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Abstract

The necessity to switch to renewable energy sources has become critical due to the world’s

increasing energy demands and the depletion of fossil fuel reserves. The answer to the current

problem is to use renewable energy sources, which are economical, ecologically responsible,

and abundant in nature. Advanced solid-state materials that are utilized to solve environmen-

tal problems have attracted a lot of scientific interest. The three kinds of innovative energy

materials—solid-state electrolyte materials for all-solid-state batteries, perovskite materials for

solar cells and optoelectronic devices and catalysts for H2 production and bio-mass conversion

are the core topics of this thesis. The most widely used kind of energy storage in both autos

and portable gadgets is the lithium-ion battery. Its use in large-scale energy applications is

hindered by the usage of flammable liquid electrolytes. The use of solid-state electrolytes in

place of liquid electrolytes, as in all-solid-state batteries, improves battery design and assures

safety. LISICON oxide-based materials are been explored as solid-state electrolytes since they

are easy to synthesize and environmentally friendly. However, they exhibit poor ionic conduc-

tivity at room temperature. Hence, we look at the impact of point defects on the ion transport

properties, namely Li-vacancy, substitution at the P site with Si, Ge and Al. We do ab-initio

molecular dynamics (AIMD) simulations to determine the diffusional characteristics of the

pristine and defected materials. We explain how the point defects play a pivotal role in mod-

ifying the ion transport properties in oxide-based solid state electrolytes. On the other hand

in optoelectronics, lead halide perovskites have become an effective compound semiconductor

replacement for traditional solar materials. The materials in this class have a good optical band

gap, long carrier diffusion length, high charge carrier mobility, and low cost of production.

However, their widespread use is constrained by worries about the toxicity of lead and intrin-

sic instability. As an alternative to conventional lead halide perovskites, several derivatives of

these have been proposed. Double perovskites like Cs2M(I)M(III)X6 (M = metal, X = halogen)

and layered hybrid perovskites have been developed in an effort to combat toxicity and insta-
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bility. However, these lead-free halide double perovskites and layered hybrid perovskites do

not demonstrate the same efficiency as that of lead halide perovskites. Therefore, we do point

defects in these materials to improve their stability, electronic and optical properties. Since

double perovskites and layered hybrid perovskites do not meet all the criteria and lack at some

points, we focus on a new type of inorganic layered type perovskite i.e., Ruddlesden Popper

phases of chalcogenides. Here, we study the polaronic and excitonic effects with the number of

perovskites units in a layer. To address optical features such as dielectric function, absorption

spectra, exciton binding energy, and polaronic effects in perovskites, we use a robust method-

ological approach that combines many layers of theories into a single multi-scale simulation.

Density functional theory (DFT) is used in this thesis work to predict the ground-state proper-

ties, ab initio atomistic thermodynamics is used to predict thermodynamic stability, many-body

perturbation theory (GW, BSE, and model-BSE) is used to predict excited-state properties, the

Wannier-Mott approach is used to calculate the exciton binding energy and exciton lifetime,

and density functional perturbation theory (DFPT) is used to determine the exciton lifetime.

Lastly, engineering an effective and optimized catalyst is the ultimate objective of research in

heterogeneous catalysis. This is because there are many different catalytic processes. Consider

what restricts the usefulness of current catalysts as a useful technique for finding acceptable

catalysts. Understanding the intended functionality at an atomistic level is crucial for the de-

velopment and logical design of catalytic materials. In this thesis, we study role of O-vacancy

on the surface of the catalyst in facilitating the dissociation of the SO3 which is the most en-

dothermic reaction step in the S-I cycle for H2. We also study the effect of surrounding ligands

on the catalytic activity of the single-atom-Ru in partial hydrogenation of the xylose/glucose

into useful sweeteners, which are popular in medical as well as industrial areas.



सार  
ऊजा$ की ब(ती मांग और जीवा1 2धन भंडार की कमी के कारण अ:य ऊजा$ <ोत> पर िAच 

करने की आवDकता महFपूण$ हो गई ह।ै वत$मान मK इसका एकमाO  उपाय  नवीकरणीय ऊजा$ 
<ोत> का उपयोग करना ह,ै जो िकफायती, पािरिUितक Wप स ेिजYेदार  हो, और [कृित मK 
[चुर माOा मK पाए जाते हो। उ^त ठोस-रा` सामaी िजनका उपयोग पया$वरण की ऊजा$ 
सbंिदत समdाओ ंको हल करने के िलए िकया जाता ह,ै िजस कारण य ेवैhािनक शोध का 
कK j बन ेkए ह।ै तीन [कार की नवीन ऊजा$ सामaी -सभी ठोस-रा` बैटरी के िलए ठोस-रा` 

इलेmोलाइट सामaी, सौर सेल/ऑpोइलेmॉिनक उपकरण> के िलए पेरोसाइट सामaी, और  
H2 उrादन और जैव-jsमान Wपांतरण के िलए उtेरक, इस थीिसस के मुw िवषय हy। 

मोबाइल और िडिजटल िडवाइस मK सबसे sापक Wप स ेइzेमाल िकया जाने वाला ऊजा$ 
भंडारण और पोट{बल गैजेट िलिथयम-आयन बैटरी ह।ै }लनशील तरल इलेmोलाइट्स की 
उपिUित ने उनके ब�े पैमाने पर sावसायीकरण मK बाधा उr^ की ह।ै तरल इलेmोलाइट्स 

की जगह ठोस-अवUा इलेmोलाइट्स का उपयोग, जैसा िक सभी ठोस-रा` बैटरी मK होता ह,ै 

बैटरी िडजाइन मK सुधार करता ह ैऔर सुर:ा का आ�ासन देता ह।ै LISICON ऑ�ाइड-

आधािरत सामaी को ठोस-अवUा इलेmोलाइट्स के Wप मK खोजा गया ह ै�>िक वे सं�ेिषत 

करना आसान ह ैऔर पया$वरण के अनुकूल ह।ै हालांिक, वे खराब आयिनक चालकता [दिश� त 

करत ेहy कमर ेके तापमान पर। इसिलए, हम आयन पिरवहन गुण पर िबंदु दोष के [भाव को देखते 
हy, अथा$त ्Li-िरि�, Si, Ge और Al के साथ P साइट पर [ितUापन। हम [ाचीन और दोषपूण$ 
सामaी की िवसारक िवशेषताओ ं को िनधा$िरत करने के िलए आणिवक गितकी (AIMD) 

िसमुलेशन की हy। हम समझात े हy िक कैसे िबंदु दोष ऑ�ाइड-आधािरत ठोस अवUा 
इलेmोलाइट्स मK आयन पिरवहन गुण संशोिधत करने मK महFपूण$ भूिमका िनभात ेहy। वह� दूसरी 
ओर ऑpोइलेmॉिन� मK, लेड हलैाइड पेरोसाइट्स एक [भावी यौिगक सेमीकंड�र बन गए 

हy, जो परपंरागत सौर सेल सामaी को [ितUािपत कर सकता ह।ै य ेसामaी अ�े ऑिpकल 

ब�ड का [दश$न करती हy अंतराल, लंबी वाहक [सार लंबाई, उ� चाज$ वाहक गितशीलता, और 
उrादन की कम लागत। हालांिक, सीसा की िवषा�ता  और आंतिरक अिUरता ने उनके ब�े 

पैमाने पर sावसायीकरण मK बाधा डाली ह।ै पारपंिरक लेड हलाइड पेरोसाइट्स के िवक� के 

Wप मK कई पेरोसाइट्स [zािवत िकए गए हy। Cs2M(I)M(III)X6 (M = धात,ु X = हलोजन) 

जैसे डबल पक�साइट्स और zिरत संकर पक�साइट्स  िवषा�ता और अिUरता स ेिनपटने 



के #यास म( िवकिसत िकए गए ह0। हालाँिक, य ेलेड-5ी हलैाइड डबल पक;<साइट्स और लेयडA 
हाइिCड पक;<साइट्स करत ेह0 उE शिH Iपांतरण दMता का #दशAन नहO करत ेह0, जैसा िक 

लेड हलैाइड पेरोसाइट्स के Iप म( होता ह।ै #दशAन नहO करते। इसिलए, उनकी िTरता, 
इलेUॉिनक और ऑिZकल गुण\ म( सुधार करने के िलए हम ऐसी सामि`य\ म( दोष\ की भूिमका 
का अeयन करत ेह0। जैसा डबल पक;<साइट्स और लेयडA हाइिCड पक;<साइट्स सभी मानदंड\ 
को पूरा नहO करत ेह0 और कुछ म( कमी ह,ै हम एक नए #कार के अकाबAिनक gिरत #कार के 

पेरोसाइट पर eान क( िiत करत ेह0, जैसे िक चाकोजेनाइड kडlडेन पॉपर पेरो<nाइट्स। यहां, 
हम एक परत म( पेरोसाइट इकाइया ँकी संoा के साथ पोलरोिनक और एqाइटोिनक #भाव\ 
का अeयन करत े ह0। परावैrुत फलन, अवशोषण जैसी #काशीय िवशेषताओ,ं uेUा, 
एिqटोन बाइंिडंग एनजx, और पेरोसाइट्स म( पोलरोिनक #भाव का अeयन के िलए हम एक 

मजबूत पyित का उपयोग करत ेह0, जो िसyांत\ की कई परत\ को एक ब{-gरीय अनुकरण म( 
जो|ता ह।ै Density functional theory (DFT) का उपयोग इस थीिसस कायA म( जमीन-रा} 

गुण\ की भिव~वाणी करने के िलए िकया जाता ह,ै ab initio Molecular dynamics का 
उपयोग थम;डायनािमक िTरता की भिव~वाणी करने के िलए िकया जाता ह,ै many body 

Perturbation theory (GW, BSE, and model-BSE) उ�ािहत रा} गुण\ की भिव~वाणी 
करने के िलए #योग िकया जाता ह,ै Wannier-Mott �ि�कोण का उपयोग एिqटोन बाइंिडंग 

एनजx और एqाइटन लाइफटाइम की गणना के िलए िकयाजाताह,ै  और घन� कायाA�क 

ग|ब|ी िसyांत (DFPT) का उपयोग एqाइटन जीवनकाल को िनधाAिरत करने के िलए िकया 
जाता ह।ै अंत म(, इंजीिनयिरंग म( एक #भावी और अनुकूिलत उ�ेरक अनुसंधान का अंितम उ�े� 

ह।ै ऐसा इसिलए ह ै�\िक कई अलग-अलग उ�ेरक #ि�याएं ह0। िवचार करना �ीकायA खोजने 
के िलए एक उपयोगी तकनीक के Iप म( वतAमान उ�ेरक की उपयोिगता को �ा #ितबंिधत 

करता ह ै उ�ेरक। िवकास के िलए एक परमाणु gर पर इि�त कायAMमता को समझना 
मह�पूणA ह ैऔर उ�ेरक साम`ी का तािक� क िडजाइन। इस थीिसस म(, हम O-िरिH की भूिमका 
का अeयन करत ेह0 जो SO3 के िवयोजन को सुिवधाजनक बनान ेम( उ�ेरक की सतह पर 
मह�पूणA भूिमका िनभाता ह।ै SO3 का िवयोजन, H2 उ�ादन के िलए S-I च� म( सबसे अिधक 

एंडोथिम� क चरण ह।ैहम Ru एकल परमाणु की उ�ेरक गितिविध पर आसपास के िलग(ड की 
भूिमका का भी अeयन करत ेह0, िजसका उपयोग जाइलोज/�ूकोज के हाइ�ोजनीकरण के 

िलए जाइिलटोल/सोिब� टोल म( िकया जाता ह,ै जो िचिक�ा और उrोग\ म( मांग म( ह0। 
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CHAPTER 1

Introduction

1.1 Why advanced energy materials?

Advanced energy materials have gained considerable momentum especially for their use as

energy harvesting materials to meet the growing energy demands of 21st century.Over 80%

of the world’s energy requirements are supplied by the combustion of fossil fuels, which en-

hance global warming and has hazardous effects on the our environment. Moreover, these non-

renewable fossil fuels will eventually be exhausted due to worldwide high energy demand and

high combustion rate. To meet the continuous advancement of the human society, new cheap,

clean, compact and renewable sources of energies are required [2, 3, 4, 5]. Many such materials

including battery materials, solar cells, organic and inorganic photovoltaics, hydrogen produc-

tion/storage, water splitting and photocatalysis, piezo-electricity materials, thermoelectrics, etc

are being studied and a lot of research is being done to make these materials reliable for on-

board applications [3, 6, 7]. The invention of spectroscopy, followed by various characteriza-

tion techniques for the noble advanced energy materials allowed one to investigate size, phase

distribution, composition/element distribution and correlate the changes in the physical prop-

erties and characteristic properties with the defects and imperfections in the materials. By the

end of 20th centuary, the theoretical studies through computational simulations became an ul-

timate tool to study the size, structure, configuration, electronic properties, physical properties,

excited state properties, defects, and various fundamental properties for various applications of

the materials. However, even after so many attainments in the comutational studies, there are a

lot of challenges in studing the effects of defects on the fundamental properties and defects in

advanced energy materials.

1
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1.2 A brief introduction to imperfection or defects in solids

Any deviation in the microscopic region of a regularly arranged atomic crystal is defined as an

imperfection or defect in solids. Figure 1.1 shows the dimensional spans of various types of

defects in solids. Based on the dimensional ranges, crystalline defects are generally classified

into four groups, which are as follow

• Atomic point defect (zero-dimensional defect)

• Line defect (one-dimensional defect)

• Interfacial defect (two-dimensional defect)

• Volume defect (three-dimensional defect)

This thesis is oriented toward atomic point defects and their effects on the functional properties

of advanced energy materials. Further, atomic point defects are categorized into vacancies,

self-interstitial atoms, substitutional atoms and interstitial impurity atoms. Missing of an atom

from its lattice site results into a vacancy defect (intrinsic defect). Such defects mainly occur

at high temperature due to frequent exchange of atomic positions among the atoms and leave

behind empty spaces. On the other hand, when an extra atom occupies the interstitial void, it is

called self-interstitial defect (intrinsic defect). Note that vacancy and self-interstitial defects are

also known as intrinsic defect as no foreign atom is involved in such defects. A substitutional

defect occurs when an atom of different type than bulk system occupies the lattice site of one

of the atom of the bulk system. If this foreign atom occupies the interstitial position or void

in the bulk system, then this is an interstitial defect. Interstitial defect is possible only when

the size of the interstitial impurity atom is smaller than free space or void present in the bulk

matrix lattice. Here, substitutional and interstitial defects are of extrinsic type as they occurs

due to the presence of foreign atoms in the system.

1.3 Thermodynamics of defects

Defects increase the energy of crystals i.e., they are energetically unfavorable. However, the

presence of defects increase the entropy of the crystal i.e., they are entropically fovorable. As



Chapter 1. Introduction 3

two processes are going in parallel in the system. According to thermodynamic relation

4G = 4H− T4 S (1.1)

For any feasible reaction,4G must be negative, hence, entropy must increase. Let us consider a

system consisting of N atoms and n vacancies (point defect), then using Boltzmann equation [8]

the configurational entropy is given by

4S = kBlnω (1.2)

where ω = N!
(N−n)!n! , is the total number of possible configurations for the arrangement of the

atoms in the system. If we imagine an ideal system, having no defects i.e., n=0 or ω=1. Using

above equation, 4S = 0. Hence, from thermodynamic equation 1.1, is not reduced. It empha-

sizes that in practical world, the perfect crystal is not possible and defects are inevitable in the

crystals.

Figure 1.1: Diagrammatic representation of surface defects such as flaws at grain boundaries, edge

dislocations, and point defects such as vacancies, substitutions, and interstitial defects.
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1.4 Solid solutions

In extrinsic defects which are associated with the impurities or dopants in the system, which

either occupy the interstitial site or substitute the native atom of the lattice system. When the

dopant concentration rises above≥ 0.1-1 %, the system is referred to as a solid solution instead

of a doped system. However, both these terminologies are interchangeable. Basically, a crystal

with variable concentration is known as solid solution. As in case of doped systems, the solid

solutions are also of two types (i) substitutional solid solution and (ii) interstitial solid solution.

If the introduced atom or ion replaces the atom or ion of the parent system, then it is known as

substitutional solid solution. On the other hand, in interstitial solid solution, the species being

introduced occupies the interstitial site or void in the parent system.

1.5 The Hume-Rothery Rules for the Solid Solution

In engineering materials, the substitutional solid solutions are more common among the solid

solutions. Let us consider the parent system as the solvent and the atom or ion is being intro-

duced as the solute. In the case of an interstitial solid solution, the solute will go into an inter-

stitial site or position if it is very much smaller in size than that of the solvent atom. Whereas

the substitutional solid solution depends on various rules known as the Hume-Rothery rules for

solid solutions. These rules are as follows:

Ionic radius: This rule says that the ionic radii of solute and solvent atoms must lie with

in the range of 15% of each other is given by the following equation:

∣∣∣∣rsolvent − rsolutersolvent

∣∣∣∣ ≤ 0.15 (1.3)

The ionic radius is important because of two reasons. First, if the atomic size of the solute

is a very small in comparison to the solvent, it will always be an interstitial solid solution

rather than a substitutional solution. The second reason, is if the size of the solute is too

large, then the lattice strain effects caused by the solute atom will hinder its solubility.

That is introducing a too-large or too-small solute at the lattice site of solvent will always

cause strain in the lattice (see Figure 1.2 ) and the substitutional solid solution will not

be possible.

Similar crystal structure: According to this rule to have appreciable solubility of the
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Figure 1.2: Schematic presentation of strain in the lattice on doing substitutional point defect.

solute in the solvent, both the elements should exhibit similar crystal structure. However,

there are some exceptions to this rule. For example: Iron and Cromium both exhibit BCC

stable crystal structures and their solid solution stainless steel is also BCC. However, on

adding Ni (that exhibits stable FCC crystal structure) in excess, the new solid solution is

thermodynamically more stable in FCC phase rather than BCC.

Electronegativity: Electronegativity (χ) difference between solute and solvent atoms

should be small. If the electronegativity difference is large, it results in a strong attraction

between two atoms. Therefore, they will make compounds instead of solution and the

system will tend to be regular instead of random. On the other hand, entropy prefers

the random arrangement of the atoms. Hence, as long as electronegativity difference is

such that entropy is a dominating factor, the obtained system will form a solution rather

than a compound. Using this criterion, on the Pauling scale, to have a solid solution, the

maximum electronegativity difference is about 0.3.

∣∣∣∣∣χsolvent − χsoluteχsolvent

∣∣∣∣∣ ≤ 0.3 (1.4)

Valencies: The atoms should possess similar valency, i.e., the number of electrons in the

valence shell should be same. In other words, if the elements belong to the same group

of the periodic table the solubility will be maximum.
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1.6 Properties affected or controlled by the by point defects

The presence of defects or imperfections in the crystal influences many crystal properties.Such

properties which are being controlled or modified by the defects or crystal imperfections are as

follows:

•••• The electrical conductivity of semiconductors is entierly controlled by the point defects.

• The thermal or electrical conductivity of the metals decreases with increase in point de-

fects.

• Atomic diffusion and ionic conductivity can be accelerated immensely by point defects.

• Point defects can have a strong effect on the luminescence or color properties of the host

crystal.

• Imperfections or defects also control the mechanical and plastic properties of the host

crystal.

Here, we have provided an example to show the effect of the defect in solid-state materials

on one of the systems that we have studied in our research work (see Figure 1.3). In Fig-

ure 1.3(a), we have shown a perfect crystal (Cs8Ag4Bi4Cl24) and its electronic and optical

properties using the partial density of states (pDOS) and absorption plot, respectively. Whereas

in the lower panel of this Figure, we have shown the optimized structure of the defective sys-

tem (Cs3Ag3AuBi4Cl24), which is obtained by substituting Au at the Ag site i.e. substitutional

point defect. The electronic and optical properties of this defective crystal are also shown in

the same panel. A noticeable effect of the point defect can be seen on comparing the electronic

and optical properties of pristine and defective systems. This shows how one can modulate the

properties of the solid system by doing defects.

1.7 Role of point defects in advance energy materials

The point defects, either intrinsic or extrinsic, play a crucial role in modulating the functional

properties of the solid crystals. Since defects require energy to be formed, therefore, they can

be considered energy storage units in solid systems. In energy applications, defects play a cen-

tral role as they affect the physical properties and have a decisive impact on the performance
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Figure 1.3: Partial density of states and absorption spectra of (a) pristine (Cs8Ag4Bi4Cl24) and (b)

defected Cs8Ag3Au1Bi4Cl24 double perovskites along with respective optimized geometries.

of the advanced energy materials (see Figure 1.4). Various properties like diffusion of ions,

mechanical properties, electronic properties, and optical properties in semiconductors can be

controlled by the different amount of doping or defects in the materials. A marvelous example

of the effect of point defects is observed in semiconductors, where even a small concentration of

defect can bring a large change in the electrical conductivity [295]. Therefore, characterization

and controlling of defects are pivotal in solid materials. Experimentally characterization and

identification of defects is a strenuous procedure, thus other techniques are required to perform

this task. In this regard, first-principles calculations have emerged as a powerful tool to inves-

tigate the defects in various materials. In this race, for defect calculations, Density functional

theory (DFT) which is based on the first principles approach has emerged as the most popular

and reliable method among world wide research groups. Under the framework of DFT, we have

attempted to understand the role of point defects in various materials which are directly or indi-

rectly related to energy. In our present thesis, we have focused on various perovskite materials

which include inorganic bulk/layered perovskites, hybrid layered perovskites, LISICON-based

oxide materials and catalysts.
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Figure 1.4: Schematic illustration of point defects in different energy materials viz., LISICON, per-

ovskites, catalysts and their applications in automobile, electronic devices, solar cells, and optoelectronic

devices, H2 production and biomass conversion.

1.8 Problems and Challenges

When considering defects in semiconductors, the convergence of supercell size and a depend-

able exchange-correlation functional are the main challenges. To minimize defect-defect inter-

actions, prior investigations frequently reported very low dopant concentrations. High doping

concentrations can be attained, nonetheless, even when employing periodic boundary condi-

tions to calculate system defects the supercell needs to be large enough for this function in

order to prevent erroneous interactions between images. Interactions might have an impact
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on the defect levels, formation energies, and transition levels, which would lead to inaccurate

results. Supercell size expansion may also bring attention to the problem of electrostatic inter-

action, particulary in charged defects in semiconductors. Even for established semiconductors

like Si or Ge, high and adequate control over doping is still a hot topic of research [9]. Con-

trolled doping is necessary because even semiconductors with acceptable inherent properties

cannot be utilised in device applications if the material’s conductivity is not under our control.

From an experimental standpoint, this is a challenging endeavor, but advances in computational

techniques allow us to use first-principles simulations to comprehend and manage the defects.

Understanding the electrical and optical characteristics depends on the trustworthy exchange-

correlation (εxc) functional. The εxc functional, which must be meticulously studied in light of

the electron’s self-interaction error and spin-orbit coupling (SOC) effect, has never been sim-

ple to understand at the theoretical level (e.g. DFT [10, 11]). Researchers are encouraged to

employ straightforward GGA (PBE) functionals for this system since, in a select few circum-

stances, their contributions cancel one another and the bandgap agrees with the experimental

values, such as MAPbI3 [12, 13, 14, 15]. However, employing the PBE εxc [16, 17] functional

would result in completely inaccurate defect formation energy, transition levels, and defect lev-

els of neutral as well as charged defects due to the improper placements of the valence band

maximum (VBM) and conduction band minimum (CBm).

