- 1. One mol of hydrogen occupies a volume of 0.1 m³ at 300 K and one mol of argon also occupies the same volume but at 400 K. While isolated from their surroundings, each undergoes a free expansion, the hydrogen to 5 times and argon 8 times its initial volume. The two masses are then placed in contact with each other and reach thermal equilibrium. What is the total change in entropy? ($C_v^{H_2} = 10 \text{ kJ/K/kg}$, $C_v^{Ar} = 10 \text{ kJ/K/kg}$).
- 2. One mole of an ideal monatomic gas undergoes an irreversible adiabatic process in which the gas ends up at STP and for which ΔS is 21 JK⁻¹ and w is 1.26 kJ. The entropy of the gas at STP is 270 JK⁻¹mol⁻¹. Calculate ΔU and ΔG for the process and also the initial state of the gas.
- 3. Represent the Carnot cycle on a temperature-entropy diagram and show that the area enclosed by the cycle is equal to the work done.
- 4. By a thermodynamic analysis show that the following familiar processes are spontaneous: (a) A book is pushed off a table and falls to the floor. (b) One mole of an ideal gas in a vessel that is connected to another identical evacuated vessel through a valve. The valve is opened and the gas occupies both vessels. (c) Melting of ice when brought in contact with an object at a temperature above 0 °C.
- 5. It is possible to cool liquid water below its freezing point of 273.15 K without the formation of ice if proper care is taken to prevent nucleation. A kilogram of sub-cooled liquid water at 263.15 K is contained in a well-insulated vessel. Nucleation is induced by the introduction of a speck of dust, and a spontaneous crystallization process ensues. Find the _nal state of the water and calculate the total entropy change for the process. (Heat of fusion is $334 \, \mathrm{Jg^{-1}}$, $C_p(l) = 4.185 \, \mathrm{Jg^{-1}K^{-1}}$; $C_p(s) = 2.092 \, \mathrm{Jg^{-1}K^{-1}}$)
- 6. 100 g of ice at 0 °C is dropped into an insulated beaker containing 150 g of water at 100 °C. Calculate ΔS for this process.
- 7. Calculate the maximum work and the maximum non-expansion work that can be obtained from the freezing of supercooled water at -5 °C and 1.0 atm. The densities of water and ice are 0.999 and 0.917 g cm⁻³, respectively at -5 °C.
- 8. One mole of He is heated from 200 °C to 400 °C at a constant pressure of 1 atm. Given that the absolute entropy of He at 200 °C is 810 JK⁻¹mol⁻¹, and assuming He is a perfect gas, comment on the spontaneity of the process.
- 9. Derive the relations: $(i)C_p C_v = T\left(\frac{\partial p}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_p$; $(ii)C_p C_V = \frac{\alpha^2 TV}{\beta}$; $(iii)\mu_{JT} = -\left(\frac{V}{C_p}\right)\left(\beta C_V \mu_J \beta p + 1\right)$; $(iv)\left(\frac{\partial H}{\partial V}\right)_S = \frac{\gamma}{\beta}$; $(v)\left(\frac{\partial V}{\partial T}\right)_p = \frac{C_V \beta}{T\alpha}$
- 10. Calculate the temperature change when the pressure on 1 kg of water is increased from 0 to 10^8 Pa reversibly and adiabatically. The initial temperature of water is 273.15 K, the specific volume is 10^{-3} m³kg⁻¹, the coefficient of thermal expansion, $\alpha = 10^{-6}$ /K and Cp is 4184 J/(kg K).