need to use an identity (to be derived later in this course) $\pi_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$
- 16. A mole of ideal gas is compressed adiabatically to one-half of its original volume when the temperature of the gas is increased from 273 K to 433 K. Assuming $\overline{C_V}$ is independent of the temperature, calculate the value of $\overline{C_V}$ for this gas.
- 17. Show that the work involved in a reversible, adiabatic pressure change of one mole of an ideal gas is given by $w = e^{-\pi} r \left(\frac{P_2}{P}\right)^{R/C_p} = 11$

$$w = c_V T_1 [\left(\frac{P_2}{P_1}\right)^{n/c_P} - 1]$$

where T_1 is the initial temperature and P_1 and P_2 are the initial and final pressures, respectively.

- 18. A sample of 1.00 mol perfect gas molecules with $C_{p,m} = \frac{7}{2}$ R is put through the following cycle: (a) Constant volume heating to twice its initial volume, (b) Reversible, adiabatic expansion back to its initial temperature, (c) reversible isothermal compression back to 1.00 atm. Calculate q, w, ΔU , and ΔH for each step and overall.
- 19. Take nitrogen to be a van der Waals gas with $a = 1.390 \text{ dm}^6$ atm mol⁻² and $b = 0.03913 \text{ dm}^3 \text{ mol}^{-1}$, and calculate ΔH_{m} when the pressure on the gas is decreased from 500 atm to 1.00 atm at 300 K. For a van der Waals gas, $\mu_{JT} = \{(2a/RT) b\}/C_{p,\text{m}}$. Assume $C_{p,\text{m}} = \frac{7}{2}R$.
- 20. (a) What is the total differential of $z = x^2 + 2y^2 2xy + 2x 4y 8$? (b) Show that $\partial^2 z / \partial y \partial x = \partial^2 z / \partial x \partial y$ for this function. (c) Let $z = xy - y + \ln x + 2$. Find dz and show that it is exact.
- 21. Calculate the work done during the isothermal reversible expansion of a gas that satisfies the virial equation of state, $P\overline{V} = RT + B\left(\frac{1}{\overline{V}}\right) + C\left(\frac{1}{\overline{V}}\right)^2 + \cdots$. Evaluate (a) the work for 1.0 mol Ar at 273 K (B = -21.7 cm³ mol⁻¹) and (b) the same amount of a perfect gas. Let the expansion be from 500 cm³ to 1000 cm³ in each case.
- 22. A gas obeys the equation of state $V_m = RT/p + aT^2$ and its constant-pressure heat capacity is given by $C_{p,m} = A + BT + Cp$, where a, A, B, and C are constants independent of T and p. Obtain expressions for (a) the Joule–Thomson coefficient and its constant-volume heat capacity.
- 23. Calculate the heat needed to raise the temperature of air in a house from 20 to 25 °C. Assume that the house contains 600 m³ of air, which should be taken to be a perfect diatomic gas. The density of air is 1.21 kg m⁻³ at 20 °C Calculate ΔU and ΔH for the heating of the air.
- 24. Find the maximum inversion temperature of the gas whose equation of state is $\left(P + \frac{x}{TV^2}\right)(V y) = RT$ where x and y are constants.
- 25. When a fluorocarbon gas was allowed to expand reversibly and adiabatically to twice it volume the temperature fell from 298.15 to 248.44 K and its pressure fell from 1522.2 Torr to 613.85 Torr. Evaluate C_v and C_p . You may assume that the gas behaves perfectly.
- 26. Verify that the enthalpy of a perfect gas is independent of its pressure while it is dependent upon pressure for a van der Waals gas. [Use the approximate form of van der Waals equation PV = nRT + nP(b a/RT)].
- 27. An important application of adiabatic cooling/heating is in atmospheric physics. Pressure varies with altitude as $dP/dh = -g\rho$, where ρ is the density. Calculate the change in temperature at the top of a mountain 2 km above the valley floor assuming the process is adiabatic and air behaves ideally.
- 28. Which of these cyclic integrals must vanish for a closed system with P-V work only? (a) $\oint PdV$, (b) $\oint (PdV + VdP)$, (c) $\oint dq_{rev}$, (d) $\oint dq_{rev}/T$.