In light of this, hybrid functionals have become a potent method to get around these prob-

lems. The ground state electronic structure is computed with extreme accuracy using DFT

and hybrid functionals. However, GW+BSE calculations must be done for the best results in

order to capture optical and excitonic effects in semiconducting materials. The schematic pic-

ture demonstrates the difficulties and many approaches one must take in order to record the

electronic, optical, and excitonic characteristics as well as the thermodynamic stability of any

system (see Figure 1.5). The dependability of the computational technique is mostly deter-

mined by comparing theoretical results with experimental data. Additionally, it gives theory

the ability to comprehend and analyze the outcomes of experiments while also predicting the

characteristics that may be subsequently explained by experiments.
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Figure 1.5: Schematic illustration of various energy materials as input, and several challenges and steps

to be followed to have accurate prediction of the electronic, ion transport, optical properties and thermo-

dynamic stability for their application in different energy fields.

1.9 A short overview

• Chapter 2 : The theoretical approach used in this work is presented in this chapter. We have

briefly introduced to first-principles-based DFT, which is used to analyze the structural

and electrical characteristics of different advanced energy materials. The GW approxi-

mation, and the BSE method, two MBPT techniques that are helpful in comprehending

optical aspects including excitonic parameters, are also discussed. To determine the ther-

modynamic stability and dynamic diffusion of the ions in a system, a brief description of

AIMD is also presented.

• Chapter 3 : In this chapter, we have investigated the relationship between ionic diffusion

and dopants/defects in LISICON, a potential solid-state battery (SSB) material. We have

firstly computed the formation energies of various defects in LISICON using density

functional theory (DFT) to identify the thermodynamically stable configurations. Ac-

cording to our findings, the most stable defects are those that retain charge neutrality. The

diffusion and ionic conductivity of Li-ions have then been investigated using an AIMD

simulation on (meta)stable (un)doped systems. We have examined the amplitude of vi-

bration, tracer diffusivity, ionic conductivity, jump rate, charge density, and activation
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barrier for both pristine and point-defect samples after assessing the results of our AIMD

simulation to gain insight into the synergistic impact of point defects. To get insight into

the synergistic impact of point defects, we have compared the amplitude of vibration,

tracer diffusivity, ionic conductivity, jump rate, charge density, and activation barrier for

both pristine and defective systems. The jumps between various planes are strikingly

dissimilar, which results in anisotropy in the ionic conductivity of LISICON. Since there

are fewer interplanar leaps in bc planes, its ionic conductivity is constrained in that direc-

tion. We have also demonstrated that point defects, such as Li-vacancy and replacement

at Si-sites with other elements, such as P, Ge, and Al, can increase the limited jump rate

at ambient temperature.

• Chapter 4 : In this chapter, we have offered a thorough theoretical analysis of how sublattice

mixing can change the band gap of Cs2AgBiCl6 in this work. To improve the optical

characteristics of Cs2AgBiCl6, M(I) is substituted at Ag-sites, M(II) at Ag- and Bi-sites

concurrently, and M(III) at Bi-sites in a range of concentrations. DFT is used to produce

a high-throughput screening by carrying out hierarchical calculations. We begin by doing

extensive pre-screening on a large number of configurations using the GGA εxc functional

(PBE), and the successful candidate structures are then further examined using hybrid

DFT with HSE06. For a more precise knowledge of the excited state attributes, use the

later εxc functional. It should be noted that the impact of SOC is always taken into account

in the aforementioned computations (namely, PBE or HSE06). Due to the presence of

heavy metal atoms, this step is essential for determining the precise band gap and band-

edge locations of these systems. We have started with 64 separate sets of the metal

combinations M(I), M(II), and M(III), respectively. First, the Goldschmidt tolerance

factor and octahedral factor are used to determine structural stability. It is important

to remember that perovskites cannot develop only on the basis of structural stability.

Therefore, the enthalpy of breakdown per atom (HD) is determined in order to confirm

the material’s thermodynamic stability. Then, in order to identify an effective solar cell

absorber, we have calculated the spectroscopic limited maximum efficiency (SLME) of

all the stable configurations with direct band gaps.

• Chapter 5 : In the current work, we have investigated how the development of mixed per-

ovskite structures can lower the concentration of Pb and increase solar cell performance
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by utilizing Ge/Sn substitution and Pb-vacancy (Pb). For this, we have first comprehen-

sively benchmarked and verified the exchange and correlation (εxc) functionals inside the

DFT framework to ensure that the findings are not influenced by the same artifacts. Then,

using the calculated formation energy, we have looked into the thermodynamic stability

and the structural stability using the Goldschmidt tolerance factor and octahedral factor.

After that, we have looked at the stable configuration’s electrical and optical character-

istics. Finally, in order to assess their theoretical maximum efficiency as prospective

solar cell materials, we have estimated exciton binding energy, electron-phonon coupling

strength, and the spectroscopic limited maximum efficiency (SLME).

• Chapter 6 : In this chapter, we have studied excitonic properties and polaron properties in

Ruddlesden-Popper Phases of chalcogenide perovskites. Exciton generation has a signif-

icant impact on the charge separation characteristics of optoelectronic materials. Hence,

one key excitonic parameter is the exciton binding energy (EB), a term used to describe

optoelectronic applications. Performance of solar cells is dependent on the percentage of

the free-charge carriers which were created as a result of the thermal dissociation of ex-

citons into electrons and holes. Additionally, polaron theory has been applied to explain

a variety of photophysical phenomena. It has been proposed that polaronic effects play a

significant impact in the carrier transport and excitation dynamics.

• Chapter 7 : In this chapter, we have shown the role of point defects and surrounds on the cat-

alytic performance of CuFe2O4 and Ru-single-atom, respectively. The S-I cycle involves

several reactions, the most endothermic of which is SO3 dissociation. For SO3 dissoci-

ation, CuFe2O4 is spread over treated or untreated SiC. Here, we have investigated the

impact of O-vacancy in enhancing the catalytic activity of the CuFe2O4 catalyst using

a DFT technique. Next, we have studied the catalytic activity of Ru-single-atoms sur-

rounded by different ligands. Due to their unique electrical characteristics, atomically

dispersed metal-single-atoms have emerged as a frontier in solid catalysis. Even though

metal-single-atoms have had considerable success in solid catalysis, it is still difficult to

convert biomass using metal-single-atoms because of insufficient metal-support contacts

and poor yield. In our research, we have theoretically studied the influence of various

ligands around single Ru-atoms on the catalytic activities of the single Ru-atoms in the

partial hydrogenation of xylose/glucose into useful sweeteners.
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• Chapter 8 : Conclusion

This chapter wraps up the research reported in the thesis and gives a quick overview of

next initiatives.



CHAPTER 2

Theoretical methodology

2.1 Computer simulation

A computer simulation is a bunch of programs running on an assembly of CPUs to simulate

an abstract model. It uses the mathematical description of the real system and this mathemat-

ical description consists of a set of equations to depict the functional relationships within the

real system. In recent times, computer simulation has become an integral part of research in

various fields such as mathematics, chemistry, physics, medical science, biology, economics,

social science, psychology and engineering science. Simulation has become a powerful tool

to explore new technologies and their innovations. Moreover, they can be used to estimate the

performance of analytically complex systems of interest under a wide range of circumstances.

Hence, apart from the theory and experiments, computer simulation has evolved as the third pil-

lar of science and technology. The sustainable and steady enhancement in the comprehensive

knowledge of algorithms, and the invention of fast computers, enable us to tackle the problems

related to time and length scale in complicated systems. Multi-scale simulations incorporate a

wide range of the length scale starting from the electronic, all the way to meso/micro/macro-

scale and time scale from picosecond, all the way to days/months/years. Computational simu-

lations act as an alternative for examing experiments which are not feasible in the laboratories

due to various reasons. Hence, computational simulation act as a bridge between analytical

theory and experiment. Moreover, computer simulation has evolved so much that it allows one

to examine the functioning of entire system even the role of a tiny the entity that is influencing

the system. Thus, a new interdisciplinary research area has been established by computational

simulation, which is known as “Computational Material Science”. In physics, the material

properties and the material behavior under several environmental circumstances can be deter-

mined using multi-scale simulations. Here, multiscale simulation refers to the technique or

14



Chapter 2. Theoretical methodology 15

practice of simulation in which information from different methods at different scales or levels

is used simultaneously to describe a model system on one level gathering information from

other levels. Here, different levels are distinguished as (i) molecular dynamic model (accounts

for the information of individual atoms explicitly), (ii) quantum mechanical model (information

about the electrons are included), (iii) meso-scale, which incorporates the information about the

group of atoms or molecules, (iv) continuum models, where material exhibit continuous state

instead of discrete states, (v) device model corresponds to an analytical model that emerged

based on the substantial amount of theoretical and experimental results. Here, each level ex-

hibits a particular time and length scale as shown in Figure 2.1. Multi-scale simulation plays

a crucial role in computational material engineering to determine the various properties and to

understand the behavior of the system utilizing elementary knowledge of the atomic structure.

Computational methods can be used to determine several properties of materials viz. ground

state properties, band gaps, vibrational spectra, optical spectra, and charge densities. Hence,

based on different phenomena the aforementioned methodologies can be implemented to de-

termine the properties of a material one is interested in. In the present thesis work, employing

first principles electronic structures methods, we have performed simulations to study the ef-

fect of point defects on functional properties of the various distinct advanced energy materials

(LISICON, Perovskites, catalysts). The outline of our theoretical framework is as follows: To

have a basic idea of the first principles, first, a brief description of the first-principle has been

provided. Here, we have explained how the quantum mechanical description is governed by

Schrödinger equation can be used to determine the properties of the condensed materials. We

then discuss the origin behind the density functional theory (DFT) which is governed by the

Hohenberg-Kohn paradigm. Further, various exchange-correlation functionals have been cat-

egorized based on their approximations. For excited state properties, we highlight the beyond

DFT methodologies which include Green’s function approaches, in particular, GW and BSE.

Lastly, we provide a brief introduction to ab initio Molecular Dynamic (MD) simulation, which

is used to understand the dynamic motions of the atoms in the condensed material.

2.2 First principles calculation

Any theoretical calculation which is based on the basic laws of physics, and established science

is said to be “First-principles calculations”. Such calculations noway make hypotheticals such
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Figure 2.1: Multi-scale simulation in different length and time scales.

as empirical models or parameter fitting. Quantum mechanics, which is the fundamental theory

of physics used to describe the characteristic or fundamental properties of atoms or molecules

at the electronic level, comes under the first principles calculation. The whole world surround-

ing us consists of condensed matter. The state of matter where it gets condensed to the lowest

energy to form a stable system that is made up of atoms/molecules is termed as condensed

matter. Generally, condensed matter exists in liquid or solid phases. The building entity of con-

densed matter i.e., an atom is comprised of the positively charged nucleus which is surrounded

by a negatively charged electron cloud. The interactions among the fundamental constituents

of the atoms decide the nature of bonding (viz. covalent, ionic, chemical or molecular) among

the atoms of condensed matter. Hence, all the physical properties or physics of a condensed

matter eventually evolved from the interactions of these fundamental constituents. Therefore,

to understand all the complex physical phenomena, accurate modeling of these basic interac-

tions is a big challenge. Here, it should be noted that since this basic interaction is due to two

entity (viz. nucleus and electron), the physics that describe this interaction is simple quantum

mechanics. The main challenge comes when the number of atoms in the condensed matter

increases, the numerical formulation becomes more complicated.

In 1928 Paul Dirac (a famous scientist of quantum mechanics said “The fundamental physi-

cal laws necessary for the mathematical treatment of a large part of physics and the whole of

chemistry are thus completely known, and the difficulty lies only in the fact that application of
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these laws leads to complicated equations which are too complex to be solvable”)

Thus, to deal with the many-body problem, the focus of the ongoing exploration in this realm

is to develop efficient and precise theoretical and computational techniques.

2.3 Introduction to many body physics: A theoretical frame-

work

The main goal of many-body physics is to study the mutual interactions among the quan-

tum particles of a many-body system. By solving the basic fundamental equation i.e., the

Schrödinger equation, the various properties of a many-body particle system can be deter-

mined. However, as the number of quantum particles increases in the many-body system,

solving the Schrödinger equation analytically becomes impracticable except for a few simple

systems such as a harmonic oscillator, H-atom or He-atom, etc. From the theoretical point of

view, numerically the solution of any real system is feasible. However, due to the restricted

speed and finite memory of the computers, the numerical solution is not possible for a system

that consists of a large number of electrons. When determining the exact solution to a specific

problem becomes extremely complex or computationally challenging, the normal strategy that

is used is to replace the problem with a new problem that is in its approximation. Such that

solution to a new problem is feasible and is slightly different from the original. The difference

between the two is considered as a perturbation to exactly solvable problem and the approach

is termed as perturbation theory. Hence, the quantitative result of many body system is an ap-

proximate solution, which is further improved by doing corrections to the approximate value.

The first approximation that is used to tackel the many body problem is Born-Oppenheimer

approximation [18],where the motion of the electron and nucleus can be decoupled owing to

heavier mass of the nucleus, hence the total wavefunction can be written as a product of the

nucleus and electron wavefunction. Though this approximation reduces the complication of the

many body problem to some extent, the electron-electron interaction remains a big challenge.

In 1927, D.R. Hartree introduced an approximation to solve the many body problem, according

to this approximation each electron move under an effective central potential due to nucleus

and other electrons. Therefore, all the electrons can be treated as independent entity and total

wavefunction of the many body system can be considered as a product of wavefunctions of

the of individual electron. His work sets a stage for various numerical calculations still in use
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today. The biggest draw back of this approximation is that the symmetric wavefunction pro-

posed by Hartree does not satisfy Pauli’s exclusion principles. According to Pauli’s principle,

two fermions can’t exist in one state. Therefore, the nature of the many-body wavefunction

should be antisymmetric. Later, in 1930, Fock came up with an antisymmetric determinant

wavefunction [19] for many-body problems, which satisfies Pauli’s principle that each electron

is described by a distinguished wavefunction. This approach is known as Hartree Fock (HF)

method. This approximation adds a new additional term i.e., exchange interaction term (or elec-

tron exchange term) between the electrons having the same spin in the Schrödinger equation.

Though this approximation improves the total energy and successfully defines the geometries,

since it neglects the correlation term, it fails to predict the physical and chemical properties of

the materials. In 1960, Coulson, to account for the correlation term, considered a linear com-

bination of Slater determinants instead of single determinant. Later, to consolidate exchange

and correlation interactions, various methods have been proposed viz. Møller-Plesset (MP)

perturbation theory, Coupled Cluster (CC) methods, Configuration Interaction (CI), Quantum

Monte-Carlo (QMC) methods, and multiconfiguration self-consistent field (MCSCF). These

approaches are often known as “beyond Hartree Fock” method. Although, aformentioned

methods improve the calculations, still these methods suffer substantial drawback due to the

“exponential wall”, means exponential increment in the computational cost with the number of

particles in a system. Hence, it is a computationally very expensive task even for a system with

few number of atoms. Therefore, in order to develop a method which incorporates the electron

correlation effect and easily deal with larger systems ( viz. consist of hundreds, thousands of

atoms etc.), nowadays, for electronic structure calculation, DFT has evolved as a most powerful

technique and widely used methodology.

The DFT is based upon two fundamental theorems provided by the Hohenberg and Kohn [10].

The main motive of these theorems is to formulate DFT as exact methodology for a many body

system consisting of interacting particles. According to these theorems many properties of the

system can be written as a function of the electron density, which includes the total energy. This

energy will be minimum if the density is an exact ground state density of many-body interacting

system. Later in, 1965, Kohn and Sham, proposed that ground state density of a real interact-

ing many body system can be replaced by an auxiliary non-interacting system. To incorporate

the exchange and correlation effects within approximation, it considers an auxiliary hamilto-

nian (with usual kinetic energy term) and an effective local potential. The incorporation of the
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exchange-correlation energy as a functional of the density of electrons is the fundamental re-

mark of Kon-Sham approach. For quantitative calculations on realistic problems, this approach

is widely used to understand the ground state properties. To understand particle behavior at the

quantum level, DFT is a marvelously exemplary approach. The crucial point of the DFT is that

all the properties of the many-body system can be described as a functional of the ground state

density; where the density is the scalar function of the position of the electrons and comprised

of all the details of the system. If it is possible to derive an accurate or exact relation between

the density of the electrons and the energy, the DFT will give an accurate value. However,

for many cases, DFT results are surprisingly accurate even if one takes into account the sim-

plest approximation used to derive the relation between the electron density and the energy.

The DFT has achieved great popularity in the field of computational theory due to its ability

to describe the ground state properties with a good balance between the electronic structure

description and computational cost. However, it should be noted that DFT gives result at 0K

and an unparalleled approach for the ground state properties, but fails to describe the excited

state properties. Hence, to predict the excited state properties, beyond DFT approaches such as

ab initio many-body perturbation theory (viz. GW approximation and the Bethe-Salpeter equa-

tion (BSE) are efficient methods. Further, to study the dynamic properties of the many-body

system, ab initio molecular dynamics is an established approach. To determine the minimum

energy path for any reaction mechanism, the Nudge elastic band (NEB) [20] method is being

used.

2.4 Wavefunction

In quantum physics, the mathematical description of any quantum state of a system as a func-

tion of momentum, time, position, and spins is known as a wavefunction. Generally, the Greek

letter psi (Ψ) is used to describe a wavefunction, e.g., (Ψ(r1, r2, ...ri, ...; R1,R2, ...Rl, ...)),

where ri and Rl correspond to the position of the ith electron and lth nucleus, respectively of

the system. Using wavefunction, we can determine the probability of finding the electron at an

instant at a particular position. Subsequently other properties like momentum, kinetic energy,

etc. can be determined. To be physically acceptable, a wavefunction must satisfy the following

necessary conditions:

1. It must be single-valued
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2. It and all its first-order derivatives must be continuous everywhere

3. It must be square integrable.

4. It must vanish at infinity for a finite system

5. It must be finite everywhere

Once wavefunction Ψ is known for a system, then one can calculate the expectation value of

any physical quantity. Notably, the eigenvalue of an observable must be a real number. For

example, the expectation value of the E having operator Ĥ is given below:

E =
∫ ∫

...
∫

Ψ∗(r1, r2, ...rN)ĤΨ(r1, r2, ...rN)dr1dr2...drN∫ ∫
...
∫

Ψ∗(r1, r2, ...rN)Ψ(r1, r2, ...rN)dr1dr2...drN
(2.1)

Dirac bra and ket notation is another convenient way of writing the expectation value:

E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (2.2)

We use normalized wavefunction, i.e., 〈Ψ|Ψ〉 = 1. Note that, Ψ does not exhibit any physical

Figure 2.2: The polar coordinates of a spherical symmetric system

meaning. However, the square |Ψ(r1, r2, ...rN)|2 gives the probability of finding one electron at

r1 and another one at r2, and so forth. We can understand this normalization with an example.

Let us consider a system consisting of a single electron, then |Ψ(r)|2dr conveys the probability

of finding the electron at point r within a small volume dr. Now if the wavefunction is normal-

ized, then its integration over all the space must be equal to 1, which means the probability of
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finding the electron is 1 and it is 100% sure that the electron lies somewhere within complete

space. ∫
Ψ(r)∗Ψ(r)dτ =

∫ π

0

∫ 2π

0

∫ ∞
0

Ψ(r)∗Ψ(r)r2sinθdrdθdφ = 1 (2.3)

2.5 Time independent Schrödinger equation

In quantum mechanics, the wavefunction of a quantum system is governed by the Schrödinger

equation which is a linear differential equation. For a many-body system, the physical or

chemical properties can be determined at the microscopic level by solving time independent

Schrödinger equation.

ĤΨ(r1, r2, ...ri, ...; R1,R2, ...Rl, ...) = EΨ(r1, r2, ...ri, ...; R1,R2, ...Rl, ...) (2.4)

In the above equation, Ĥ (pronounced as Hamiltonian) is an operator corresponding to the total

energy (viz. kinetic and potential energy). For a many-body system, the total energy (E) of a

system can be determined by constructing many-body Hamiltonian Ĥ . Note that throughout

the following sections, atomic-units ~ = 1, me = 1, e = 1, and 4πε0 are used. The general form

of many-body hamiltonian is:

Ĥ = −1
2
∑
i

∇2
i −

∑
i,l

ZI
|ri − RI |

+ 1
2
∑
i 6=j

1
|ri − rj|

−
∑
I

1
2MI

∇2
I + 1

2
∑
I 6=J

ZIZJ
|RI − RJ |

(2.5)

where ri and RI correspond to the position of ith electron and I th nucleus, respectively. ZI is

the atomic number of the I th atom. ∇2
i characterizes the Laplacian operator. |ri − RI | denotes

the distance between the I th nucleus and the ith electron, whereas, |ri − rj| corresponds to the

distance between the ith and j th electron. |RI − RJ | is the distance between the I th and J th

nucleus. In Equation 2.5, the first and fourth terms are the kinetic energy of the electron and

nucleus, respectively. The second term corresponds to the potential energy due to the Coulomb

attraction between the electrons and nuclei. The third and fifth terms are the potential energies

due to Coulomb repulsion between electrons and nuclei, respectively. In cartesian coordinates

|ri − rj| and |ri − RI | can be written as follows:

|ri − rj| =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

|ri − RI | =
√

(xi −XI)2 + (yi − YI)2 + (zi − ZI)2

Equation 2.5 can be written in a more comprehensive form:

Ĥ = T̂e + V̂ext + Ûee + T̂nucl + Ûnucl (2.6)
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where T̂e denotes the kinetic energy of electrons.

V̂ext denotes the potential energy due to the Coulomb interaction between the electrons and

nuclei.

Ûee is the potential energy due to electrostatic repulsion among electrons.

T̂nucl corresponds to the total kinetic energy associated with the nuclei.

Ûnucl is the potential energy due to interaction among nuclei.

However, as the system becomes larger (i.e, consisting of the large number of quantum par-

ticles), the number of variables becomes large and solving the Schrödinger equation becomes

impracticable. Tremendous efforts have been done in search of practicable approximations

to reduce the complexity of the Schrödinger equation. In this regard, the Born-Oppenheimer

approximation, which considers the dynamics of electrons and nuclei, was revolutionary in

simplifying the Schrödinger equation.

2.6 Born-Oppenheimer approximation

In 1927, Born and Oppenheimer came up with first approximation for the first level of simpli-

fication of Schrödinger equation. According to Born-Oppenheimer approximation, since the

mass of electrons in comparision to the nuclei is negligible (mass of a proton is 1836 times that

of the electron). Hence, the velocity of the nuclei will be much slower than that of electrons, for

the same quantity of kinetic energy. In consequence, without any lapse of time, the electrons

adjust their ground state w.r.t. any change in the position of the nuclei. Here, using parametric

approach, the motion of the nuclei can be considered as static w.r.t. the electrons and the dy-

namics of electrons and nuclei can be treated distinctly. Mathematically, we can decouple the

total wavefunction as a product of individual wavefunctions of the electrons and nuclei.

Ψtotal = ψelectronic × ψnuclear

Ψ(r1, r2, ...,R1,R2, ...) = ψ(r1, r2, ...; R)× ψ(R1,R2, ...)
(2.7)

The wavefunction of the electron (i.e., ψ(r1, r2,...; R)) parametrically depends on the nuclear

position (R). Thus, R can be suppressed for stationary nuclei. While solving many-body hamil-

tonian, we can omit the nuclear kinetic energy term (T̂nucl) and another term that is due to

ion-ion electrostatic interaction. After solving electronic ground state energy, we can calculate

the nuclear energy terms (viz. T̂nucl and Ûnucl) and add these energies to electronic ground state

energy to have the total ground state energy of the system. The simplified form of the electronic
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Hamiltonian for the many-body system is:

Ĥel = T̂e + V̂ext + Ûee (2.8)

The above electronic Hamiltonian can be written as:

Ĥel =
N∑
i=1

ĥi + Ûee (2.9)

Here, ĥi = −1
2∇

2
i + v̂i, which depends on the position of the ith electron. Ûee depends simula-

taneously on the position of two electrons. Now solution of the Schrödinger equation for this

new simplified Haliltonian can be written as follows:

Ĥelψe(ri, σi) = Eeψe(ri, σi) (2.10)

Though the Born-Oppenheimer approximation reduces the dimensionality of the many-body

wavefunction, still to obtain an exact solution one needs to deal with 3N number of variables

for a system consisting of N electrons owing to electron-electron interaction (Ûee). Hence, it is

still impractical to solve the Schrödinger equation and further approximations are required to

evaluate the electron-electron interaction terms accurately.

2.7 Wavefunction based approximation

The fundamental quantity that we need to determine to solve the Schrödinger equation is the

many-electron wavefunction. To have a correct form of the wavefunction, one needs to apply

the most common strategy i.e., first guess a wavefunction and then apply the variational princi-

ple. According to variation principle, the expectation value of energy E is calculated using this

guess wavefunction is either equal to the ground state energy E0 or greater than the E0.

E =

〈
Ψ|Ĥ|Ψ

〉
〈Ψ|Ψ〉 > E0 (2.11)

Notably, E = E0 is satisfied only if the wavefunction belongs to actual ground state i.e. Ψ = Ψ0.

2.8 The Hartree approximation

In 1984, Hartee provided an independent-electron picture [21, 22], which considers that all

electrons are independent of each other and do not interact individually, but each electron inter-

acts with an averaged density of the electrons. According to this approximation, the N electron
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wavefunction, Ψ can be written as a product of the individual single electron wavefunctions

(φi(ri)):

Ψr1,r2,...rN
= φ1(r1)φ2(r2)...φN(rN) (2.12)

The density corresponding to each electron can be determined as follows:

ρi(r) = |φi(r)|2 (2.13)

Hence, the aggregate electron density for all the electrons present in the system is:

ρtotal(r) =
N∑
i=1

ρi(r) =
N∑
i=1
|φi(r)|2 (2.14)

The density of the electron with which kth electron interacts can be written as:

ρk(r) = ρtotal(r)− ρk(r) =
(

N∑
i=1

ρi(r))− |φk(r)|2
)

=
N∑

i=1,i 6=k
|φi(r)|2 (2.15)

Notably, here we have excluded the kth electron from the density term with which the kth

electron interacts. Now the interaction of an electron located at r with the rest electrons can be

written as:

ĝk(r) =
∫
ρk(r′) 1

|r− r′|
dr′ (2.16)

Hence, the electron-electron interaction term can be written as:

Ûee ≈
N∑
i=1

ĝi(r) (2.17)

Still, there is a discrepancy due to the double count of the interaction term, which we will cor-

rect later. Now, Ĥel can be written as a single electron operator and many-electron Schrödinger

equation can be simplified into N -independent single electron equations:

Ĥel ≈
N∑
i=1

(
−1

2∇
2
i + v̂i + ĝi(r)

)
(2.18)

(
−1

2∇
2
i + v̂i + ĝi(r)

)
φi(r) = εiφi(r) (2.19)

εi correspond to the ith electron energy. As an initial step, first, we consider an approximate

orbital φi which belongs to the simplest system i.e., H atom. Using these orbitals, ĝi(r) Hartree

potential is obtained and subsequently, N equations of single particle Schrödinger equations

are solved to have new φi’s. Here, we consider these new φi’s better than the previous φi. In

the next iteration, we consider these new orbitals as starting points. We iterate until no further
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improvements or changes are observed between two consecutive iterations. (see Figure 2.3)

i.e. self-consistent field orbital is converged. Using these converged orbitals the, many-body

wavefunction Ψ is constructed, which is further used to obtain total ground state energy E,

which is the expectation value of the Hamiltonian Ĥel. Note that, the total energy E may not

be equal to the sum of the energies of the individual orbitals (εi). Further, using the variational

principle approach, the ground state wavefunction is obtained. Mathematically the variational

principle is as follows:
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≥ E0 (2.20)

Here, E0 is the ground state energy of the system. In general, the electron-electron Coulomb

interactions are counted twice, once when we calculate for φi and εi and the second time when

we solve for new φ
′
i and ε′i. Therefore, the accurate total energy is:

E =
N∑
i=1

εi −
N−1∑
i=1

N∑
j=i+1

Jij (2.21)

where, Jij correspond to the Coulomb integrals i.e., the interaction between ith and jth electrons,

which is defined as follows:

Jij =
∫ ∫ ρi(r1)ρj(r2)

|r1 − r2|
dr1dr2 =

∫ ∫
|φi(r1)|2 1

|r1 − r2|
|φj(r2)|2 dr1dr2 (2.22)

Though Hartree’s approach works well with simple systems and can be considered the foun-

dation for the various approximations to solve many-body problems efficiently. However, the

main drawback of the Hartree approach is that its wavefunction is symmetric and does not

satisfy Pauli’s exclusion principle.

2.9 The Hartree-Fock approximation

After a few years, Fock [23] introduced a new term i.e., exchange energy term, and in the same

year, independently Slater[24] proposed a similar solution. Both worked on the modification

of the Hartree independent particle approach and product wavefunction. They suggested a

single determinant theory for many-body wavefunction instead of product wavefunction used

in independent particle approach. Since an elelctron is a fermion, hence two electrons can

not exist simultaneously in the same state. Therefore, the wavefunction of the many-electron

system must be antisymmetric under the exchange of electrons.

P̂1,2Ψ(r1, r2, ...rN) = −Ψ(r2, r1, ...rN) (2.23)
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Figure 2.3: Schematic flowchart of Hartree method for solving the many electron system.

here, P̂1,2 corresponds to the parity operator. The negative sign established that if any two or

more electrons occupy the same state and violate Pauli’s exclusion principle, then eventually

the total wavefunction will be reduced to zero. In Hartree-Fock approach, the wavefunction

of N interacting electrons is associated with a single Slater determinant. Where a Slater deter-

minant is elucidated as a linear combination of all products of single electron wavefunctions

obtained after employing all possible combinations and permutations of the electrons. How-

ever, this way of presentation of N electron wavefunction would be very tedious. To overcome

this, Slater recommended a more convenient way to represent the wavefunction, where a wave-

function is represented as a single antisymmetric Slater determinant, and matrix elements of
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this determinant are single electron states.

Ψ(r1, r2, ...rN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) ... φN(r1)

φ1(r2) φ2(r2) ... φN(r2)

φ1(r3) φ2(r3) ... φN(r3)

. . . .

. . . .

. . . .

φ1(rN) φ2(rN) ... φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.24)

To have a better understanding, let us consider an example of a two-electron system:

Ψ(r1, r2) = 1√
2

∣∣∣∣∣∣∣
φ1(r1) φ2(r1)

φ1(r2) φ2(r2)

∣∣∣∣∣∣∣ = 1√
2

[φ1(r1)φ2(r2)− φ2(r1)φ1(r2)] (2.25)

Now on interchanging the labels of these two electrons, the obtained wavefunction is:

Ψ(r2, r1) = 1√
2

∣∣∣∣∣∣∣
φ1(r2) φ2(r2)

φ1(r1) φ2(r1)

∣∣∣∣∣∣∣ = 1√
2

[φ1(r2)φ2(r1)− φ2(r2)φ1(r1)] (2.26)

Ψ(r1, r2) = −Ψ(r2, r1) (2.27)

Now if we assume a situation when both the electrons exhibit the same spin-orbital i.e. φ1 =

φ2 = φ, we procure:

Ψ(r2, r1) = 1√
2

∣∣∣∣∣∣∣
φ(r2) φ(r2)

φ(r1) φ(r1)

∣∣∣∣∣∣∣ = 1√
2

[φ(r2)φ(r1)− φ(r2)φ(r1)] = 0 (2.28)

This results in the wavefunction and probability of finding such electrons being zero. Finding a

suitable wavefunction determinant that minimizes the system energy for the interacting Hamil-

tonian is termed as Hartree-Fock method. Figure 2.4 shows the flowchart which summarizes

the various steps involved in Hartree-Fock method. Notable, Slater’s determinant obeys the

Pauli’s principle. When any two rows of the determinant are same, it results in zero, which

means no two electrons can exist in the same state simultaneously. On interchanging any two

rows of the determinant, the sign changes and if any one row or column is zero, the determi-

nant will be zero. This incorporates a new exact term i.e., electron exchange in the Hartree

method. However, electron-electron Coulomb correlation energy is neglected which is the dif-

ference between exact energy and Hartree-Fock energy (Ecorr. = Eexact−EHF ) of the system.
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It plays a pivotal role to delineate the chemical and physical properties of solid-state systems

which consists of atoms or molecules. Hence, to account for correlation energy, many cor-

related approaches have been proposed which consider multi-determinant wavefunctions for

example CI, CC, MP2, MP4 and QMC methods. Although these methods are rather accurate,

still computationally immensely expensive. Hence, a more scrupulous approach is required to

deal with interacting many-body systems. In this regard, the DFT allows one to solve the many

electron problems by balancing the computational cost and accuracy.

Figure 2.4: Schematic flowchart of Hartree-Fock method for many-body system.

2.10 Functional

A function of function is known as a functional. It means that the argument of a functional is

a function and when we apply a functional on a function it yields an output. Let us consider

f is a function of x and F is the functional of f then in general notation, it will be written in

square brackets as F [f ] = a. Like functions can have derivatives. Similarly derivatives of the

functionals are also possible that is defined as:

∂F [f ] = F [f + ∂f ]− F [f ] =
∫ ∂F

∂f(x)∂f(x)dx (2.29)
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Notably, the derivatives of the functional exhibit similar properties as that of conventional

derivatives of the functions.

2.11 Density Functional Theory

Density functional theory (DFT), like its name is the theory which is centralized on the elec-

tron density and widely used in the computational study of material science, condensed matter

physics and chemistry. To describe the ground state properties of the materials, it has been

widely accepted. Unlike other wavefunction approaches, the key point of the DFT is that it

considers the electron density which abundantly reduces the degree of freedom of N particle

system from 3N to 3. As density always possesses 3 degree of freedom independent of the num-

ber of atoms in the system. This enables the solution of Schrödinger equation tractable for an

interacting system consisting of hundreds or thousands of atoms. In 1927, Thomas and Fermi

proposed the Thomas-fermi model that is also based on electron density approach instead of

the wavefunction. Whereas in 1964, Hohenberg and Kohn, established the foundation of the

modern DFT. In 1998, Walter Kohn won the Noble prize in Chemistry for his incredible contri-

bution in fomulating the foundation of the DFT. In henceforth sections, we have described the

evolution of DFT in more detail.

2.11.1 The Thomas-Fermi Model

To approximate the total energy of the system, the elementary approach is the Thomas-Fermi

approach[25, 26] which assumes uniform electron density in an atom. The Thomas-fermi ki-

netic energy functional is a functional of local electron density which is written as follows:

TTF [ρ(r)] = 3
10(3π2)2/3

∫
ρ5/3ρ(r)d3r (2.30)

Note that local density approximation (LDA) uses the same expression. Incorporating all the

energy terms due to other interactions, the total energy equation given by Thomas-Fermi ap-

proach is:

ETF [ρ(r)] = 3
10(3π2)2/3

∫
ρ5/3ρ(r)d3r−

∫ ρ(r)
r
d3r + 1

2

∫ ρ(r1)ρ(r2)
r12

d3r1d
3r2 (2.31)

where, the second and third terms on the RHS correspond to the potential energy due to

electron-nucleus interaction and the Hartree energy i.e. electron-electron interaction, respec-
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tively. Using variational principle, the electron density and hence, the total ground state en-

ergy can be obtained. However, inaccurate kinetic energy and non-inclusion of the exchange-

correlation effects are termed out to be the major drawbacks of this approach. In 1930, Dirac[27]

introduced a new term to incorporate the electron exchange term in the Thomas-Fermi model,

this approach is known as Thomas-Fermi-Dirac model. However, the shell structure of the

atoms is a crude approximation of this approach and gives inaccurate results for the molecular

systems.

2.11.2 Hohenberg and Kohn Theorem

In 1964, Hohenberg and Kohn introduced two fundamental theorems which laid the foundation

of DFT. According to these theorems, the electronic Hamiltonian can be expressed as a func-

tional of the electron density ρ(r)[10, 11].

Theorem I: For any many-body interacting system of particles in an external potential V̂ext(r),

the ground state electron density ρ(r) is uniquely determined. Therefore, full Hamiltonian can

be determined from the ground state density and hence all the properties of the many-body in-

teracting system such as potential energy, kinetic energy and total energy which are functional

of the density ρ(r) can be determined. For any N particle system, the electronic density is

defined as follows:

ρ(r) = N
∑
s1
...
∑
sN

∫
dr2...

∫
drN |Ψ(r1, s1, r2, s2, ..., rN , sN)|2 (2.32)

where ri and si denote the spatial and spin coordinates of the electrons.

N =
∫
ρ(r)dr (2.33)

Here, electron density (ρ(r)) corresponds to the probability of finding the electron at the po-

sition r. Integration of the ρ(r) over the entire space determines the total number of electrons

in the system. Once the electron density is determined in a many-body system then almost

all the properties can be obtained in a more convenient way than employing the wavefunction

approach.

Proof I: Let us consider there exist two potentials V̂ext(r) and V̂ ′ext(r) for electron density

ρ(r) and obviously, they exhibit two distinct Hamiltonians, Ĥel and Ĥ
′
el, respectively. The

distinct Hamiltonians give rise to two different wavefunctions Ψ and Ψ′ , respectively. Now

the expectation values of the ground state energy for two potentials V̂ext(r) and V̂ ′ext(r) are:
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E0 = 〈Ψ|H|Ψ〉 and E
′
0 = 〈Ψ′ |H ′|Ψ′〉, respectively. If we assume that the ground state is

nondegenerate. Then using variational wavefunction, for potential V̂ext(r), wavefunction Ψ

determines the minimum energy i.e., E0 and energy will be always higher for other wavefunc-

tions:

E0 = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉 (2.34)

〈Ψ′ |H|Ψ′〉 = 〈Ψ′ |H ′ |Ψ′〉+ 〈Ψ′|H −H ′ |Ψ′〉 (2.35)

E0 < E
′

0 +
∫
ρ(r)[V̂ext − V̂

′

ext]dr (2.36)

Similarly, employing the variational principle on the second potential V̂ ′ext(r), we get:

E
′

0 = 〈Ψ′ |H ′ |Ψ′〉 < 〈Ψ|H ′ |Ψ〉 (2.37)

〈Ψ|H ′ |Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 (2.38)

E
′

0 < E0 −
∫
ρ(r)[V̂ext − V̂

′

ext]dr (2.39)

Now add Equations 2.36 and 2.39, and we obtain:

E0 + E
′

0 < E0 + E0 (2.40)

here, Equation 2.40 is a contradiction, this infers that for a common ground state density two

different potentials are not possible, hence the theorem is proved.

Theorem II: According to this theorem, the universal functional of the energy (E[ρ(r)]) can

be expressed in terms of the electron density ρ(r) for an external potential Vext(r). The exact

ground state enenrgy is the global minimum of the energy functional and the density for which

this functional exhibits minimum enenrgy is the ground state density (ρ0(r)).

Proof II: As it is already proved above that the external potential Vext(r) is uniquely deter-

mined by the ground state density ρ0(r) and Vext(r) uniquely determines the wavefunction.

Therefore, all observable properties which are functional of the ρ0(r) such as kinetic enenrgy

can be determined uniquely. The total ground state energy E[ρ(r)] as a functional of the ground

state density ρ(r) can be defined as follows:

E[ρ] = Te[ρ] + Vext[ρ] + Uee[ρ] (2.41)
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E[ρ] =
∫
ρ(r)V̂ext(r)dr + FHK [ρ] (2.42)

where FHK is a universal functional. Since, the potential energy and the kinetic energy operates

only on the electron density and their analysis is independent of the systems, therefore, FHK

can be considered as a universal functional. As the ground state energy is uniquely determined

by the ground state density. Therefore, the ground state energy can be written as a functional

of exact ground state density which minimizes the energy functional:

E0 = E[ρ0(r)] (2.43)

Using the variational theorem, for any electron density other than ground state density ρ0(r)

will always give higher energy:

E0 ≤ E[ρ̃(r)] (2.44)

However, there are some important issues with Hohenberg-Kohn Theorems, one of them is a v-

representability problem. Here, v corresponds to the density. The density associated with a non-

degenerate ground state with external potential (Vext) is known as v-representable density. All

densities are not v-representable as shown by Levy and Lieb [28, 29], which means densities are

not associated with the external potential. There is always some probability that minimization

of energy leads to some higher energy rather than ground state energy and never converges to

actual ground state density. It should be noted that in Hohenberg-Kohn’s theorems, we always

start with a trial density to minimize the energy. Here, it is assumed that this trial density will

remain v-representable, and its associated Hamiltonian ˆ̃Hel is used to obtain wavefunction Ψ̃

i.e., defined as follows: ρ̃ → ˆ̃Hel → Ψ̃. However, according to variational principle, for real

electronic Hamiltonian Ĥel of the system, this wavefunction obtained from the trial density

doesn’t correspond to the ground state.

〈Ψ̃|H|Ψ̃〉 = E[ρ̃] ≥ E[ρ0] ≡ E0 (2.45)

here ρ0(r) corresponds to the accurate ground state density of the many-body system. The

energy associated with the density ρ(r) is minimized to obtain the ground state energy. Finally,

the density corresponding to minimum energy is termed as the ground state density. While

minimizing the energy functional, it is required that all densities used in the algorithm remain

N -representable. Here, N -representability of density apprises that the density is derived from

an antisymmetric wavefunction. To conduct a constrained minimization of the energy which
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obey the N -representability, the method of Lagrange’s multipliers also known as Lagrange’s

method of undetermined multipliers can be a practicable. In this approach, the value of the

constraints becomes zero once they are converged. The mathematical expression for the N -

representablility is:

constraint =
∫
ρ(r)dr−N = 0 (2.46)

The constraints after multiplying with an undetermined constant (µ) are added to the functional

obtained after the minimization.

E[ρ(r)]− µ
(∫

ρ(r)dr−N
)

(2.47)

Further, the above expression is minimized:

∂
[
E[ρ(r)]− µ

(∫
ρ(r)dr−N

)]
= 0 (2.48)

The derivative of the functional,

∂E =
∫ ∂E[ρ(r)]

∂ρ(r) ∂ρ(r)dr

Now interchanging the integral and differential signs, we have:

∫ ∂E[ρ(r)]
∂ρ(r) ∂ρ(r)dr− µ

∫
∂ρ(r)dr = 0 (2.49)

It determines the Lagrange multiplier value at the minimum.

∂E[ρ(r)]
∂ρ(r) − µ = 0 (2.50)

Using Equation 2.42, the Lagrange multiplier can be written in terms of external potential:

µ = ∂E[ρ(r)]
∂ρ(r) = V̂ext(r) + ∂FHKρ(r)

∂ρ(r) (2.51)

From Equation 2.51, it is observed that the Lagrange multiplier (µ) exhibits a physical mean-

ing. It is the chemical potential of the system. For a detailed description, refer to chapters 4 and

5 of Parr & Yang (1989). According to the aforementioned theorems, a many-body interacting

system can be constructed with a unique functional of energy which mainly depends on the

electron density. Additionally, this functional can be minimized to have ground state energy

and electron density. However, there is no mathematical expression to express the universal

functional FHK which makes the solution of the Schrödinger equation a difficult task. Later,

in 1965, using Hohenberg-Kohn theorems, Kohn and Sham [11] demonstrate a new framework



2.11. Density Functional Theory 34

to find the exact ground state density and the minimum energy of the system. In many-body

electron problems, this method has been proven as a revolutionary success and is widely used

for qualitative studies of realistic systems. Kohn and Sham to approximate the universal func-

tional proposed that the ground state density of an interacting system can be replaced with the

ground state density of a non-interacting auxiliary system. This method gives a set of individual

particle equations which can be solved independently.

2.11.2.1 Kohn-Sham equations

In 1965, Kohn and Sham proposed an ingenious method to circumvent the problem associated

with inaccurate explanations for kinetic energy. In this method, in place of the interacting

system, we can consider a non-interacting system (or auxiliary system) that exhibits the same

ground state density as that of the real system as shown in Figure2.5. The Hamiltonian of

the single particle of this auxiliary system (ĤKS) consists of single particle kinetic energy and

effective single particle potential energy term Veff (r). The expression for the Hamiltonian of a

single particle of a non-interacting auxiliary system, generally known as Kohn-Sham equations

is:

ĤKSφi =
[
−1

2∇
2
i + V̂eff (r)

]
φKSi (r) = εiφi(r)KS (2.52)

the expression for the effective potential:

V̂eff (r) = V̂ext(r) + V̂H(r) + V̂xc(r)

=
∑
α

−Zα
|Rα − r|

+ ρ(r′)
|r− r′|

dr′ + ∂Exc[ρ(r)]
∂ρ(r)

(2.53)

where V̂H and V̂xc correspond to the Coulomb potential from all the electrons (Hartree term) and

the exchange-correlation potential, respectively. V̂xc comprises many-body interaction terms

due to electron-electron interactions which are excluded in the Hartree term. The Equation 2.52

resembles very much with Hartree-Fock method or is a more simplified version of Hartree-Fock

method. Here, the Kohn-Sham operator doesn’t rest upon the electron’s index but rather upon

r. Hence, it remains common for all the electrons. From equation 2.52, we can obtain the

Khon-Sham orbitals φi(r)KS , which can be used to determine the total electron density:

ρ(r) =
N∑
i=1
|φKSi (r)|2 (2.54)

Once the electron density is known by employing the self-consistent cycles, further we can

obtain the improved version of the V̂eff (r). Here, we assume that initial electron density is
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Figure 2.5: Schematic of the interacting and non-interacting electron systems possessing same ground

density.

a superposition of all the atomic densities. Here, the spin-related effects are incorporated by

considering both spin-up and spin-down densities and their sum is defined as total density,

ρ(r) = ρ↑(r) + ρ↓(r). The total energy can be evaluated using density:

E[ρ] = T0[ρ] +
∫

[V̂ext(r) + V̂H(r)]ρ(r)dr + Exc[ρ] (2.55)

Here, orbitals are used to determine the associated kinetic energy T0[ρ] rather than density.

T0[ρ] = 1
2

N∑
i=1
〈φKSi |∇2

i |φKSi 〉 (2.56)

and the Kohn -Sham effective potential can be written as:

Veff [ρ] =
∫
V̂eff (r)ρ(r)dr (2.57)

Rest of energy terms are incorporated in Exc[ρ] such as:

1. Correlation energy term

2. Exchange energy term

3. To have a true kinetic energy term, which exactly matches the real system kinetic energy

Te[ρ], it is required to add some quantity of the kinetic energy to T0[ρ].

4. Self-interaction correction emanated due to classical coulomb potential.
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Starting with a trial electron density ρ(r) and effective potential V̂eff (r), the Kohn-Sham single

particle equations are solved employing a self-consistent approach. Note that the Exc is the

crucial term that needs to be determined accurately to have precise results of the methods based

on Kohn-Sham equations.

2.11.3 Exchange and correlation energy

For the practical application of the Kohn-Sham equations, it is required to know the accurate

formalism of the Kohn-Sham equations. However, no mathematical or analytical expression is

known for the exchange and correlation (εxc) functional. To have an accurate formalism of this,

since the beginning of DFT, various approximations have been proposed to have a suitable bal-

ance between the computational cost and the accuracy. Generally, these approximations have

been classified into three categories: (1) based on localized density viz., local density approxi-

mation (LDA) [30] (2) based on semi-localized density viz. generalized gradient approximation

(GGA) and meta-GGA, (3) based on non-localized density viz. hybrid and random phase ap-

proximation. In simplest approximation i.e., homogeneous electron gas approximation, it is

assumed that electron density is homogeneous, hence exchange-correlation energy is a func-

tional of the localized density. Therefore, local density approximation (LDA) is the elementary

exchange-correlation functional to solve the Kohn-Sham equations [30]? In LDA approxima-

tion, it is assumed that as we go from one position to another, the electron density varies slowly,

hence it can be considered localized. As the variation in the density is negligible, its derivative

is nearly zero, hence, derivatives are not incorporated in this approximation. For spin polariza-

tion calculations, it is required to incorporate both spin up ρ↑(r) and spin down ρ↓(r) densities,

which is called local spin density approximation (LSDA). Further, the exchange-correlation

energy consists of two terms: correlation energy and exchange energy.

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.58)

Exchange energy: The origin of this term lies in the Hartree-Fock method which considers the

antisymmetric nature of the electronic wavefunction. As per Pauli’s exclusion principle, no two

electrons can occupy the same energy state, correspondingly, repulsive forces occur among the

electrons which exhibit similar spin states. This repulsive force introduces a spatial separation

between two electrons consequently, the coulomb interaction is reduced between electrons,

which is known as exchange energy. Technically, this is the difference between Hartree-Fock
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energy and Hartree energy. The mathematical expression for the exchange energy term in the

LDA, under the framework of the homogeneous electron gas, is [31].

Ex[ρ] = −9
4α

( 3
4π

) 1
3
∫

[ρ
4
3
↑ (r) + ρ

4
3
↓ (r)]dr (2.59)

here, α = 2
3

Correlation energy: This term originated from the electron-electron coulombic interaction.

Being negatively charged entities, the electrons always repel each other. A significant part of

the correlation energy is contributed by the kinetic energy difference between the interacting

and non-interacting systems (Te − T0). Numerically, this is the difference of the Hartree-Fock

energy and the exact energy of the system:

Ec = Eexact − EHF (2.60)

The mathematical expression for the correlation energy is:

Ec[ρ] =
∫
ρ(r)εc[ρ↑(r)ρ↓(r)]dr (2.61)

here εc[ρ↑(r)ρ↓(r)] corresponds to the correlation energy per entity (electron) of a uniformly

distributed electron gas with uniform density ρ(r), however, its analytical exact form is still

unknown. Several efforts have been done to ameliorate the correlation energy using quantum

Monte Carlo approach[32], and subsequent fitting of the results to analytical expansion. For a

system that is close to homogeneous electron gas, the LDA functional works very well e.g. for

metals, LDA gives quite accurate results. However, it fails in the case of the inhomogeneous

system such as molecules, atoms, etc. Though it can be used to describe atomic structures, and

vibrational and elastic properties of a wide range of systems, it cannot be used to determine

binding energy, chemical bonds, bandgap, reaction enthalpy, and energy of activation barri-

ers. Further, to improve the exchange-correlation energy, people have realized that homoge-

neous electron density is not sufficient to describe a system in which the electron density varies

rapidly. Therefore, along with electron density, the electron gradient is been incorporated. This

semi-local approximation is called generalized gradient approximation (GGA) [33, 34].The

expression for the exchange-correlation energy as a functional of ρ(r) and ∇ρ(r) is:

EGGA
xc [ρ(r)] =

∫
ρ(r)εGGAxc (ρ(r), |∇ρ(r)|)dr (2.62)

Although this approximation gives better results while calculating lattice constants and bond
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Figure 2.6: Jacob’s ladder, illustrating the variation of the accuracy and the commputational cost with

different exchange-correlation functionals.

lengths of most of the systems, it fails while dealing with the systems which consist of large

atoms (or transition elements). In the following step, to improve the methodology, the forth-

order gradient of density is been accounted for in the evolution of the exchange-correlation

energy, which is known as meta-GGA functional. In this functional, to incorporate the fourth-

order gradient of the density, the second derivative of the density i.e., Laplacian of the density is

included and an additional degree of freedom via. the kinetic energy density τ(r). The under-

estimation of the bandgap acts as a major drawback of these semi-local exchange-correlation

functionals. These functionals fail to resolve the self-interaction error incorporated in the

Hartree term, which results in a systematic error, where localization plays a pivotal role such as

surfaces and the defects. To overcome this self-interaction error, a more advanced functional

i.e., hybrid functional comes into existence, which improves the accuracy but with increased

computational cost and time. Here, the hybrid functional is obtained by combining the fraction

of the exact exchange from Hartree-Fock and the exchange-correlation energy from the local

or semi-local terms. exact exchange from Hartree-Fock theory and the exchange-correlation

energy that comes from the local or semi-local approximations [30]. By varying the fraction of



Chapter 2. Theoretical methodology 39

exact exchange in hybrid functional, one can overcome the self-interaction error. Numerically,

the exchange-correlation energy for the hybrid functional is written as:

Ehyb
xc = αEHF

x + (1− α)EDFT
x + EDFT

c (2.63)

here, α corresponds to the fraction of the exact exchange coming from Hartree-Fock and rest

of the terms are from GGA or LDA finctional. In hybrid functional approach, the Coulomb

potential consists of two parts one viz. short range (SR) and long range (LR). All this makes the

computation expensive. To overcome this problem, Heyd, Scuseria, and Ernserhof (HSE) [35]

proposed that short-range terms can be used to compute the exact exchange term, whereas GGA

or LDA functional can be used to describe the long range terms. To speed up the calculations,

they used an error function.

1
r

= 1− erf(ωr)
r︸ ︷︷ ︸

SR

+ erf(ωr)
r︸ ︷︷ ︸

LR

(2.64)

where, ω corresponds to the screening parameter which describe the range of the interaction.

The error function in its explicit form is defined as follows:

erf(ωr) = 2√
π

∫ ωr

0
e−x

2
dx (2.65)

Note that different values of the ω result in different functional. For example, if ω = 0, the

long range terms will get vanished and full Coulomb potential will be described by the short

range term. This HSE functional is termed PBE0 functional [36]. Whereas, at high values of

ω, the short terms vanish and HSE functional becomes GGA or LDA approximation. In case

of HSE06, the exchange-correlation energy is expressed as follows:

EHSE
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (2.66)

In the case of HSE calculation, the suggested default values of the α and ω are 1
4 and 0.11 bohr−1

, respectively, which works very well in determining band gaps of the semiconductors and

metallic systems. In our work also, we have used these values to have accurate band gap results.

The variation of different exchange-correlation energy with respect to the computational time

and accuracy are shown in Figure 2.6. In present thesis, semi-local (Perdew-Burke-Ernzerhof

(PBE) version of GGA [33]) and non-local (HSE06, GW [37]) are been used.

The Kohn-Sham single particle equations are evaluated self-consistently, starting with the

initially guessed electron density ρ(r) and estimating the effective potential Veff (r). The flow
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Figure 2.7: Flow-chart for the solution of the Kohn-Sham equations using self-consistent method.

chart to solve Kohn-Sham equations is encapsulated in Figure 2.7. Today, numerous codes are

available to execute DFT calculations. In our thesis, we have employed VASP (Vienna Ab initio

Simulation Package) code [38, 39, 40].

2.12 Basis set

A basis set is the set of basis functions, which are used to describe any electronic wave function.

Any wave function used in Hartree-Fock or Density Functional Theory can be expanded as a
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set of basis functions. Hence, the practical way to solve electronic structure or Schrödinger

equation is the basis set. While choosing the basis functions, one should take care of the

following points:

The basis function should be selected such that they build the accurate wavefunction or

density along with practicable low computational cost. Notably, efficiency and accuracy

of any theory depends largly on the accuracy of the basis functions. A basis set must be

chosen such that it gives accurate results and on further increasing the number of basis

set the results remain almost similar. While choosing a basis function, it must be ensured

that it is capable in capturing all the basic physics. The basis sets must obey the Bloch

boundary conditions in case of periodic systems (crystals).

The disadvantage of this method is that because the wavefunctions are fixed, it is challenging to

predict the converged basis set. To overcome this problem, the energy dependent wavefunctions

were considered in order to vary the number of wavefunctions. Here, we have provided a brief

introduction of the plane wave basis sets, pseudopotential method and projector augmented

wave (PAW) method. As our work is maily oriented around the periodic systems, hence we

have chosen plane wave based approach which is quite popular for the electronic structure

calculations of the periodic systems.

2.12.1 The Plane wave basis set

In the case of periodic systems, the Bloch theorem paves the path to solving the Schrödinger

equation. Generally, the plane wave-based basis set is considered for periodic systems. The

wavefunction which obeys the Bloch theorem in terms of the plane wave basis function can be

written as follows:

Ψk(r) = uk(r)eik.r (2.67)

ρ(r) ≈
∑
k

|Ψk(r)|2 (2.68)

here, uk(r) corresponds to the basis set function which exhibits similar periodicity as that of

the supercell.

uk(r + n1a1 + n2a2 + n3a3) = uk(r) (2.69)

where, n1, n2, and n3 are the integers. Therefore, the Kohn-Sham equations can be solved

independently for each value of k. Notable the space associated with k vector is the recipro-
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cal space, which is also termed momentum space. Moreover, the values of k vectors are set

such that they lie within the primitive cell, which is termed as the first Brillouin zone (BZ).

Depending on the k-mesh, the BZ can be divided into different ways. In the present thesis, the

Monkhorst-Pack grid has been employed [41]. Note that, a real space vector can be obtained by

taking the reciprocal of a reciprocal lattice vector. Kohn-Sham orbitals can be further expressed

as sum of the plane wave basis set:

unk(r) =
∑

G

Cnk,Ge
iG.r (2.70)

where G denotes the reciprocal lattice vectors. k and n represent the wavevector and the band

index in the first Brillouin zone, respectively. The electronic wavefunctions are expanded in

terms of plane wave basis set as follows:

φnk(r) =
∑

G

Cnk,Ge
i(k+G).r (2.71)

where, Cnk,G corresponds to the expansion coefficient and its value can be reduced by increas-

ing |G|2. Hence, the infinite series in Equation 2.71 is truncated to include the plane waves up

to a threshold value of the cutoff energy (Ecut). Therefore, in order to compute accurate and

efficient ground state energy and density, one needs to perform a convergence test for Ecut.

|k + G|2

2 ≤ Ecut (2.72)

Note that, the number of plane waves (NPW ) required for the wavefunction expansion princi-

pally rely on Ecut:

NPW = V E
3
2
cut

6π2 (2.73)

here, V corresponds to the real space lattice volume. The advantages of choosing plane wave

as the basis function are as follows:

1. On increasing the plane wave cutoff energy, the accuracy inceases.

2. In order to determine the plane wave coefficients, we can easily convert the real space

quantities to reciprocal space quantities using several standard numerical techniques.

3. This method may be used for non-periodic systems that supercells can modify.

However, there are many drawbacks concomitanted with plane waves.

1. As in the vicinity of the nucleus, wavefunctions become random and strong, hence large

number of plane waves are required near the core region.

2. It is impractical to perform plane wave calculations for entire electrons in the system.
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2.12.2 Numeric atom-centred basis functions

In DFT, for cluster or molecular electronic structure calculations, the Numeric atom-centred

orbitals (NAO) basis are quite popular due to their accuracy, compactness and fast convergence.

The numeric form of localized basis function (NAO) in FHI-aims [42] is expressed as:

φi(r) = ui(r)
r

Ylm (2.74)

here, Ylm corresponds to the spherical harmonics and ui(r) denotes the numerically tabu-

lated radial part, which makes the basis functions flexible. ui(r) can be obtained by solving

Schrödinger-like radial equation:[
−1

2
d2

dr2 + l(l + 1)
r2 + vi(r) + vcut(r)

]
ui(r) = εiui(r) (2.75)

here, potential vi(r) gives the information regarding the behavior of ui(r) (for example: it

can be like Hydrogen, free-atom, free-ions,Gaussians, etc.). Whereas, the smooth decay of

radial function is ensured by the confining potential vcut(r). Note that, the radial function

must become zero outside the cutoff radius. As a result of this, the calculations do not get

slow down because of peripheral tails of the function, which allows to develop the tightly

packed element-dependent basis sets and that also retain the transferability. Moreover, all radial

functions ui(r) remain strictly localized within the provided radius. In FHI-aims, in order to

formulate the minimum basis set, for sherically symmetric atoms the numerical solutions of

radial Schrödinger equation is used. Here, the minimum basis sets incorporate wavefunction

oscillations surrounded by the nucleus, hence they enable all electron calculations greatly. To

have guaranteed accurate convergence, it is preferred that all bigger basis sets consist of all

minimal ones. In FHI-aims, the bigger basis sets are obtained by starting with the smaller ones

and expanding them by adding basis functionals, which are imported from an immense pool of

radial functions.

2.12.3 Plane wave pseudopotential method

Although tremendous efforts have been done to solve the Kohn-Sham equations, computa-

tionally obtaining a solution is still challenging, as it is required to have the information of

N wavefunctions each one corresponding to the individual electron. Also, the core states are

highly localized, as a result of this, in the core region of the atoms the valence wavefunctions
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Figure 2.8: Schematic representation of all electron wavefunction (shown with solid line) and its corre-

sponding pseudo wavefunction (shown with dashed line) and along with the respective external Coulomb

potential and pseudopotential [1].

oscillate rapidly. This shows that the corresponding valence states exhibit high kinetic energy.

Therefore, a large Ecut and a large number of plane waves are required to reproduce these fast

oscillations, which makes the calculations computationally expensive. As most of the physical

properties in the case of solids are mainly described by the valence electrons. The pseudopo-

tential approximation can be employed to reduce the computational cost significantly. As in

this approximation, the strong effect of core electron potential is not considered explicitly, it is

replaced with an approximated pseudopotential (VPseudo). A core radius rc is defined (as shown

in Figure 2.8.), which separates the electron into core and valence electrons. The range of the rc

controls the softness and hardness of the pseudopotential. Large rc leads to ultrasoft potential,

whereas a small value of the rc results in a hard pseudopotential. Below the rc, all electron

real wavefunctions are also replaced by a set of pseudo wavefunctions ( ΨPseudo) [34, 30, 140].

Beyond the rc, the pseudopotentials wavefunction becomes indentical with the all the valence

electron real wavefunction. One more privilege of the pseudopotential approach the relativistic

effects can be easily incorporated into the potential without affecting the valence electron and
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treated as non-relativistic. In DFT, different types of pseudopotentials have been developed

which are described in more detail below.

2.12.4 Norm-conserving pseudopotential

In 1979, Hamamm, Chiang, and Schlüter were the first who proposed Norm-conserving pseu-

dopotential. Later, it was reformed by Bylander and Kleinman. It is more transferable than

ultrasoft pseudopotentials due to its ability to conserve charge. The transferability rate is de-

termined by the rc, value. A pseudopotential can be transferred to any chemical environment

if rc, falls within the inert region. Outside of the inert region, the transferability is, however,

diminished. In the latter scenario, the ultrasoft approximation is observed. It should be noted

that ultrasoft pseudopotentials can also be made transferable, which is generated for the atom,

and can also be applied to molecules or solids with a similar level of accuracy, but their execu-

tion is more challenging. Since the real and pseudo wavefunctions are equal outside the core

region, as we explained in the previous section, this produces an identical charge density and

further allows us to precisely calculate the exchange and correlation energies. Here, all electron

wavefunction Ψ is equal to the norm for the pseudopotential wavefunction (ΨPseudo).∫ rc

0
r2Ψ∗Pseudo(r)ΨPseudo(r)dr =

∫ rc

0
r2Ψ∗(r)Ψ(r)dr (2.76)

This can be accomplished by utilizing a non-local pseudopotential, where each potential defines

a different part of the pseudopotential’s angular momentum. Additionally, it is possible to

determine the ion’s dispersion characteristics in various environments [43].

2.12.5 Vanderbilt Ultrasoft pseudopotential

In a pseudopotential system, it is difficult to handle elements with nodeless valence states. For

these atoms, the pseudo and overall electron wavefunctions are almost identical. As electrons

are confined in an ionic core area, a significant number of plane waves are required for a

decent depiction of their wavefunction. As a result, the computations for such items are costly.

Vanderbilt developed Ultrasoft pseudopotentials as a new kind of pseudopotential to solve this

issue [44]. The norm-conserving constraint has been loosened for Ultrasoft pseudopotentials

in order to minimise the size of the basis set. Only a tiny fraction of a wavefunction from

the complete valence wavefunction is taken into account by this pseudopotential. This method

aids in lowering the plane wave cutoff energy in the computations, which in turn lowers the
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cost of computation. Despite this, there are several disadvantages, including the following: (i)

the difficulty in determining the Fourier representation of the Kohn-Sham equation, and (ii)

the fact that the Bloch eigenstates are no longer orthonormal because of the norm-conserving

requirement. To solve this issue, it is necessary to include an overlap matrix and turn the

eigenvalue problem into a generalised eigen value equation, (iii) evaluate the density dependent

non-local component of the pseudopotential, and (iv) assess extra terms in the force calculation.

The pseudo wavefunctions in this technique are similar to all electron wavefunctions when r >

rc. Since wavefunctions (both pseudo and all electron) at r < rc are thought to be soft, this may

be done by relaxing the norm-conservation condition. All electron wavefunctions are the same

as pseudo wavefunctions.

2.12.6 Projector augmented-wave method (PAW)

The projector-augmented wave (PAW) approach was proposed by Peter Blöchl in 1994. This

approach is based on the augmented wave techniques and the unified description of the ultra-

soft pseudopotentials [45]. It recovers the wavefunction inside the core area while taking into

account the whole electron wavefunction. The wavefunction is split into two sections in this

method: (i) the augmentation area (a partial wave in a sphere surrounding the atom), and (ii)

the interstitial region (outside the sphere). Because they must be orthogonal to the core states,

valence wavefunctions tend to fluctuate quickly close to the ion cores. Since the wave func-

tion must be adequately described by numerous Fourier components (or extremely fine grids in

grid-based approaches), dealing with this circumstance is challenging. This issue is resolved

by the PAW approach by translating this quick oscillating wave. Two spaces i.e., the pseudo

wavefunction and the true wavefunction are connected using the linear transformation operator

(T ):

|Ψ〉 = T |Ψ̃〉 (2.77)

The following is the expression for the operator T :

T = 1 + T0 (2.78)

where T0 operates in the atom’s surrounding augmentation zone. In order to depict the all-

electron partial waves and the pseudo partial waves, respectively, let’s take into consideration a

set of functions |φi〉 and |φ̃i〉. Given that both wavefunctions are complete in the augmentation
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zone, the operator T is defined as follows:

|φi〉 = (1 + T0)|φ̃i〉 (2.79)

We may infer from equation 2.79 that since T0 only operates within the augmentation region,

both all-electron and pseudo partial waves will be equivalent outside of it. In the augmentation

region, the set of pseudo partial waves (φ̃i) is complete, hence, each pseudo wavefunction (Ψ̃)

can be expressed in terms of the pseudo partial waves:

|Ψ̃〉 =
∑
i

ci|φ̃i〉 (2.80)

where the expansion coefficients are ci’s. Then, T maps this pseudo wavefunction into:

T |Ψ̃〉 = |Ψ〉 =
∑
i

ci|φi〉 (2.81)

The all-electron wavefunction can be found by subtracting equations 2.80 and 2.81, respec-

tively:

|Ψ〉 = |Ψ̃〉 =
∑
i

ci(|φi〉 − |φ̃i〉) (2.82)

The coefficients ci should be linear functionals of |Ψ̃〉 because of the linear operator T . The s,

p, and d-type projector functions examine the nature of the wavefunction. The scalar product

with a constant function can be used to define the general form of a linear function. The symbol

(〈p̃i|), which refers to a projector function, is used to denote this function. We can thus write:

ci = 〈p̃i|Ψ̃〉 (2.83)

The pseudo partial waves can provide the complete basis:

ci = 〈p̃i|φ̃j〉 = δij (2.84)

At this point, T , the projection operator, can be expressed as follows:

T = 1 +
∑
i

[|φi〉 − |φ̃i〉]〈p̃i| (2.85)

Any local operatorO’s expectation value can be expressed in terms of pseudo functions 〈Φ̃i|Õ|Φ̃i〉,

here, Õ corresponds to the pseudo operator:

Õ = T †OT = O +
∑
ij

|p̃i〉[〈φi|O|φj〉 − 〈φ̃i|O|φ̃j〉]〈p̃j| (2.86)
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The numerical solution to the many-body problem can be achieved by using these approx-

imations. A limited number of plane waves can be used to represent the smooth pseudo

wavefunctions. Furthermore, because these functions are the result of a radial function and

a spherical harmonic, integrations for rapidly fluctuating partial waves may be carried out on

a radial grid. In the present thesis, the PAW approach has been used for all the electronic

structure calculations, which were carried out using the Vienna Ab initio Simulation Package

(VASP) [38, 39, 40].

2.13 Introduction: Beyond DFT

Figure 2.9: Photoemission and inverse photoemission spectroscopies along with optical band gap are

shown schematically.

Density functional theory (DFT) is a popular technique for predicting the ground state char-

acteristics of materials, such as energy, lattice parameters, force, mechanical strength, vibra-

tions, etc. However, it entirely fails to identify the many-body system’s excited state properties,

such as the bandgap, optical spectra, and excitons. Therefore, it is necessary to move beyond

the single particle framework in order to explain the system’s excited state features. To get

from a single particle to Landau’s quasi-particle (QP) energies, which can be determined by

experiments, is essential. These experiments, known as photoemission and inverse photoemis-

sion spectroscopies, involve adding and subtracting electrons from the system (see Figure 2.9).

Similar to this, single particle calculations are used to determine QP energies. The many body

perturbation theory (MBPT) uses Green’s function techniques. It depicts how an electron’s ad-

dition or removal spreads across the system. Similar to how difficult it is to solve the exchange-
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correlation term in DFT, the most challenging term in this is self-energy. Self-energy is energy

dependent and non-local term. The lifespan of the particle and the propagation of the electron

or hole from one place to another within the system are described, respectively, by the real and

imaginary parts of self-energy. In the QP equation, the self-energy component is mentioned

directly. The eigenstates and eigenvalues of the single-particle excitations must be ascertained

in order to solve the eigen value issue that results from the solution of the quasi-particle equa-

tion. Self-energy computation is an extremely difficult problem. This technique, also known as

the GW approach, where G and W denote the Green’s function and a fully screened Coulomb

potential, respectively.. It was initially proposed by Hedin in 1965. It is possible to deal with

ionic states, excited states, and extended states with this approach since it is so powerful.

DFT orbitals serve as the starting point for GW computations. Initial G and W are afterward

built. Depending on how G and W are updated, GW methodology can take many distinct forms.

The most popular and straightforward technique is single-shot GW. For this kind of computa-

tion, a relevant starting point is crucial. Therefore, the initial starting point, or DFT orbitals is

crucial for a single-shot GW. Bandgap is mostly delivered via the single shot GW technique

in accordance with experimental data. However, GW has several real-world drawbacks, such

as (i) high computational cost and (ii) enormous memory. This is because it requires a large

number of unoccupied bands, as well as a large number of basis functions N. The electronic

polarizability and the correlation portion of the self-energy operator must converge before the

former may be used. In theory, it requires an endless number of bands, making it virtually im-

possible. The accurate prediction of the self-energy and the optical response function depends

on the convergence of the number of unoccupied bands and the basis function N. Convergence

of quasiparticle energies with respect to the number of basis functions N is challenging. This

may be understood by using the example of ZnO, where a tiny system requires thousands of

bands in order to provide findings that are highly converged [46]. Klimes et al. have proposed

a correction approach based on finite basis set [47], to get over this problem, on the premise

that quasiparticle energies converge in the ratio of 1
N [48]. The GW method has been widely

used to several insulators and semiconductors. There are two ways to calculate the energy and

bandgaps of quasiparticles: The first technique is to calculate the QP energies with regard to the

plane wave basis set N, cutoff energy, and quantity of k-points. Here, we compute the QP ener-

gies with increasing N, cutoff energy, and k-point counts, and then further verify convergence.

Notably, we did not extrapolate our data in this case. Whereas, the QP energies are extrap-
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olated to N → ∞ in case of the basis set corrected methodology used in the second method.

In 1969, Hedin’s study described the novel GW approximation, which was used to solve the

many body problem. The development and remodelling in this region began a few years ago.

The first work on the GW approximation was written by Hybertsen and Louie [49, 50]. Godby,

Schlüter, and L.J. Sham employed this technique in 1980 for Si, GaAs, and AlAs in addition

to diamond [51]. This thesis uses PBE and HSE06 to perform single shot GW calculations

beginning with DFT orbitals.

2.14 GW method

A useful technique for predicting the ground state characteristics of both new and current ma-

terials is density functional theory (DFT). However, it falls short of describing the many-body

system’s excited state characteristics. Therefore, moving beyond the single particle technique

is necessary to explore the system’s excited state features. The photoemission and inverse

photoemission spectroscopies, which involve adding and removing electrons from the system,

are often used to analyze the electronic characteristics. The energies of electron addition and

removal are not directly related to the energies of the Kohn-Sham orbitals by any theorem. Ex-

cited electrons are highly interacting particles in the photoemission or inverse photoemission

process. The propagation of one electron being removed or added to the system is described by

the single-particle version of Green’s function. In the theory of many-body perturbations, the

complex, non-local, and energy-dependent self-energy is used to define Green’s function. The

imaginary portion of the self-energy defines the lifespan of the particle, whereas the real portion

of the self-energy explains the energy change of the electron/hole as it moves from one place

to another in the system. The eigenfunctions and eigenvalues of the single-particle excitations

are obtained by solving the quasiparticle equation [37, 52, 53]. The behavior of quasiparticles

is described by the equation below:

(−∇
2

2 + Vext + VH)ΨQP (r) +
∫
dr
′Σxc(r, r

′ ; εQP )ΨQP (r′) = εQPΨQP (r) (2.87)

The reference Hamiltonian is typically employed in the GW approach. The first input is a

set of Kohn-Sham orbitals. The green function (G) Lehmann’s (spectral) representation is as

follows:

G(r, r′ ; ε) = lim
η→0+

∑
s

Ψs(r)Ψ∗s(r
′)

ε− εs + iηsgn(εs − µ)
(2.88)
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Figure 2.10: Spectral function representation for both interacting many particles and non-interacting

single particle excitation.

where εs corresponds to the system’s charged excitation energy for the N -electron system.

εs =


EN+1 − EN if εs > µ

EN − EN−1 if εs < µ

The spectral function, which specifies all the probability to reach the final state, is defined by

the imaginary portion of the Green’s function.

A(ε) = −1
π

∫
dr lim

r′→r
ImG(r, r′ ; ε) (2.89)

A(ε) = ImGk(ε) ≈
Zk

ε− (εk + iΓk)
(2.90)

The lifespan of an electron under electronic excitation is unlimited since it does not degrade.

As a result, for each transition, we see a corresponding delta function. Contrary to this, the

peak is seen with some widening in experimental measurements, as illustrated in Figure 2.10.

This may be accounted for by the fact that several electrons, as opposed to just one, are excited

throughout the process, and that each excitation contributes a delta function with closely spaced

energetics. The result is a peak with a limited width. This peak, which is seen in the right

panel of Figure 2.10, resembles a single particle, thus we named it a quasiparticle peak. As a

result, we may infer the three essential components from the excited spectrum: quasiparticle

energy (εk), defined as the distance between the peak’s two points, inverse of life-time (Γk),

and quasi-particle weight Zk. Figure 2.11 shows how to see the quasiparticle from a different
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angle. An electron is ejected from the sample when it is exposed to light, and this electron

leaves a hole behind. The negative charge will eventually screen out the positive charge as

the system evolves with time. Consequently, a quasiparticle (QP), which we refer to as, is

created when a hole and the charge around it combine and act as single entity. The QP will

now flow through the system. Through screened Coulomb potential (W), the QP interacts with

the rest of the system ineffectively. Within the context of the many-body perturbation theory,

QP energies are assessed using Green’s function methods, where polarisation and screening

concepts are described. In particular, screening is been represented by the dielectric function,

Figure 2.11: The illustration of the quasiparticle and noninteracting particle excitation peaks.

while polarisation is been translated to the polarisation response function. The interacting and

non-interacting Green’s functions make up the precise Green’s function. The non-interacting

function is assessed using DFT. The Dyson equation then links self-energy with non-interacting

function to achieve complete interaction. Dyson’s equation provides the following relationship

between the interacting and non-interacting Green’s functions:

G−1 = G−1
0 − Σ (2.91)

The self energy is used to define the sum of all potential single scattering processes, and the

Dyson equation is used to characterise all scattering processes during excitations. Notably, the

remainder of the electrons attempt to adjust to the new state whenever one electron is added or
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withdrawn from the system, where the self energy plays a significant role. The other electrons

repel a moving electron, which polarizes the potential and causes it to shift. It becomes difficult

to calculate the self energy throughout the excitation phase since the system experiences an

endless number of scatterings. Hedin put up a set of GW equations in 1965, and their self-

consistent solution can give the precise self-energy of the interacting situation. Even for the

most basic homogeneous electron gas system, the exact solution of Hedin’s equations is not

tractable. However, we can generate systematically improvable approximations if we are aware

of the precise theory. The GW approximation is the most straightforward.

Hedin’s Equations Exact solution:

P (12) = −i
∫
d(34)G(13)G(41+)Γ(342) (2.92)

Σ(12) = i
∫
d(34)G(14+)W (13)Γ(423) (2.93)

Γ(123) = δ(12)δ(13) +
∫
d(4567) δΣ(12)

δG(45)G(46)G(75)Γ(673) (2.94)

W (123) = v(12) +
∫
d(34)W (13)P (34)v(42) (2.95)

The following is the Dyson equation to connect Green’s function (G) with the self-energy (Σxc):

G(12) = GKS(12) +
∫
d(34)GKS(13)Σ(34)G(42) (2.96)

where G, P , Γ and Σ correspond to Green’s function propagator, polarizability, vertex func-

tion and self-energy, respectively. The approach is unaffordable in terms of cost and memory

requirements due to inclusion of derivative of self-energy w.r.t green’s function in the vertex

function. In order to make the equations solvable, the vertex adjustments are therefore disre-

garded in the GW approximation.

Γ(123) = δ(12)δ(13) (2.97)

Σ = iGW = Σx + Σc

= iGv + iG(W − v)
(2.98)

The random phase approximation (RPA) is used to derive the irreducible polarizability:

P (r, r′ , ε) = i

2π

∫
dεeiωηG(r, r′ , ε+ ε

′)G(r, r′ , ε) (2.99)
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Figure 2.12: The pentagon of Hedin. In the GW approximation, the vertex function (Γ) is omitted.

One may determine the dielectric constant by:

ε(r, r′ , ε) = δ(r − r′)−
∫
dr
′′P (r, r′′ , t)
|r′′ − r′|

(2.100)

We can calculateW if the dielectric function (ε) is known. This explains how screened coulomb

interactions allow the quasiparticle to interact with the rest of the system. The coulomb inter-

action under screening:

W (r, r′ , t) =
∫
dr
′′ ε−1(r, r′′ , t)
|r′′ − r′ |

(2.101)

The self-energy may be calculated as follows using a GW approximation:

ΣGW (r, r′ , ε) = − i

2π

∫
dεeiεηG(r, r′ , ε+ ε

′)W (r, r′ , ε) (2.102)

Here, the screened interaction is represented by W (r, r′ , ε), and Green’s function G(r, r′ , ε)

serves as a propagator to explain the velocity of the quasiparticle. The energy that a quasiparti-

cle experiences as a result of being present is known as self-energy. It is an energy contribution

that the particle itself has caused. Knowing all the components allows us to solve the equa-

tion 2.87 to calculate the quasiparticle energies. By using the quasi-particle equation, the GW

self-energy can be used to perturbatively correct the DFT/HF eigenvalues: The quasi-particle

energies are assessed perturbatively on top of a prior DFT, hence the GW approach is quite

dependent on the calculations for the starting point.

εQPi = εKSi − 〈ψKSi |V KS
xc − ΣGW

c (εQPi )− Σx|ψKSi 〉 (2.103)

The correlation component of the self-energy GW is represented by ΣGW
c , where Σx stands for

the exact-exchange operator. The exchange-correlation potential of the previous DFT compu-
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tation is represented by V KS
xc , and its associated eigenvalues and eigenvectors are εKSi and ψKSi ,

respectively. The most popular approach is the single-shot G0W0, which determines the band

gap or fundamental gap well in agreement with the experimental findings [51, 54].

2.15 Bethe-Salpeter Equation (BSE)

The one particle Green’s function can be used to explain the propagation of a single electron

or hole. Similar to this, higher-order Green’s function governs the propagation of two or more

particles. The interaction between the electron and the hole that forms following excitation

is particularly important in neutral excitations (for example, optical absorption, and electron

energy loss and inelastic X-ray scattering). The term “excitons” refers to these electron-hole

pairs. The Bethe-Salpeter equation takes into account the effort to solve the electron-hole

interaction. Together, Bethe and Salpeter were able to determine the equation of motion for the

two particle Green’s function in 1951 [55, 56]. Later, Sham et al. updated it for the exciton,

which is an interaction between electrons and holes [57, 58]. Baym and Kadanoff in 1961 [59]

suggested an exact formula. Strinati then applied the Baym and Kadanoff theory and utilized

the GW technique and BSE to compute the excitons [60]. Onida expanded on Strinati’s strategy

in 1995 to explain the excitons on the sodium tetramer [61]. It is now possible to undertake

the GW and BSE computations to unravel the optical spectra due to recent advancements in

computer resources and technology [62]. Figure 2.9 depicts the schematic depiction of bandgap

fluctuation using various approaches (DFT, GW and BSE). Strinati’s work is followed by the

BSE equation, which connects the interacting four-point correlation function L to the non-

interacting four-point correlation function L0. BSE is defined as follows:

L (12; 1′2′) = L0 (12; 1′2′) +
∫
d(3456)L0 (14; 1′3)

×K(35; 46)L (62; 52′)
(2.104)

The electron-hole correlation function and the electron-hole interaction kernel are denoted by

the symbols L (12; 1′2′) and K(35; 46).

L0 (12; 1′2′) = G1(1, 2′)G1(2, 1′)

Free electron-hole pairs with K=0 are represented by the pair G1(1, 2′)G1(2, 1′) (without in-

teraction). Position, spin, and time coordinates are functions of the variables in equation 2.104.

L is a function of two creation time variables and two annihilation time variables. The four

time variables in this situation are reduced to two time independent variables since we assume
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simultaneous creation and annihilation. Equation L0 (12; 1′2′) that depends on time is trans-

formed into equation L0 (12; 1′2′;ω) that depends on energy. The energy space is currently the

subject of all debates.

Assume that the electron and the hole quasiparticle both provide the one-particle Green’s func-

tion G1, but that there is no interaction between the two (electron and hole). In light of this, the

non-interacting correlation function L0 can be expressed as:

L0 (12, 1′2′;ω) =i
∑
v,c

[
ψc (x1)ψ∗v (x′1)ψv (x2)ψ∗c (x′2)

ω − (Ec − Ev)

−ψv (x1)ψ∗c (x′1)ψc (x2)ψ∗v (x′2)
ω + (Ec − Ev)

] (2.105)

where, respectively, v and c represent the total sum of the occupied hole and unoccupied elec-

tron states. It should be noted that the denominator should also contain adequate imaginary

infinitesimals; however, for convenience of illustration, we have not done that here.

Let’s now assume that the electron and the hole are interacting. Consequently, the equation for

the interacting electron-hole correlation function L is as follows:

L (12, 1′2′;ω) = i
∑
S

[
χS (x1,x′1)χ∗S (x′2,x2)

ω − ΩS

−χS (x2,x′2)χ∗S (x′1,x1)
ω + ΩS

] (2.106)

Here, the term S stands for the correlated electron-hole states, which are a linear combination

of a number of v and c states, while the term ΩS stands for the excitation energies.

The form of the electron-hole amplitudes is:

χS (x,x′) = −
〈
N, 0

∣∣∣ψ† (x′)ψ(x)
∣∣∣N,S〉 (2.107)

Next, we change the continuous position variables to reflect the single-particle wave functions

of the electron and hole states. The modified version of the electron-hole amplitudes is as

follows:

χS (x,x′) =
occ∑
v

empty∑
c

ASvcψc(x)ψ∗v (x′) +BS
vcψv(x)ψ∗c (x′) (2.108)

We have two summations in reference equation 2.108. One run covers the occupied states (v)

while the second run covers the c unoccupied states. Notably, we have not seen any product

combinations that had either two occupied vv states or two empty cc states. After the substitu-

tion of Eq. 2.105, 2.106, 2.108 in the BSE Eq. 2.104. The obtained final eigenvalue equation
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is as follows:

(Ec − Ev)ASvc +∑
v′c′ K

AA
vc,v′c′ (ΩS)ASv′c′

+∑
v′c′ K

AB
vc,v′c′ (ΩS)BS

v′c′ = ΩSA
S
vc,∑

v′c′ K
BA
vc,v′c′ (ΩS)ASv′c′ + (Ec − Ev)BS

vc

+∑
v′c′ K

BB
vc,v′c′ (ΩS)BS

v′c′ = −ΩSB
S
vc

(2.109)

where the energies of the quasiparticles are Ec and Ev. The electron-hole interaction kernel’s

symbol is K. In the above equation, ASvc corresponds to the coupling coefficients.

The electron-hole interaction matrix components are defined as:

KAA
vc,v′c′ (ΩS) =i

∫
d(3456)ψv (x4)ψ∗c (x3)K (35, 46; ΩS)

× ψ∗v′ (x5)ψc′ (x6) ,

KAB
vc,v′c′ (ΩS) =i

∫
d(3456)ψv (x4)ψ∗c (x3)K (35, 46; ΩS)

× ψ∗v′ (x6)ψc′ (x5) ,

(2.110)

Both KBB and KBA also exhibit similar expressions.

The diagonal terms in a matrix are the energy difference (Ec − Ev) and the components of the

interaction matrix (KAA and KBB). The terms KAB and KBA are off-diagonal. Off-diagonal

terms are typically found to be quite tiny. Therefore, in Eq. 2.109 we set KAB = KBA = 0. As

a result, Eq. 2.109 decouples into two equations, ASvc and BS
vc, leading to identical excitations

(except change in negative sign). The final eigenvalue equation is given by:

(Ec − Ev)ASvc +
∑
v′c′

KAA
vc,v′c′ (ΩS)ASv′c′ = ΩSA

S
vc (2.111)

This electron-hole interaction kernel term K will be regarded as an approximate independent

particle if it is ignored. The associated electron-hole term is defined as:

|N,S〉 =
hole∑
v

elec∑
c

ASvcâ
†
v b̂
†
c|N, 0〉 =:

hole∑
v

elec∑
c

ASvc|vc〉, (2.112)

When we shine light on the ground state |N, 0〉, a hole and electron are created in the system,

which are denoted by b̂†c and â†v, respectively. Tamm-Dancoff approximation is the expansion

of Eq. 2.112. Finding the electron-hole interaction kernel K is the next job. To achieve this,

we must perform a functional derivative with respect to G.

K(35; 46) = δ [VCoul (3)δ(3, 4) + Σ(3, 4)]
δG1(6, 5) (2.113)
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Further, we approximate the self-energy operator Σ using the GW method. Here, we have

disregarded W’s derivative relative to G1.

K(35; 46) =− iδ(3, 4)δ
(
5−, 6

)
v(3, 6)

+ iδ(3, 6)δ(4, 5)W
(
3+, 4

)
= : Kx(35; 46) +Kd(35; 46)

(2.114)

According to Figure 2.13, Kx is the exchange interaction term derived from the Coulomb

potential, and Kd is the direct interaction term derived from filtered exchange self-energy. The

features of the excitation spectrum, such as (i) the splitting between spin-singlet and spin-triplet

excitations and (ii) the longitudinal-transverse splitting of the s excitons are mostly controlled

by the exchange interaction term (Kx). The attractiveness of the electron-hole interaction and

the production of excitons are both controlled by the direct interaction term (Kd). The bare

Coulomb interaction v and the screened Coulomb interaction W , respectively, are involved in

Kx and Kd.

The electron-hole interaction kernel K’s matrix elements are given by:〈
vc
∣∣∣KAA,d (ΩS)

∣∣∣ v′c′〉
=
∫
dxdx′ψ∗c (x)ψc′(x)ψv (x′)ψ∗v′ (x′)

× i
2π
∫
dωe−iω0+

W (r, r′, ω)

×
[

1
ΩS−ω−(EQP

c′ −E
QP
v )+i0+

+ 1
ΩS+ω−(EQP

c −EQP
v )+i0+

]
,

(2.115)

and 〈
vc
∣∣∣KAA,x

∣∣∣ v′c′〉 =
∫
dxdx′ψ∗c (x)ψv(x)v (r, r′)

× ψc′ (x′)ψ∗v′ (x′)
(2.116)

Then, in the plasmon-pole model, expand the Coulomb screened interaction W :

W (r, r′, ω) =
∑
l

Wl (r, r′)
ωl
2

×
( 1
ω − ωl + i0+ −

1
ω + ωl − i0+

)
,

(2.117)

where Wl (r, r′) and ωl correspond to the spatial component of the plasmon mode l and the

plasmon frequency, respectively. After that, we have integrated the frequencies.〈
vc
∣∣∣KAA,d (ΩS)

∣∣∣ v′c′〉 =−
∑
l

∫
dxdx′ψ∗c (x)ψc′(x)ψv (x′)ψ∗v′ (x′)Wl (r, r′)

× ωl
2

 1
ωl −

(
ΩS −

(
EQP
c′ − E

QP
v

)) + 1
ωl −

(
ΩS −

(
EQP
c − EQP

v

))


(2.118)
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The excitation energies result from transitions from the valence band to the conduction band.

Since excitation energies ΩS , which are mostly applicable to semiconductors, are near to the

transition energies
(
EQP
c − EQP

v

)
, this means that they are close to them as well. Because of

this, the term ΩS−
(
EQP
c − EQP

v

)
is significantly less than the ωl. The Eq. 2.118 can be written

as: 〈
vc
∣∣∣KAA,d

∣∣∣ v′c′〉
=−

∫
dxdx′ψ∗c (x)ψc′(x)ψv (x′)

×ψ∗v′ (x′)W (r, r′, ω = 0)

(2.119)

Only the static attributes ofW are included in Eq. 2.119, while its dynamic aspects are ignored.

Next, we study the case when the transition energies
(
EQP
c − EQP

v

)
and excitation energies ΩS

are substantially different. Specifically, with regard to atoms and molecules, this is possible.

In that situation, Eq. 2.119 might not hold, forcing us to apply Eq. 2.118. The ΩS component

in this equation necessitates careful convergence of both the electron-hole interaction term and

the self-consistent BSE. We employ an iterative process for this. First, we ignore the dynamics

of W and just consider static screening (Kd is determined using Eq. 2.119). The excited state

|S〉 and an initial estimate of the excitation energy (let’s say Ω0
S) are then determined by solving

the BSE. Then, we recalculate Kd and enter Ω0
S in the equation reference Eq. 2.118. To further

increase the value of ΩS , we calculate the difference between the updated Kd and the original

Kd, which is defined as a first order perturbation. In order to reach the converged value of ΩS ,

these steps should be repeated. Put the value of K in Eq. 2.111, then build a Hamiltonian. The

Hamiltonian is then diagonalized. Correlated electron-hole states |S〉 will result from it.

We have used Fermi’s golden rule to determine the optical spectra in the next section.

2.15.1 Optical response using BSE

Fermi’s Golden rule can be used to identify optical transitions. Let’s assume that there is no

contact between the electron and the hole and that the independent electron and the indepen-

dent hole decide the vertical transitions. Let’s imagine that an operator, such as a velocity or

momentum operator, is used to transfer electrons from their beginning state to their end state.

We have estimated the imaginary portion of the macroscopic transverse dielectric function for

the optical response function:

ε
(0)
2 (ω) = 16πe2

ω2

∑
v,c

|~λ · 〈v|~v|c〉|2δ (ω − (Ec − Ev)) , (2.120)
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Figure 2.13: Schematic diagram of many body interaction (exchange and the direct interaction)term.

Figure 2.14: Flow chart for the BSE calculations.
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where λ = ~A
~|A|

corresponds to the light’s polarisation vector and ~v corresponds to the single

particle velocity operator, δ (ω − (Ec − Ev)) corresponds to the term for energy conservation,

c and v denote the conduction and valence states.

Since electrons and holes will interact in reality, the imaginary portion of the macroscopic

transverse dielectric function is as follows:

ε2(ω) = 16πe2

ω2

∑
S

|~λ · 〈0|~v|S〉|2δ (ω − ΩS) , (2.121)

The associated electron-hole term is |S〉. The optical transition matrix is 〈0|~v|S〉 This formula

yields the optical transition matrix:

〈0|~v|S〉 =
hole∑
v

elec∑
c

ASvc〈v|~v|c〉, (2.122)

While considering pseudopotentials, one should exercise extreme caution when calculating the

transition matrix elements 〈v|~v|c〉. The velocity operator (~v = i[H,~r]) is also known as the

current operator. If and only if the potential and position operators commute, [V (~r), ~r]=0, the

velocity operator for local pseudopotentials can be substituted by the momentum operator. On

the other hand, we must consider the commutator term [V (~r), ~r] for non-local pseudopotentials.

Consequently, in addition to the momentum operator, there is another commutator term.

〈v|~v|c〉 = 〈v |~p+ i [Vps, ~r]| c〉 (2.123)

2.15.2 Challenges while performing BSE calculations

Let’s use the Hamiltonian’s solution in a plane wave basis set as an example to better grasp the

difficulties. Valence and conduction bands at a certain k-point make up each basis. Let’s look

at a Silicon example (Si). 4 valence bands make up Si. Suppose it contains four conduction

bands. Create a 4×4 matrix with k-points in it. Let’s assume that 1000 k-points, or 10×10×10,

are needed for the optical spectra to converge. This demonstrates that we have a matrix that

is 4×4×1000, or 6000×16000. It implies that we must build a very large matrix and further

diagonalize it. This matrix ought to be non-Hermitian in theory. Because each exciton exhibits

certain lifetime. From the imaginary portion of the Green’s function, lifetime can be calculated.

Hence, if we claim that a matrix is Hermitian, it should not be connected to any hypothetical

component. As a result, it implies that the matrix is not Hermitian. It should be noted that

computing the non-Hermitian matrix is in fact an extremely difficult process because solving

the Hermitian matrix is itself a difficult task. The non-Hermitian matrix is then made into a
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Hermitian one using the Tamm-Dancoff [63] and static screening approximations, which are

then solved to provide optical absorption.

It will be easier to comprehend the difficulty of solving BSE if we compare the DFT and the

BSE computations. In reality, when we use DFT to calculate ground state energy, we are only

concerned with the lowest eigenvalues; but, when we use BSE or excited state computations, we

must take into account all of the eigenvalues. As a result, we must find solutions for all 16000

eigenvalues and 16000 eigenvectors for the Si example. Additionally, iterative techniques are

no longer a practical choice for that (iterative methods are applicable for DFT, where we com-

pute only a few eigenvalues). Consequently, it is difficult to fully diagonalize a matrix of this

size. These techniques (GW and BSE) are therefore exceedingly costly to compute.

2.16 Exciton models and lifetimes

The electrostatic Coulomb force is used to attract bound electron-hole pairs, which are known

as excitons. The two primary categories of excitons are Wannier-Mott excitons and Frenkel

excitons. We provide some Frenkel exciton characteristics.

• These excitons are tightly bounded.

• Its radius is similar to the distance between atoms. As a result, it is localized to one atom

or is strongly linked to certain atoms or molecules. Its probability of being discovered on

the same atom is therefore quite high.

• It is often discovered in substances with high electron and hole effective mass values,

low dielectric constants, and large bandgaps.

• The exciton binding energy of these excitons ranges from 0.1 eV to several eV.

• Alkali halide crystals are an example of an organic substance that contains these excitons

(aromatic molecules) [64].

The characteristics of wannier excitons are then listed as follows:

• These excitons are weakly bounded or termed as free excitons.

• These excitons exhibit large radii.
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• These excitons are loosely connected to certain atoms or molecules, thus they are free to

travel anywhere in the crystal.

• They are often found in semiconductors which possess narrow bandgaps and high dielec-

tric constants [64]. Wannier excitons are important since we focused on broad bandgap

semiconductors in this thesis.

2.17 Wannier exciton

By assuming the most basic system, the hydrogenic system, we may create a Hamiltonian for

a bound electron-hole pair using Bohr’s model. The formula for the effective Hamiltonian is:

Hexc = Eg −
~2

2mc

∇2
e −

~2

2mv

∇2
h −

e2

4πεr(0) |re − rh|
(2.124)

The symbols mc and mv, respectively, stand for the effective masses of an electron and a hole,

respectively. An electron’s position vector is re, whereas a hole’s location vector is rh. Eg is

a symbol for the semiconductor’s direct bandgap. Excitation is travelling in the medium εr(0).

We construct a Hamiltonian for the relative motion of electrons and holes using knowledge of

atomic physics.

R = mere +mhrh
me +mh

, µ = memh

me +mh

, r = re − rh (2.125)

Hexc = Eg −
~2

2µ∇
2
r −

~2

2 (me +mh)
∇2
R −

e2

4πεr0r
(2.126)

The wavefunction explains how an electron and a hole move in relation to one another.

ψ (re, rh) = e−k·Rφn(r) (2.127)

where k is a wavevector that symbolizes the propagation of an electron and hole pair. Here,

φn(r) gives the information about the relative motion of hole and electron and depends on r.

The form of the Schrödinger equation is identical to that of the Hydrogen atom.(
− ~2

2µ∇
2
r −

e2

4πεr0r

)
φn(r) = Enφn(r) (2.128)

The wavefunction [65] of exciton is defined as follows:

ψkr(R, r) = ek·rφn(r)φc (re)φv (rh) (2.129)
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where φc (re) (φv (rh)) denotes the Bloch function for conduction band electron (valence band

hole). n represents the principle quantum number. The eigenvalues of Hamiltonian are given

by:

Ekn = EB(n) + k2

2 (me +mh)
(2.130)

The energy eigenvalues of a bound electron and hole pair are denoted as EB(n).

EB(n) = −EB
n2 (2.131)

In terms of Rydberg energy, EB is represented as follows:

EB = µ

m0εr(0)2ERy (2.132)

ERy corresponds to the hydrogen atom’s Rydberg energy [66, 64].

Similar to the hydrogen radius, the exciton radius is determined by:

rexc = m0

µ
εr(0)n2rRy (2.133)

where rRy is the hydrogen atom’s Bohr radius and rexc represents the exciton radius.

2.18 Optical transition

2.18.1 Fermi’s golden rule

The electronic or atomic transition rates that take place between the beginning and final states

are defined by Fermi’s golden rule, a quantum mechanically based formalism. This rule was

initially discovered by Dirac [67] , not Fermi. Fermi’s golden rule is a well-known name for

it. Nevertheless, this is due to Fermi’s application of this rule in his well-known hypothesis,

beta decay, which he considered to be a golden rule [68]. When the starting and end states

of an electronic or optical transition are represented by wavefunctions, Fermi’s golden rule is

applicable. First order perturbation theory is employed to calculate the transition rate. It may

be calculated using the elements of the transition matrix and is defined as the probability of

transition per unit time. The Fermi principle is given by:

γfi = 2π
~
|〈i |H ′| f〉|2 δ (Ef − Ei − ~ω) (2.134)

where |f〉 and 〈i| denotes the final and the initial states, respectively. H ′ represents the per-

turbative Hamiltonian. The decay probability, which provides information of the inverse of
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lifetime, is also known as Fermi’s golden rule.

Let’s calculate the absorption process’ transition rate. An electron moves from its valence band

to its conduction band as a result of photon absorption. Let’s construct a Hamiltonian to de-

scribe how the electron interacts with the electromagnetic field. Two variables (i) the scalar

potential (φ) and (ii) the vector potential (A) describe the electromagnetic field. E and B are

calculated using φ and A as follows:

E = −∇φ− 1
c

∂A
∂t
, B = ∇×A (2.135)

The following equation gives the Hamiltonian for a particle with mass m and charge e in an

electromagnetic field:

H = 1
2mc

(
p− e

c
A
)2

+ e(φ+ V (r)) (2.136)

Here, V (r) denotes the periodic potential in absence of electromagnetic field.

H = 1
2mp2 + e

2m

(
−(A · p + p ·A) + e

c
A2
))

+ e(φ+ V (r)) (2.137)

The quadratic term A2 is disregarded due to its extreamly small value. In order to make calcu-

lations simpler, we are free to select the gauze. For the scalar potential, φ = 0 is the simplest

gauze. Let’s assume the Coulomb gauze [69] ∆ · A = 0, A · p = p · A [69] is satisfied, ,

therefore ∆ · A = 0, A · p = p ·A

Take a plane wave as an example of an electromagnetic vector potential (A).

A = A0ê(exp[i(k · r− ωt)] + exp[−i(k · r− ωt)]) (2.138)

where ê represents unitvector pointing in the plane wave’s direction.

H = H0 +H ′, H0 = p2

2m + eV (2.139)

The Hamiltonian of perturbation H ′

H ′ = − e

mc
A · p (2.140)

When Eq. 2.140 and Eq. 2.138 are substituted into Eq. 2.134, the transition rate for the

absorption process is obtained as follows:

γfi = 2π
~

e2

m2c2A
2
0
∑

k

∣∣∣〈vk
∣∣∣e(ik·r)ê · p

∣∣∣ ck〉∣∣∣2 δ (Ef − Ei − ~ω) (2.141)

The emission process is described similarly by:

γfi = 2π
~

e2

m2c2A
2
0
∑

k

∣∣∣〈vk
∣∣∣e(−ik·r)ê · p

∣∣∣ ck〉∣∣∣2 δ (Ef − Ei − ~ω) (2.142)
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Ef and Ei correspond to the eigenstate |ck〉 and |vk〉, respectively.

Convert the expression e(−ik·r) into a Taylor series.

e−ik·r ≈ 1− ik · r + · · · (2.143)

where, k = 2π
λ

. Assume that the wavelength of electromagnetic radiation is substantially

greater than the size of an atom or a molecule. As a result, in Eq 2.143, k and k2 term are

ignored. Consequently, e−ik·r ≈ 1. This is termed as electric dipole approximation. Dipole

transition matrix element in Eq. 2.141 and 2.142 is now:

〈
vk
∣∣∣e(−ik·r)ê · p

∣∣∣ ck〉 ≈ ê · 〈vk|p|ck〉 (2.144)

The following is the relationship between the matrix elements of a momentum operator and a

position operator:

〈vk|p|ck〉 = im

~
(Ei − Ef ) 〈vk|r|ck〉 (2.145)

The dipole transition matrix may be expressed as follows using the Eq. 2.145 and Eq. 2.144:

|〈vk|p|ck〉|2 = m2ω2|〈vk|r|ck〉|2 (2.146)

In the case when Eq. 2.146 is substituted for Eq. 2.142, the transition rate is given by:

γfi = 2π
~
e2ω2

c2 A2
0
∑

k
|〈vk|ê · r|ck〉|2δ (Ef − Ei − ~ω) (2.147)

The aforementioned equation demonstrates how the dipole matrix members directly relate to

transition rate.

γfi ∝
∑

k
|〈vk|ê · r|ck〉|2 (2.148)

The excitonic impact will then be included into the transition dipole matrix components. We

have combined Fermi’s golden rule with the Wannier approach for this purpose.

2.19 Wannier approach

2.19.1 k.p perturbation theory

We calculate the transition dipole matrix element and numerous excitonic characteristics using

this method. We have employed the perturbation theory of k·p for this purpose. It determines
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the Bloch state’s wavefunction and energy bands. Unperturbed Hamiltonian H0 and perturbed

Hamiltonian H ′ are added to form the total Hamiltonian.

Hk.p = H0 +H ′ (2.149)

It is possible to write the eigenvalue equation for Hk.p as follows:

Hk.pun,k = En,kun,k (2.150)

The mathematical expression of Hk.p is given by:

Hk,p = p2

2m + V + ~
m

k · p + ~2k2

2m (2.151)

The system’s potential energy is V . The unperturbed and perturbed Hamiltonians [70] are

provided by comparing Eq. 2.151 and 2.149.

H0 = p2

2m + V, H ′ = ~
m

k · p + ~2k2

2m (2.152)

where k · p is represented as follows:

k · p =
(
−i~ ∂

∂x

)
kx +

(
−i~ ∂

∂y

)
ky +

(
−i~ ∂

∂z

)
kz (2.153)

The solution to Eq. 2.149 is obtained by using the second order of the perturbation [70] k · p:

un,k = un,0 + ~
m

∑
n′ 6=n

〈un,0|k · p|un′,0〉
En,0 − En′,0

un′,0 (2.154)

En,k = En,0 + ~2k2

2m + ~2

m2

∑
n′ 6=n

|〈un,0|k · p|un′,0〉|2

En,0 − En′,0
(2.155)

The matrix element can be stated simply as:

〈un,0|k · p|un′,0〉 = 〈un,0|p|un′,0〉 · k (2.156)

Now substitute Eq. 2.156 into Eq. 2.155

En,k = En,0 + ~2k2

2m + ~2

m2

∑
ij

∑
n′ 6=n

|〈un,0|p|un′,0〉|2 kikj
En,0 − En′,0

(2.157)

The formula for effective mass is obtained from the ref. [70]:

En(k) = E (k0) + ~2

2m
∑
ij

(
m

m∗

)
ij

kikj (2.158)

Comparing Eq. 2.158 with Eq. 2.157:(
m

m∗

)
ij

= δij + 2
m

∑
n6=n′

|〈uu,0|p|un′,0〉|2

En,0 − En′,0
(2.159)

We may use Eq. 2.159 to get the optical transition matrix given the effective mass and bandgap.
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2.20 Excitonic parameters

Let’s create a momentum matrix element p, where the change from the |0〉 ground state to the

n exciton state may be expressed as follows[65]:

〈n|p|0〉 =
∑

k
〈n | k〉〈ck|p|kv〉 (2.160)

The momentum matrix element’s transition probability is inversely proportional to [65]:

|〈n|p|0〉|2 ∝ |〈c|p|v〉|2
(∑

k
〈n | k〉

)(∑
k′
〈k′ | n〉

)
(2.161)

The wavefunction of exciton is defined as follows [65]:

φn(r) =
∑

k
eik·r〈k | n〉 (2.162)

Photons will be produced when an electron and a hole annihilate. Only when the electron and

hole are at the same location, re = rh, is this feasible. As a result, the exciton wavefunction is

given by when the relative position is r = 0 [65].

φn(0) =
∑

k
〈k | n〉 (2.163)

Replace Eq. 2.163 with Eq. 2.161. The momentum matrix element’s transition probability has

the following form:

|〈n|p|0〉|2 ∝ |〈c|p|v〉|2 |φn(0)|2 (2.164)

The probability of an electron hole pair at zero separation is inversely proportional to the exci-

ton radius and directly dependent on the derivative of the eigenvalues of a limited hydrogenic

system with respect to the principal quantum number[64].

|φn(0)|2 = 1
2π (rexc)3EB

dEB(n)
dn

(2.165)

Eq. 2.131 and Eq. 2.132 are used to calculate the probability of the exciton wavefunction,

which is:

|φn(0)|2 = 1
π (rexc)3 n3

(2.166)

2.21 Exciton lifetime

Using Eq. 2.148, γfi ∝
∑

k |〈vk|ê · r|ck〉|2

Let’s concentrate on analysing the expression |〈vk|ê · r|ck〉|2. Beginning with the relationship
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between the position operator and transition dipole matrix of the momentum:

|〈vk|ê · r|ck〉|2 = 1
m2

0ω
2 |〈vk|ê · p|ck〉|2 (2.167)

The following expression is derived from the k · p method: 〈vk|ê · p|ck〉|2[(
m0

m∗

)
ij
− δij

]
m0Eg

2 =
∑

k
|〈vk|ê · p|ck〉|2 (2.168)

The transition dipole matrix elements for the exciton transitions are obtained using Fermi’s

golden rule as follows:

∑
k
|〈vk|ê · r|ck〉|2 ≈ Vexc · |φn(0)|2 |〈vk0|ê · r|ck0〉|2 (2.169)

if Vexc is a volume, then Vexc = 4π
3 (rexc)3. Substituting Eq. 2.169 into Eq. 2.148:

γfi ∝ Vexc |φn(0)|2 |〈vk0|ê · r|ck0〉|2 (2.170)

This equation demonstrates that the transition rate and the components of the transition dipole

matrix are exactly related.

This equation shows that transition rate is directly proportional to the transition dipole ma-

trix elements. The exciton lifespan will be determined by the inverse of the transition rate:

τexc = 1
γfi

(2.171)

2.22 Geometry optimization

From a random starting geometry where all the atoms are placed in the ground state, geometry

optimization is used to find the equilibrium configuration of a system. The first stage in material

modelling is to find the lowest energy structure. Until the total energy is reduced, the atoms

inside the unit cell or supercell move in accordance with the Hellmann–Feynman force [71].

When the force acting on each atom is equal to zero or less than a specified threshold value,

the local energy minimum is reached. The following statement describes how the Hellmann-

Feynman force acts on the I th atom:

FI = − ∂E

∂RI

(2.172)
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where E represents the system’s overall energy. The location of the I th atom is indicated by

the symbol RI .

FI = − ∂

∂RI

〈Ψ|H|Ψ〉

= −〈Ψ| ∂H
∂RI

|Ψ〉 − 〈 ∂Ψ
∂RI

|H|Ψ〉 − 〈Ψ|H| ∂Ψ
∂RI

〉
(2.173)

Ψ is an eigenfunction of H in this instance.

FI = −〈Ψ| ∂H
∂RI

|Ψ〉 − E〈 ∂Ψ
∂RI

|Ψ〉 − E〈Ψ| ∂Ψ
∂RI

〉

= −〈Ψ| ∂H
∂RI

|Ψ〉 − E ∂

∂RI

〈Ψ|Ψ〉
(2.174)

Since the final term in the aforementioned calculation vanishes due to the normalisation of Ψ

(〈Ψ|Ψ〉 = 1), the force acting on the I th atom may be written as follows:

FI = −〈Ψ| ∂H
∂RI

|Ψ〉 (2.175)

The utilization of the aforementioned procedure is affected by two key considerations. The

inaccuracies resulting from non-self-consistency are one, and the explicit dependency of the

basis functions on the location of the ions is another. The Pulay troops are born from the latter.

To stop the computations from making more mistakes, these problems must be resolved. For

the detailed discussion refer to the Ref. [30].

2.23 Molecular dynamics

A computer approach called molecular dynamics (MD) is used to examine how a molecular

system evolves over time. MD offers techniques for analyzing atom and molecule mobility

under the influence of environmental factors including temperature and pressure [72]. The

structure and behavior of many complex systems are studied using MD techniques. Newtonian

mechanics is the foundation of every MD simulation. The dynamics of a system are clarified

by using MD simulations to solve Newton’s equations of motion.

FI = mIaI = mI
d2RI

dt2
(2.176)

The second law of motion of Newton is shown in the equation above. In this case, FI stands

for the instantaneous force exerted on a particle with mass m and a current location R. Another

way to describe the force is as a gradient of potential energy:

FI = OIU(R1, R2, ......RN) = ∂U(R1R2, ......RN)
∂RI

(2.177)
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U is the system’s potential energy. Eq. 2.176 and Eq. 2.177 together give us:

∂U(R1R2, ......RN)
∂RI

= mIaI (2.178)

Standard numerical integration techniques are used to determine the particle’s location and

velocity.

υI(t) = 1
mI

∫ ∂U(R1, R2, ......RN)
∂RI

dt+ υ0 (2.179)

RI(t) =
∫
υi(t)dt+R0 (2.180)

The starting velocities and positions of the particle are shown here by υ0 and R0, respectively.

The gradient of the interatomic potential may readily be used to estimate the track of particles

at each time step if the system’s starting state is known. Usually, the molecular structure is

used to determine the starting locations of the particles. While the distribution of velocities is

often derived from the distribution functions, such as the Gaussian or Boltzmann distribution

functions, that define the velocity of a certain particle at a given temperature. Calculating other

transport parameters of the material, such as ion diffusion and system equilibrium, makes use

of the particle trajectories at each time step that was thusly collected.

Interatomic potentials: All interactions between the system’s particles are governed by the

potential energy function U(R1, R2, ........RN). AIMD simulation must have interatomic po-

tentials in order to run. An equation set defining the interatomic potentials makes up a force

field. Different empirical and semiempirical force fields, such as CHARMM, Lennard-Jones,

Morse, and Born-Mayer, define the interatomic potentials in classical MD. To match the exper-

imental data for a particular system, a set of parameters governing these force fields must be

tuned. Accuracy, calculation time, and transferability are only a few of the numerous variables

that influence the selection of an appropriate force field. However, the force fields that are now

in use may not accurately represent the new complicated systems. The force fields do not exist

in a single form. A formulation of potentials that is effective for one system could not produce

the intended effects for another system.

2.23.1 Ab Initio Molecular Dynamics

Such force fields are unnecessary in simulations of Ab Initio molecular dynamics. The elec-

tronic structure computations are used to determine the interatomic potentials “on the fly”.

Newton’s equations of motion regulate the motion of particles in this situation in a classical
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Figure 2.15: Work flow diagram for ab-initio molecular dynamics (AIMD).

manner while quantum mechanics is used to determine the interatomic potentials. Conse-

quently, AIMD is one parameter-free method that makes it easier to examine materials for

which the formulation of the parameters is not simple. This approach has completely changed

theoretical research on novel complex solids. The motion of nuclei and electrons is handled

independently in AIMD using the well-known Born Oppenheimer or adiabatic approximation.

The nuclei being much heavier than the electrons, are considered classical masses. At each

time-step, the nuclei move, whereas the electrons are assumed to be in their stationary ground

states. The instantaneous forces on the nuclei are obtained from the Hellmann-Feynman theo-

rem, also called the “force theorem” [73].

FI = − ∂E

∂RI

(2.181)

In this case, FI stands for the force that a nucleus at point RI would experience. E represents

the system’s energy, which is represented by the hamiltonian expectation value.

E = 〈Ψ|Ĥ|Ψ〉 (2.182)

Therefore,

FI = −
(
〈 dΨ
dRI

|Ĥ|Ψ〉+ 〈Ψ| dĤ
dRI

|Ψ〉+ 〈Ψ|Ĥ| dΨ
dRI

〉
)

(2.183)

The assumption that the electrons are in their ground state is known as the adiabatic approxima-

tion. As a result, the electronic wavefunction’s differential with regard to the nuclear position
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is zero. Using Eq. 2.181 and Eq. 2.183, above equation reduced to:

FI = −〈Ψ|dV̂ext
dRI

|Ψ〉 − 〈Ψ|dEII
dRI

|Ψ〉 (2.184)

FI = −
∫
d3rn(r)dV̂ext

dRI

− dEII
dRI

(2.185)

The force theorem is expressed in the aforementioned equation. As a result, neither the kinetic

energy nor the exchange correlation functional affect the instantaneous force exerted on the

nuclei. It is explicitly determined using the electron ground state density. However, this for-

mulation necessitates that the nuclei move while the electrons stay in their ground state. The

nuclei are advanced to the following time step (t→ t + ∆ t), where the new coordinates for the

phase space are determined classically, and the force is calculated at each time step from the

aforementioned relation.

2.23.2 Integration algorithms

By integrating the equations of motion with the use of conventional numerical integration tech-

niques, the locations and momenta of the nuclei at time step t + ∆ t are determined. These

include the velocity-verlet algorithm, the verlet algorithm, and numerous numerical integra-

tion techniques like the leapfrog algorithm. The most used technique is the velocity-verlet

algorithm. The extension of position and velocity into a series is known as the velocity-verlet

technique. The following is how the location and velocity formula is expressed:

R (t+ ∆) = R ((t)) + ∆tυ (t) + 1
2 (∆t)2 a (t) (2.186)

υ (t+ ∆) = υ ((t)) + 1
2∆t [a (t) + a (t+ ∆t)] (2.187)

2.23.3 Ensembles

A group of several samples of the same system that are identical in terms of their macroscopic

characteristics but may differ in their microscopic states is known as an ensemble. Using en-

semble average, it is possible to determine the average of a certain observable as shown below:

〈A〉enemble =
∫ ∫

ρ
(
rN , pN

)
A
(
rN , pN

)
drNdpN (2.188)
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where A denotes the observable and r, p stand for the system’s position and momentum, respec-

tively. The probability density, which may be determined using the partition function approach

as described below, is represented as ρ(rN ; pN):

ρ
(
rN , pN

)
=

exp
[
−H(rN , pN)/kBT

]
∫ ∫

drNdpNexp [−H(rN , pN)/kBT ]
(2.189)

The partition function is represented by the denominator in the equation above. As a result, in

order to calculate the ensemble average of a quantity, all system states must be considered.

Ergodic hypothsis

According to the ergodic theory, “a system will pass through all potential states if it is allowed

to evolve for a sufficiently enough period”. In other words, computing the average over a big

ensemble and over a long time is similar. The hypothesis can be described using the following

expression:

〈A〉ensemble = 〈A〉time (2.190)

The time average is expressed as follows:

〈A〉time = lim
τ→∞

1
τ

∫ τ

t=0
A
(
rN(t), pN(t)

)
dt (2.191)

The ergodic hypothesis serves as the foundation for the MD simulations. The time restriction

must be unlimited in order to comply with the axiom above. Practical simulations, however,

are fixed in time. It is therefore typically recommended to sample the phase space as widely

as feasible. Microcanonical, canonical, and grand canonical ensembles are various ensemble

settings under which MD simulations can be run.

Microcanonical (NVE) ensemble

MD is performed in a microcanonical ensemble where the total number of particles (N), lattice

volume (V), and system energy (E) are kept constant throughout the simulation. Here, system

remains completely isolated, no heat or matter exchange takes place between the system and

the environment.

Canonical (NVT) ensemble

The canonical ensemble has constant thermodynamic parameters for the total number of par-

ticles (N), cell volume (V), and temperature (T). Here, a never-ending supply of heat is main-

tained for the system. Particle exchange is severely constrained, though. Thermostats are used

to control the temperature in isothermal MD simulations. Different thermostats use differ-

ent algorithms to trade energy with the system and maintain a constant temperature. “Veloc-

ity scaling”, “Langevin’s thermostat”,“Anderson’s thermostat”, “Berendsen’s thermostats”, and
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“Nose-Hoover thermostats” are a few examples of thermostat algorithms.

Velocity rescaling method: Isokinetic thermostat

A random collection of particle initial velocities is used as the starting point for the velocity-

rescaling process. The following equation is then used to scale the values of the velocities that

were randomly chosen to the suitable results for the intended temperature:

3
2kBT = 1

2Mυ2 (2.192)

Where M denotes the particle’s mass, kB and T are Boltzmann constat and the preferred tem-

perature, respectively. υ is the speed of the particle.

After a specific number of time steps, the velocities of all the particles are rescaled by multiply-

ing with a factor of
√
T/T (t), where the current temperature is denoted by T (t). The number

of time steps after which the velocities are rescaled determines how far the velocity-rescaling

technique may diverge from the classical ensemble conditions.

Velocity rescaling method: Berendsen thermostat

In Berendsen thermostat approach, the temperature is altered by coupling the system with a

heat bath maintained at temperature T0 [74]. The velocities are rescaled by multiplying them

with a factor given below:

λ =

√√√√1 + ∆t
τ

(
T (t)
T0
− 1

)
(2.193)

The instantaneous temperature is T (t), and is the time-step of the MD simulation. τ indicates

the coupling constant that controls how well the system and the heat bath are coupled.

Stochastic collision method: Anderson’s thermostat

By connecting the system to a heat bath, Anderson’s thermostat keeps the temperature at the

correct level [75]. Stochastic collisions that take place on the randomly selected particles after

a few time steps aid in coupling. One particle experiences a change in momentum with every

stochastic contact. The system develops in between the two subsequent collisions in accordance

with the customary equations of motion. The probability of a collision occurring between the

times t and t+ is given by the Poisson’s distribution:

P (t, ν) = νexp[−νt] (2.194)

The coupling between the system and the heat bath is determined by the frequency of colli-

sions, which is represented by ν. One particle is affected by each collision at a time, and the

Boltzmann distribution is used to calculate this particle’s new momentum value. At the point
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of impact, the particle’s change in momentum is added to the equations of motion; at all other

moments, the equations of motion are solved normally for all the particles.

Extended system method: Nose-Hoover thermostat

The system is connected to a heat bath where an additional degree of freedom corresponding

to the heat bath is added to the real equations of motion in the extended system technique to

preserve the canonical ensemble in an MD simulation [76, 77]. It is believed that the additional

degree of freedom, S, has a mass called “Q”. The variables are scaled in accordance with the

following relations in the expanded phase space:

dt̃ = dt/S;

q̃ = q;

p̃ = p/S;

˜̇q = Sq̇;

˜̇p = ṗ

The coordinates of phase space in the actual system are represented here by q and p. The

extended system coordinates are indicated by the symbols q̃ and p̃. The expression for the La-

grangian in the extended system is as follows:

Lext =
N∑
I

1
2MI

˜̇q2
I − U(q̃) + 1

2QṠ
2 − gktextrmBT lnS (2.195)

which results:

Lext =
N∑
I

1
2MIS

2q̇2
I − U(q)1

2QṠ
2 − gktextrmBT lnS (2.196)

The first component in this equation is the kinetic energy of the particles, the second term is

the potential energy, and the third and fourth terms, respectively, are the kinetic energy and

potential energy of the extra entity S. The g, is one more than the typical degree of freedom

for the actual system. The extended system behaves in a canonical manner attributed to the

logarithmic term in the potential energy.

The extended system’s hamiltonian is expressed as follows:

Hext =
N∑
I

p2
I

2MIS2 + U(q) + p2
S

2Q + gkBT InS (2.197)

where, pS denotes the momentum related to S.

The system develops according to the following equations of motion:

dqI
dt

= ∂Hext

∂pI
(2.198)
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dpI
dt

= −∂Hext

∂qI
(2.199)

dS

dt
= ∂Hext

∂pS
(2.200)

dpS
dt

= −∂Hext

∂S
(2.201)

Grandcanonical (µ,V,T) ensemble

Grandcanonical ensemble refers to a system with constant chemical potential (µ), cell volume

(V), and temperature (T). The system is connected to an internal heat source in this instance,

allowing for the flow of both heat and matter.



CHAPTER 3

Role of defects in modulating the ionic-diffusivity in

solid state electrolytes for battery materials

3.1 Introduction

Advanced energy materials have become a burgeoning field of research to meet the growing

energy demand of 21st century [78, 79]. Therefore, for the sustainable development of hu-

man society, cheap, clean, compact and renewable sources of energy are required [80, 81, 82].

The large scale use of renewable energy resources is attributable to the importance of energy

conversion and storage. Rapidly increasing energy demands worldwide arouse intensive ef-

forts to explore novel energy storage technologies to meet the developing social needs. In-

sight into this, Li-ion batteries have powered the revolution in moveable electronic devices

and led to their adoption in modern technologies due to high energy density and long cycle

life [83, 84, 85, 86, 87]. Unfortunately, serious safety concerns still exist due to their use

of flammable organic solvent electrolytes [88]. Moreover, currently the conventional lithium

intercalation-based battery almost reaches its limit and there seems to be no further room for

improvement [89, 90, 91]. Solid-state battery (SSB) technology is expected to be an alter-

native to Li-ion batteries [92, 93, 94, 95, 96]. The former is believed to be safer, capable

of delivering higher energy density, faster recharging, higher voltage capability and longer

cycle life. Nevertheless, despite significant experimental research initiatives taken by lead-

ing commercial companies, presently they are expensive and obscure [97, 98, 99, 100, 101].

However, SSBs with inorganic solid-state electrolytes have the potential to drastically im-

prove safety and performance of progressive battery technology alongside of simple fabrica-

tion [102, 103, 104, 105, 106, 107, 108, 109, 110].

Various structural families for e.g., LISICON [111, 112], garnet [113, 114], NASICON [115,

78
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116, 117, 118, 119], perovskite-type [120] and thio-LISICON are explored to acknowledge

prospective ion-conducting solid-state electrolytes. Among these structural families, sulfide-

based compositions Li10GeP2S12 [121, 122], Li7P3S11 [123, 124] and Li3.25Ge0.25P0.75S4 [125,

126, 127, 128, 129] have been already widely reported in the literature owing to the high ionic

conductivities. However, they operate in restricted voltage windows, chemically unstable, and

possess hydroscopic nature [130, 131]. Though oxide-based electrolytes do not exhibit high

ionic conductivity like sulfide-based, they are chemically stable and straightforward to manu-

facture. The Li4SiO4 manifests a LISICON-type structure, that has been widely studied and

identified as potential solid electrolyte [132, 133]. It has been considered that ionic conductiv-

ity can be enhanced by few orders of magnitude for compositions Li4−xSi1−xPxO4 as compared

to the pristine Li4SiO4 [134, 135, 136, 137, 138]. It has been also mentioned that Li-ion va-

cancy and doping facilitate high ionic conductivity in such materials [136, 139]. However, any

theoretical reports at the level of atomic-scale understanding, for the local structural and ther-

modynamic stability of some of the point defects in pristine Li4SiO4, are hitherto unknown. It

is, therefore, important to provide theoretical guidance to experiment and technology for this

immensely promising sustainable energy material.

In this article, we have studied ionic diffusion and it’s correlation with dopants/defects in

a promising SSB material viz. LISICON [136, 137]. As a first step, using density functional

theory (DFT) [140], we compute the formation energies of different defects in LISICON to de-

termine the thermodynamically stable configurations. Our results reveal that the defects which

maintain the charge neutrality are the most stable ones. Following this, we have performed ab

initio molecular dynamics (AIMD) simulation on (meta)stable (un)doped systems to study the

diffusion and ionic conductivity of Li-ions. On analyzing our AIMD simulation results, to get

the insights on synergistic effect of point defects, we have compared the amplitude of vibration,

tracer diffusivity, ionic conductivity, jump rate, charge density and activation barrier for both

pristine as well as defected systems. Strikingly, we find that the jumps between different planes

are not similar, leading to anisotropy in ionic conductivity in LISICON. The interplanar jumps

are minimum in bc planes that limits its ionic conductivity in that direction. We also report

that the limited jump rate can be enhanced at room temperature explicitly by point defects, viz.

Li-vacancy and substitution at Si-sites with different elements e.g. P, Ge, Al.
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3.2 Methodology

We have performed the DFT calculations with PAW pseudopotential method [10, 11, 141] as

implemented in Vienna ab initio simulation package (VASP) [142, 143]. The elemental con-

stituents viz. Li, O, Si, P, Al and Ge pseudopotentials contain one, six, four, five, three and four

valence electrons, respectively. Li4SiO4 is a monoclinic structure having space group P21/m. It

comprises of 126 atoms (14 formula unit) in the unit cell i.e., Li56Si14O56. The lattice parame-

ters (a = 11.546 Å, b = 6.090 Å, c = 16.80 Å and β = 99.50) are taken from existing experimen-

tal results [144]. The generalized gradient approximation (GGA) has been performed with the

Perdew-Burke-Ernzerhof (PBE) [145] exchange-correlation (εxc) functional. We have cross-

checked and validated our results with advanced hybrid functional HSE06 [146], wherever is

applicable. In all the calculations, electronic self-consistency has been attained with energy

tolerance of 10−5 eV. For high precision calculations, we have used cutoff energy of 600 eV for

plane-wave basis set. For obtaining the optimized ground state structure, Hellman-Feynman

forces have been converged with limit of 0.005 eV/Å by conjugate gradient (CG) minimiza-

tion [147]. The k-point mesh has been generated by the Monkhorst-Pack [41] method. Here,

all the structures are fully relaxed with k-mesh 2×2×2, whereas for single-point energy calcu-

lation we have done all the calculations with k-mesh 5×5×5. For AIMD calculations, we have

used the NVT ensemble, and the Nose-Hoover thermostat is used for our calculations [148].

We have performed the simulation with a unit cell containing 126 atoms, where the number

of particles and volume are kept fixed with periodic boundary conditions imposed along three

directions. For all AIMD simulations, time step of 2 fs has been used. To ensure that the system

converges to thermal equilibrium states, a maximum time duration of 30 ps for each run has

been performed. Note that due absence of suitable classical force field (especially to address

PO4 system well), it’s not possible to perform very long MD simulation of the order of nano-

seconds to estimate properties accurately at the classical forcefield level. This is one of the

main reasons of doing everything at the level of AIMD approach under the framework of DFT.

However, within DFT, it is rather challenging to converge 30 ps long AIMD simulation run for

a supercell size of 100+ atoms. Therefore, we have carefully validated that 30 ps may be good

enough to yield statistically meaningful numbers. Here, in Figure 3.1(a), we have plotted the

Gaussian curve fit of the average temperature of Li4SiO4 during the AIMD run. Here, three

curves correspond to three AIMD runs for which total time periods are 30 ps, 40 ps, and 50 ps,



Chapter 3. Role of defects in modulating the ionic-diffusivity in solid state electrolytes
for battery materials 81

respectively at 300 K for Li4SiO4. To avoid the temperature fluctuations which occur in the ini-

tial time steps of the AIMD run in all the three cases, we have ignored the data of temperature

corresponding to the initial time steps i.e., up to 15 ps. From this Figure, we can find that the

attained average temperature is also well converged in all these three AIMD runs viz. 30 ps,

40 ps and 50 ps. we have also computed the jump rate with AIMD simulations of 30 ps, 40 ps

and 50 ps. We find that jump rates (for pristine system) are 0.31×1013 Hz [30 ps], 0.31×1013

Hz [40 ps], and 0.32×1013 Hz [50 ps], respectively. Since with 40 and 50 ps AIMD runs, we

get well converged numbers (as comparable with 30 ps AIMD run) and in addition to this, the

trend is very well in agreement with experiments, we believe this is sufficient to assume that

within ab initio MD, 30 ps is sufficiently long. From AIMD simulation, we have determined

the positions of all the atoms at each time step. Following this, the absolute displacement at

each time step is determined.

Figure 3.1: (a) Gaussian curve fit of the average temperature of Li4SiO4 during AIMD run of time period

30 ps, 40 ps and 50 ps, respectively at 300 K. (b) Formation energy per atom (Ef), with increase in Li-�

in Li56Si14O56, using HSE06 functional.

3.3 Results and Discussions

3.3.1 Formation energy of defects

As a first step, formation energy (Ef ) of different defects (i.e., P-substitution and Si-�/Li-� in

126-atom unit cell) in Li4SiO4 is calculated from the total energies of their precursor materials

viz. Li2O, SiO2, P2O5 and O2 using following expressions [149, 150]:



3.3. Results and Discussions 82

Ef (Li56−x−ySi14Py �x O56) = E(Li56−x−ySi14 �x PyO56)− 14E(SiO2)

−y2E(P2O5) +
(
y − x

4

)
E(O2)−

(
28− x+ y

2

)
E(Li2O),

(3.1)

Ef (Li56Si14−x−yPy �x O56) = E(Li56Si14−x−yPy �x O56)− 28E (Li2O)

−y2E(P2O5) +
(
y − 4x

4

)
E(O2)− (14− x− y)E(SiO2),

(3.2)

Ef (Li56−xSi14−y−kPy �x �kO56) = E(Li56−xSi14−y−kPy �x �kO56)−
(

28− x

2

)
E(Li2O)

+
(
y − x

4 − k
)

E(O2)− (14− y − k)E(SiO2)− y

2E(P2O5).

(3.3)

The coefficient of each term on the right hand side of above equations is chosen so that they

stoichiometrically balance the number of Li, P, Si and O atoms in Li56−y−xPySi14 �x O56,

Li56Si14−y−xPy �x O56 and Li56−xSi14−y−kPy �x �kO56. Here, E donotes the total energy of

corresponding compounds.

In Figure 3.2(a), 3.2(b) and 3.2(c), we have plotted the formation energy per atom (Ef )

for all possible values of x, y and k. In Figure 3.2(d), we have shown substitution of P at

Si site in pristine system. Firstly, to determine the stable configurations as a function of P-

substitution in the Li/Si framework, we have adopted an iterative strategy: starting with the

pristine Li56Si14O56, we have identified the most favorable sites for the P-substitution/Li-� by

scanning over all possible framework positions. For the subsequent P-substitution/Li-�, we

have retained the previous composition and scanned over the rest of the available framework

sites. Then, the Ef of the phases (P-substitution and Li-�) are calculated using Equation 3.1.

From Figure 3.2(a), we have observed that substitution of P at the Li position is less favorable

in comparison to Li-�. We have also calculated the formation energy per atom for Li-� using

HSE06 [151] εxc functional (see Figure 3.1(b)). Here, we have found that stability decreases

with increase in Li-�, thus similar to the case obtained using PBE εxc functional as shown

in Figure 3.2(a). Therefore, one must needs to opt for limited Li-� in order to retaining its

stability.

Similarly, we have calculated the Ef for Si-� along with P-substitution as in the aforemen-

tioned case using Equation 3.2. From Figure 3.2(b), we have seen that configurations with
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Figure 3.2: Formation energy per atom (Ef ) of different structures are represented as a function

of (a) P-substitution at Li and Li-� (for Li56−y−xPySi14 �x O56), (b) P-substitution at Si and Si-

� (for Li56Si14−y−xPy �x O56) and (c) P-substitution at Si, along with Si-vacancy and Li-� (for

Li56−xSi14−y−kPy �x �kO56). The color bar represents Ef in eV. A guide to eye for the configuration

with minimum Ef is marked with red arrows. (d) Optimized structure of the system with P-substitution

at Si-site.

P-substitution are more stable in comparison to Si-� for our system. However, few config-

urations containing P-substitution and a single Si-� are also stable. Subsequently, with the

identified best compositions in Li56Si14−x−yPy�x O56, we have stepwise removed the Li atoms

by scanning over all the framework sites. For creating further Li-�, we have retained the va-

cancy at the already identified position and scanned over the rest of the available framework

sites. From Figure 3.2(c), we have concluded that Li56−xSi14−yPy �x O56 (x=y) configura-

tions always have lower Ef and thus, are thermodynamically stable. We have also checked

the stability of substitution of Al and Ge at Si sites using aforementioned technique. We find,

Li56Si14−xGexO56 is stable but Li56Si14−xAlxO56 is not after few Al substitution. But this gets

stabilized once Al is substituted simultaneously with P forming Li56Si14−2xAlxPxO56.
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3.3.2 Change in amplitude of vibration with temperature and doping

Next we have carried out AIMD simulation, which provides the position of all the atoms at each

time-step that could be used to acquire absolute displacement per time-step. During simulation,

we have fixed the parameters: (i) time-step is 2 fs and (ii) ionic iterations are 15000, so that

the total time of simulation is 30 ps. The atomic vibration is the vibration of atoms about their

mean position. Here, vibration is obtained from the amendment in absolute displacement that

can be negative or positive. The amplitude of vibration [152] is outlined as:

A = ri(t)− ri(t− 1). (3.4)

where A corresponds to the amplitude of vibration. ri(t) and ri(t − 1) correspond to the co-

ordinates of atom i at time t and t − 1, respectively. Here, we have chosen some identified

thermodynamically stable compositions viz. Li56−xSi14−yPy �x O56, where x and y∈[0,4], for

AIMD simulation at different temperatures. In Figure 3.3(a), 3.3(b) and 3.3(c), we have plotted

the histogram profile (all the mid points are connected and fitted via gaussian curve fitting) of

amplitude of vibration of Li-ions for different configurations ((a) x=0, y=0; (b) x=2, y=2; (c)

x=4, y=4) at different temperatures viz. 300 K, 600 K and 900 K. In Figure 3.3(d), we have

shown how amplitude of vibration is changing with creation of point defects in the system at a

particular temperature (300 K).

In Figure 3.3, full width at half maximum (FWHM) corresponds to standard deviation (SD)

of amplitude of vibration of Li-ions. We have observed the broadening in gaussian curves or

amplification of SD with increase in temperature for pristine as well as for defected systems

(see Figure 3.3(a-c)). Also, we have noticed that amplification of SD is more pronounced for

the pristine system as compared to defected system. Moreover, at a particular temperature,

there is an amplification in amplitude of vibration or SD on creation of defects (see Figure

3.3(d)). After monitoring Figure 3.3, we have concluded that amplitude of vibrations, which

are close to zero are highly intense, whereas broadening occurs due to a very small proportion

of vibrations with amplitude greater than 0.5 Å. However, these vibrations result into ionic

jumps between different symmetric crystallographic sites, which are described in the following

section (Estimation of jump rate).
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Figure 3.3: Histogram showing the amplitude of vibration of Li-ions at 300 K, 600 K and 900 K in

Li56−xSi14−yPy �x O56 for (a) x = 0 and y = 0, (b) x = 2 and y = 2 and (c) x = 4 and y = 4. (d)

Histogram of amplitude of vibration of Li-ions in Li56−xSi14−yPy �x O56 at 300 K, where values of x

and y are (0, 2, and 4). The colored dotted lines correspond to gaussian curve fitting.

3.3.3 Tracer diffusivity and ionic conductivity

Mean squared displacement has been used to determine the tracer diffusivity (D) [153, 154,

155, 156]. Tracer diffusivity is calculated as follows:

D = 1
2dNt

N∑
i=1

([ri(t + t0)]− [ri(t0)])2, (3.5)

where d=3, which corresponds to dimension for diffusion of atoms in the system. Here, we

have ignored the Doffset [155]. N corresponds to the total number of diffusing atoms and t

corresponds to the total time of AIMD simulation. In Equation 3.5, ri(t0) is the position of ith

diffusing atom at time t0 and ri(t + t0) is the position after time t. In Figure 3.4(a), we have

plotted tracer diffusivity of Li-ions at different temperatures.

We have discerned the beneficial effects that have been reflected in tracer diffusivity of Li-

ions in three-dimensional diffusion with change in temperature and creation of point defects.
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Figure 3.4: Histogram showing the amplitude of vibration of Li-ions at 300 K, 600 K and 900 K in

Li56−xSi14−yPy �x O56 for (a) x = 0 and y = 0, (b) x = 2 and y = 2 and (c) x = 4 and y = 4. (d)

Histogram of amplitude of vibration of Li-ions in Li56−xSi14−yPy �x O56 at 300 K, where values of x

and y are (0, 2, and 4). The colored dotted lines correspond to gaussian curve fitting.

Mostly, the diffusivity is increased with increase in temperature. The increment in tracer diffu-

sivity for the defected configuration Li52Si10P4 �4 O56 is ∼ ten times than pristine at ambient

temperature. It should be mentioned here that until now, we have not found any prior experi-

mental studies, where a similar percentage of doping or point defects in the host is available.

There are few reports where people have done heavy doping [136, 139] [i.e. kind of alloying]

and have shown increment in ionic conductivity in a similar system (with doping). Yet the

reason behind such behavior of material with doping was not clear. Because of this, to have a

better insight, we have tried to report the fundamental role of doping and point defects in this

system. Note that on purpose, we have restricted ourselves to smaller doping concentration

to better understand the reason behind this change in ionic conductivity atomistically. Mod-

elling heavy doping/alloying leads to additional constraints of defect-defect interactions in a

supercell and disentangling such interaction is sometimes quite important but challenging to

understand the interaction of doping atomistically. However, the qualitative trend of our results

for different configurations viz. Li56−xSi14−yPy �x O56 for different values of x and y are well

in agreement to other experimental studies [136, 139].

From AIMD simulation, we can also predict the ionic conductivities of different ions in the

systems under consideration. Using Nernst-Einstein relation, conductivity(σ) is expressed as
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follows:

σ = Ne2z2

VkBT
D. (3.6)

Here, we have assumed Heaven ratio [155, 156] is equal to one and N corresponds to number of

diffusing atoms. V is the volume of the system. e corresponds to the elementary charge, z is the

ionic charge of diffusing atoms under consideration. T is the temperature in kelvin and kB is the

Boltzmann’s constant. In Figure 3.4(b), AIMD simulated ionic conductivity of thermodynami-

cally stable configurations viz. Li56−xSi14−yPy�xO56, Li56Si12PAlO56 and Li56Si13GeO56 have

been plotted in form of ln(σT) as a function of 1000/T. From Figure 3.4(b), we can clearly see

that each composition shows non-Arrhenius relationship. The non-Arrhenius behavior of ionic

conductivity for Li-ion conductors has been already mentioned in literature [157]. The ionic

conductivity is enhanced in defected systems. We have obtained that the ionic conductivity of

configurations Li56−xSi14−yPy �x O56 increases with increasing x and y, where x and y∈[0,4]

at 300 K. However, on increasing the temperature, the ionic conductivity is decreased due to

increase in lattice vibrations that hinder the path of Li-ions. Our calculated values of conduc-

tivities given in Table S1 in SI). Note that despite absolute values are different in experiments

due to the reason of heavy doping condition as employed in the experiments, qualitative trend

of ionic conductivity for different configurations (Li56−xSi14−yPy �x O56) is quite appreciable

and close to the experimental work [158].

3.3.4 Estimation of jump rate

Using AIMD simulation we can detect the transitions occurring between different symmetric

crystallographic sites. The transition between two sites that are far apart (more than 1 Å) has

been considered as a jump. Mean jump rate (Γi) can be provided by counting the number of

jumps (Ji) occurring between different types of sites.

Γi = Ji

Nt
, (3.7)

where subscript i corresponds to a type of jump, N is the number of diffusing atoms, and t

corresponds to the total simulation time of AIMD run.
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We have focussed on interplanar jumps occurring in pristine/defected system. Note that

these interplanar jumps are different in different planes. In Figure 3.5, we have plotted inter-

planar jump rate as a function of temperature.

Figure 3.5: Jump rates of pristine and defected systems at different temperatures for different planes.

Figure 3.6: Contour density plots of Li-ion diffusion for Li4SiO4 in (a) bc-plane (b) ac-plane, at 600 K.

Note that in Figure 3.5, X, Y and Z-axis correspond to lattice vector a, b and c, respectively

of unit cell of pristine system. Hence, jumps occurring along X, Y and Z-axis correspond to

interplanar jumps in bc, ac and ab planes, respectively. For pristine system, interplanar jump

rates are maximum in ac plane (see Figure 3.5), whereas these are surprisingly quite low in

bc and ab planes. This anisotropy in jump rate affects the ionic conductivity. To have a better

visualization of interplanar jumps due to Li-ion diffusion, we have shown the position of Li-

ions during the whole AIMD simulation for Li4SiO4 using a contour density plot (see Figure

3.6). In Figure 3.6(a) and (b), we have shown 2D view of Li-ion contour density in bc and

ac-plane, respectively. Here, in the contour, blue color corresponds to the maximum density

of Li-ion. From Figure 3.6(a), we see that in bc plane the density of Li-ions are restricted in
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five distinct regions. This behaviour clearly restricts the movements of Li-ions along b-axis.

However, in ac plane we have no such restriction for possible interplanar jumps [see Figure

3.6(b)], which helps the faster movement of Li-ions in any direction. This clearly explains the

anisotropic nature of the material (in line to our observation as in Figure 3.5).

To validate the anisotropy, the frequency dependent complex dielectric function, ε(ω) =

Re(ε) + Im(ε) which constitutes a linear response of the system to the external magnetic field is

calculated for pristine system [159]. Kramer-Kroning transformation is used to obtain real part.

Imaginary part of dielectric function is attained by calculating the interband matrix elements of

the momentum operators. From the real and imaginary part of frequency dependent dielectric

function, we have reconfirmed an anisotropy in this system as evident from our AIMD sim-

ulation results. The limited jump rates in bc and ab planes may be responsible for low ionic

conductivity for the pristine system. However, jump rates are increased with point defects.

From Figure 3.5, we can perceive how the jump rates are varying with temperature. We have

estimated that alike to amplitude of vibration, jump rate is increased with increase in tempera-

ture, but the effect of temperature is less pronounced for defected systems. As we increase the

temperature, the system becomes softer and more amorphous in nature. As a matter of fact, at

high temperature, the minimum energy (i.e., the activation energy) for Li-ion to jump from one

site to another is compensated by some extra thermal energy. This thermal energy results in

kinetic energy of Li-ions. Now, the number of Li-ions is more in pristine system, which results

in more number of jumps at high temperature as compared to a defected system (see Figure

3.5). However in the defected system, due to presence of Li-vacancies, there are less number

of jumps that take place as compared to pristine. Notably, the main motivation of this work

is to have enhanced ionic conductivity not at high temperature but at room temperature. It is

clearly seen from Figure 3.5 that the jumps, which are occurring along Y-axis (b-lattice vector

or in ac plane) are maximum, and minimum along X-axis (a-lattice vector or in bc plane). On

applying field (electric field), these jumps can be forced in one direction and restricted in other

direction. This anisotropic nature of ionic conductivity is to be kept in mind during application

of this material in solid state batteries as an electrolyte.

3.3.5 Polarization and lattice softening

Next, we have tried to understand the underlying reason for the increment in the vibration/jumps,

diffusivity and the ionic conductivity with defects at a particular temperature. For that we have
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compared the charge density plots of pristine and defected system as shown in Figure 3.7(a)

and 3.7(b). Herein, we have plotted the surface charge density of 001 plane for pristine unit cell

and defected system, respectively. In Figure 3.7(a), all labeled O-atoms are covalently bonded

Figure 3.7: Charge density plot for plane with miller indices (001) at a distance 11 Å from origin for (a)

Li56Si14O56, (b) Li54Si12P2 �2 O56 at 600 K. Note that Si and P labeled atoms in (a) and (b) are lying

slightly above the given plane. During whole AIMD simulation at 600 K, radial distribution of (c) single

Li w.r.t. all O (d) all Li w.r.t. all O, (e) single Li w.r.t. all Si (f) all Li w.r.t. all Si. Here different color

corresponds to three different configurations in Li56−xSi14−yPy �x O56.

to only Si-atoms, whereas in Figure 3.7(b), a few O-atoms are covalently bonded to P-atoms.

Both Si, P are lying just above the given plane. In defected system, we have doped P at Si-sites.

On substitution with P, this results in formation of anionic group [PO4]−3 instead of [SiO4]−4.

Here, Si and P both are sp3 hybridized. However, note that P has one extra electron than Si.

Therefore on substitution of P at Si site, this additional electron is being shared amongst the
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unsaturated O-atoms resulting a stronger O-O bonds. Consequently, a change in charge den-

sity is observed. It is clearly seen that system with point defect is more polarized (see Figure

3.7(b)). As a consequence of this, the Li-O interaction gets weakened. Thus movement of

Li inside the lattice becomes easier on P substitution. As a direct consequence, this helps in

Li-ions diffusions with enhanced jump rates. Lattice polarizability is caused due to the doping

with larger ions or ions with different valency. Further, to investigate the effect of doping on

the bond strength of Li with O/Si, we have plotted the radial distribution of Li with O/Si as

shown in Figure 3.7(c-f). In Figure 3.7(c) and 3.7(e), we have plotted the gaussians fit of radial

distribution of a common Li-atom w.r.t. all the O-atoms and Si-atoms, respectively at each

time-step of AIMD. And in Figure 3.7(d) and 3.7(f) the same is done but with all the Li-atoms

w.r.t. all the O-atoms and Si-atoms, respectively at each time-step of the AIMD run. From

Figure 3.7(c) and 3.7(e), we can clearly see the shift of gaussian curve towards higher radial

distance for defected systems. This reveals the softening of bonds on creation of the defects.

Note that, from Figure 3.7(d) and 3.7(f), there is decrease in the intensity of nearest neighbour

with defects as shown in the inset (encircled region). It also admits the average increase in

radial distance and hence, bond softening on doing doping. Therefore, figure 3.7(c-f), we can

see that intensity of the first nearest neighbour of the radial length decreases as we increase

the concentration of defects in system. The first nearest neighbour is shifted towards right (i.e.

nearest neighbour radial distance is increased) on doping. This is due to the increase in bond

strength, i.e., the lattice becomes soft. This decrement in bond strength is attributed to the po-

larization occurring in the system. When system becomes soft, its activation barrier decreases

and jumps among symmetric crystallographic sites increase. Consequently, ionic conductivity

also increases with point defects. This is also clear from conductivity plot (see Figure 3.4(b)).

Hence, we can clearly see the influence of lattice polarizability on the ionic conductivity, which

is well in agreement with previous experimental study [160]. Finally to prove lattice softening

with defects, we have varied the volume of unit cell of pristine and defected systems respec-

tively, and the corresponding ground state energies are noted. Such variations in energy of unit

cell w.r.t variation of lattice constant (volume) is been plotted in Figure 3.8 for Li56Si14O56 and

Li54Si12P2 �2 O56 to establish how the system becomes soft with doping. We have observed

that curvature (of energy vs lattice vector) is large in defected system. However, due to the

small concentration of P, the spread is also very small. Therefore, to have a clear picture, we

have shown schematic view of our results in Figure 3.8 (lower panel) and the real simulated
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Figure 3.8: Schematic diagram of the effect of lattice softening on activation barrier (lower panel) and

simulated one (upper panel). With increasing lattice softness, i.e., with decreasing bond strength, the

activation barrier gets reduced for the defected systems.

one in the upper panel. From this schematic plot, one can understand the strategy of computing

the activation barrier from two such curves one for pristine and the other for defected one. We

can clearly see that system becomes softer after creating point defects and activation barrier

decreases. The panel above shows the activation barrier for transition of Li-ion from one site to

another. To obtain these activation barriers, first we have calculated average attempt frequency

for Li56Si14O56, which comes out to be 2.5 × 1012 Hz, whereas “standard value” for such sys-

tems is 1 × 1013 Hz. We have found that the activation barrier at 300 K is 0.19 eV, 0.21 eV and

0.23 eV for Li52Si10P4 �4 O56, Li54Si12P2 �2 O56 and Li56Si14O56, respectively1. These values

1Note that it may appear to be feasible to compute the the activation barrier via Nudged Elastic Band (NEB)

method as well. But in this supercell we have total 56 Li atoms. Therefore, one Li atom has, in principle, plenty

of possible sites around to jump giving rise to different values of activation barrier (at different sites). They are

assumed to be of similar order of magnitude but still different in numbers and depends on the site of concern.

Thus, to get a meaningful average value, one needs to account all possible jumps (via NEB) to all possible sites.

Therefore, to avoid those many large NEB jobs, we have computed the activation barrier using AIMD and this is

indeed in good agreement with the experimental observation.
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are in good agreement with the experiments [136]. This further confirms that doping reduces

the activation barrier and consequently the Li ion transport is enhanced. The latter helps in

achieving higher conductivity for having application in solid state battery electrolytes.

3.4 Conclusion

In summary, we have used DFT calculations to investigate the thermodynamic stability of point

defects in LISICON. We have concluded that Li56−xSi14−yPy�xO56 (x=y), where x and y∈[0,4]

are thermodynamically most stable configurations. The AIMD calculations are performed to

get the insights of enhanced ionic conductivity. The diffusion of Li-ions increases with the

temperature for pristine as well as for the doped system. We have also shown that on creating

point defects (Li-�, P, Al and Ge substitutional impurities) at a given temperature, the Li-ion

diffusion is increased in our system. The jumps (vibrations) of Li-ions are in the order of plane

ac > ab > bc, which indicates the anisotropy in our system. Further, the impurities polarize

the system, which leads to bond softening and thus, hopping of Li-ions becomes easier due

to reduction in activation barrier. Our results reveal that ionic conductivity of LISICON is

enhanced on creating various point defects. Specifically, substitution of P at Si with Li-� are

the most potential candidates to enhance the ionic conductivity.



CHAPTER 4

Bandgap engineering by doing sublattice mixing in

double perovskites

4.1 Introduction

Inorganic-organic (IO) hybrid halide perovskites (AM(II)X3, A = methylammonium (MA+),

formamidinium (FA+); M(II) = Pb2+; X = Cl−, Br−, I−) have brought a huge revolution in

the field of photovoltaics [161, 162, 163, 164, 165]. These alluring materials exhibit high ab-

sorption coefficient, long carrier diffusion length, high carrier mobility, low trap density, low

manufacturing cost and high defect tolerance [166, 167, 168, 169, 170]. Starting from 3.8%,

their power conversion efficiency (PCE) has risen to 22.7% [166, 171, 172] in just a decade.

Despite these attainments, the intrinsic instability owing to monovalent organic cation [173]

and toxicity of Pb [174] hinder their large scale commercialization. To address these problems,

extensive efforts have been paid to find stable and green alternatives for optoelectronic applica-

tions. In the recent years, despite large success of IO hybrid perovskites, researchers are getting

back to inorganic perovskites as the former suffers from intrinsic stability. It has been reported

that the problem of intrinsic instability can be overcome by replacing organic cation with in-

organic cation i.e., Cs+. This not only upgrades the thermal stability but also exceeds device’s

life span [175, 176]. However, in CsPbX3, toxic nature of Pb is still a big issue and replacement

of Pb with some non-toxic element provides a permanent solution. Also, complete replacement

of Pb with elements belonging to the same group like Sn and Ge is not suitable due to their ten-

dency of oxidization from +2 state to +4 state [177, 178]. Considering any other divalent cation

in place of Pb results in poor optoelectronic properties owing to their large band gap [179, 180].

Alternatively, without varying the total number of valence electrons, two Pb2+ cations can be

transmuted by one monovalent (M(I)) and one trivalent (M(III)) cation. It leads to a new con-

94
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figuration i.e., Cs2M(I)M(III)X6 [181, 182, 183], which procures a double perovskite structure.

Following this kind of design strategy, a few experimentally reported double perovskites are

Cs2AgBiX6 [X=Cl, Br, I] [184, 185, 186], Cs2AgSbX6 [187, 188], Cs2AgInX6 [189, 190] and

Cs2InM(III)X6 [M(III)=Sb, Bi] [191]. However, none of them are ideal for solar cell applica-

tions due to the imperfections associated with them. In case of Cs2AgM(III)X6 [M(III)=Sb,Bi],

the large indirect band gap results in poor solar absorption. On the other hand, parity forbidden

transition and inevitable conversion of In1+ to In3+ in Cs2AgInX6 [189] and Cs2InM(III)X6

[M(III)=Sb,Bi] [192], respectively, lead to degradation of photovoltaic performance.

In this article, we present an intensive theoretical study on band gap modification of Cs2Ag

BiCl6 by means of sublattice mixing. The sublattice mixing is done by substituting M(I) at Ag-

sites, M(II) at Ag- and Bi-sites simultaneously, and M(III) at Bi-sites in various concentrations

for enhancing the optical properties of Cs2AgBiCl6. A high-throughput screening is performed

by carrying out the hierarchical computations employing state-of-the-art first-principles based

methodologies under the framework of density functional theory (DFT). We start doing a lot

of pre-screening of a large number of configurations with DFT using generalized gradient ap-

proximation based exchange-correlation (εxc) functional (PBE [145]) and following that the

promising candidate structures are further analyzed using hybrid DFT with HSE06 [193]. The

latter εxc functional helps for more accurate understanding of the excited state properties [194].

Note that in all the above calculations (viz. PBE or HSE06), the effect of spin-orbit coupling

(SOC) is always taken into consideration. This is a crucial step to determine the accurate

band gap and band-edge positions of these systems due to presence of heavy metal atoms. We

have started with 64 sets of different combinations of metals M(I), M(II), and M(III), respec-

tively. Firstly, the structural stability is predicted using the Goldschmidt’s tolerance factor and

octahedral factor. It is worth noting that structural stability alone is not sufficient for the for-

mation of perovskites. Hence, to validate the material’s thermodynamic stability, the enthalpy

of decomposition per atom (∆HD) is calculated. Then, from ∆HD and band gap range (which

expands the spectral response in visible region), the promising stable double perovskite config-

urations are identified. Following identification of such potential candidate structures, detailed

electronic structure is carried out alongside of computing optical properties. The real and imag-

inary parts of the dielectric function are analyzed to understand the effect of sublattice mixing

in Cs2AgBiCl6 for modification of band gap. Subsequently, we determine spectroscopic lim-

ited maximum efficiency (SLME) of all the stable configurations that possess direct band gap,
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to determine efficient solar cell absorber.

4.2 Methodology

First-principles calculations have been performed using DFT with PAW pseudopotential method [10,

11, 45, 195] as implemented in Vienna ab initio simulation package (VASP) [196]. Cs2AgBiCl6

is a cubic structure having space group Fm3m [255] [197]. It comprises of 40 atoms (with 4

formula units) in the unit cell i.e., Cs8Ag4Bi4Cl24 and single defect state remains fully localized

with periodic boundary conditions. We have used exchange-correlation (εxc) functionals viz.

GGA (PBE [145]) and hybrid functional HSE06 [193] with and without SOC for the calcula-

tions. The total energy tolerance is set to 0.001 meV. The Hellmann-Feynman forces [147] have

been converged upto 0.001 eV/Å by conjugate gradient (CG) minimization to obtain optimized

ground state structures. The k-mesh has been generated by the Monkhorst-Pack [41] method.

All the structures are fully relaxed with k-mesh 2×2×2. For single-point energy calculation,

k-mesh is converged and kept fixed at 5×5×5. Also, to compute dielectric properties k-mesh

is converged to 5×5×5 (see Figure 4.1(a-b)). The plane wave energy cut-off is set to 600 eV

in our calculations.

4.3 Results and Discussions

4.3.1 Validation of exchange-correlation (εxc) functional for Cs2AgBiCl6

Initially, the benchmarking of εxc functional has been performed by calculating the band gap

of pristine system viz. Cs2AgBiCl6. The band gap of Cs2AgBiCl6 with PBE εxc functional

is 2.06 eV, which is not in agreement with the experimental value of 2.77 eV [197]. As this

system contains heavy metal atom (viz. Bi), the inclusion of SOC becomes important [168].

However, incorporation of SOC with PBE underestimates the band gap (1.68 eV) further due

to splitting of the conduction band minimum (CBm). The latter gets shifted to lower energy

toward Fermi level, whereas the valence band maximum (VBM) remains unaffected (see Fig-

ure 4.1(e)). On the other hand, to include the self-interaction error of a many-electron system in

the expression of εxc functional, advanced hybrid εxc functional viz. HSE06 becomes essential

[168, 198]. It gives a band gap of 3.15 eV (without SOC, HSE06 only) and 2.60 eV (with SOC,

HSE06+SOC), respectively with default (0.25) Hartree-Fock exchange fraction (α) (see Fig-
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Figure 4.1: Convergence of k-mesh for (a) imaginary and (b) real part of dielectric function using PBE

εxc functional. Band gap of Cs2AgBiCl6, using (c) HSE06 and (d) HSE06+SOC εxc functionals with

different values of Hartree-Fock exchange fraction (α). (e) Band edge alignment of VBM and CBm with

PBE, PBE+SOC and HSE06+SOC.

ure 4.1(c-e)). On increasing α to 0.30 and 0.35, we have obtained band gaps of 2.79 and 2.99

eV, respectively using HSE06+SOC (see Figure 4.1(c-e)). Note that using HSE06+SOC w.r.t

the experimental value, though the band gap with α = 0.30 is more accurate than that of default

value (i.e. α = 0.25), we still have proceeded with default one for further calculations. This is

due to the fact that on alloying with various metals, the value of α can vary from one system to

other, and determining the same without experimental results is next to impossible for new con-

figurations. Therefore, we expect, atleast the default α should give a correct trend qualitatively

even if the actual numbers may differ marginally as in the case of pristine Cs2AgBiCl6.

4.3.2 Screening of conformers based on band gap values and stability

against decomposition

We have exercised a well-defined iterative strategy [199, 200, 201] to configure different al-

loyed double perovskites. The conventional cubic unit cell of Cs2AgBiCl6 consists of 40 atoms
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Figure 4.2: (a) Variation of tolerance and octahedral factor for different conformers. Band gap vs ∆HD

using (b) PBE+SOC (Here, the highlighted region shows the promising configurations that lie within the

band gap of 0.0 to 1.5 eV) and (c) HSE06+SOC εxc functionals (highlighted region shows the promising

configurations that lie within the band gap of 1.0 to 2.3 eV). (Here, red, blue and green color circular

dots correspond to M(I) (e.g., substitution of 25% Au at Ag-site ((25%)AuAg)), M(II) (e.g., substitution

of Sn at Ag- and Bi-site simultaneously (SnAg,Bi)) and M(III) (e.g., substitution of 25% Sb at Bi-site

((25%)SbBi)), respectively) (d) Enthalpy of decomposition for decomposition of pristine and alloyed

double perovskites into binary/ternary compounds, using HSE06+SOC εxc functional.

(viz. 8 Cs+1, 4 Ag+1, 4 Bi+3 and 24 Cl−1). In order to configure alloyed double perovskites,

we have done substitution at Ag- and Bi-sites. Here, Ag, Bi, Cs and Cl occupy 4a (0.5, 0.5,

0.5), 4b (0, 0, 0), 8c (0.25, 0.25, 0.25) and 24e (0.2513(9), 0, 0) Wyckoff sites, respectively. As
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an initial step, we have checked that all the four sites of Ag and Bi are energetically equivalent.

Then for obtaining 25%, 50%, 75% and 100% M(I) substituted configurations, respectively, we

have replaced Ag atoms with M(I) one by one in following order i.e., (0.5,0,0), (0,5,0.5,0.5),

(0,0.5,0), and (0,0,0.5). Likewise, for 25%, 50%, 75% and 100% M(III) substituted configura-

tions, we have replaced Bi atoms with M(III) one by one in this [(0,0.5,0.5), (0,0,0), (0.5,0,0.5),

(0.5,0.5,0)] order. Note that we have checked all possible positions to obtain energetically low-

est configuration with 25%/50%/75% substitution of M(I) ion at Ag-site or M(III) ion at Bi-site.

However, in our case, after doing 25%/50%/75% substitution, all other sites are found energet-

ically equivalent. For M(II) substitution, there are two possible ways of substitution. We have

chosen one of them i.e., we have substituted M(II) at Ag(0.5,0.5,0.5) and Bi(0,0,0) sites. Prac-

ticing preceding strategy, we have started with 64 configurations of double perovskites obtained

on mixing the Ag-Cl and Bi-Cl sublattices with M(I) (viz. Au, Cu, In, K, Na, and Ti), M(II)

(viz. Cd, Co, Cu, Ge, Mn, Mo, Ni, Sn, V, Zn, and Rh), and M(III) (viz. Cr, Ga, In, Tl, Sb,

and Y). Here, we have varied the concentration of the alloying atom viz. 25%, 50%, 75% and

100%. Two fundamental factors need to be satisfied for the stability of double perovskites to

exist in high symmetry cubic structure, viz. Goldschmidt’s tolerance factor (t) [202] and octa-

hedral factor (µ) [203]. For structural stability, t should lie between 0.8 and 1.0, and µ should

be greater than 0.41 [204]. To calculate these two fundamental factors for various double per-

ovskite configurations, we have employed a strategy [205]. All the selected double perovskite

configurations satisfy these stability criteria (see Figure 4.2(a)). After structural stability, we

have also determined the thermodynamic stability by calculating ∆HD for decomposition of

different conformers (obtained after alloying with M(I), M(II), and M(III)) into binary com-

pounds, using following equations:

∆HD(M(I)) = E
(
Cs8Ag4−xM(I)xBi4Cl24

)
− (4− x) E (AgCl)− 8E (CsCl)

− 4E (BiCl3)− xE (M(I)Cl)
(4.1)

∆HD(M(II)) = E (Cs8Ag3M(II)2Bi3Cl24)− 3E (AgCl)− 8E (CsCl)

− 3E (BiCl3)− 2E (M(II)Cl2)
(4.2)

∆HD(M(III)) = E (Cs8Ag4M(III)xBi4−xCl24)− 4E (AgCl)− 8E (CsCl)

− (4− x) E (BiCl3)− xE (M(III)Cl3)
(4.3)
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In Equation 4.1 and 4.3, x can have value 1, 2, 3 or 4. Based on the band gap and ∆HD

(calculated using PBE+SOC), a pre-screening process has been employed to find the suitable

configurations. In Figure 4.2(b), the promising configurations lie within the shaded region for

which band gap is varying from 0.0 to 1.5 eV. For all the prescreened configurations of double

perovskite, ∆HD is negative, indicating that all the considered systems are stable and these will

not decompose into respective binary components. Subsequently, we have calculated ∆HD and

band gap using HSE06+SOC εxc functional for aforementioned selected configurations (see

Figure 4.2(c)). In Figure 4.2(c), restoring Shockley-Queisser (SQ) criterion [206], we have

identified 19 double perovskite configurations for which band gap lies within 1.0 to 2.3 eV,

which is relevant for solar cell and other optoelectronic devices. As the path of decomposition

into binary compounds is not sufficient in discussing alloy’s stability, we have also computed

enthalpy of decomposition (∆HD) of these double perovskites into respective ternary com-

pounds. Note that the latter is generally the most prominent decomposition pathway for this

class of systems. ∆HD for ternary decomposition is also found to be negative in our case.

However, from Figure 4.2(d), we have observed that ∆HD for double perovskites into ternary

decomposition is less negative than their corresponding binary decomposition 1. Hence, ternary

decomposition is more probable in these compounds than binary decomposition. From Figure

4.2(d), on comparing ∆HD for decomposition into ternary compounds, we can conclude that

ternary decomposition is less probable for M(II) substituted configurations than that of M(I)

and M(III) substituted configurations at Ag- and Bi-sites that can be attributed to large negative

value of ∆HD. Moreover, it has been pinpointed that ∆HD becomes less negative on increasing

the percentage of M(I) and M(III) at Ag and Bi, respectively for M(I) and M(III) substituted

configurations. Hence, stability decreases from 25% to 100% M(I) and M(III) substitution at

Ag- and Bi-sites, respectively (see Figure 4.2(d)).

1Note that, we have chosen mostly those M(I) and M(III) elements, which have been experimen-

tally/theoretically reported as Cs2M(I)M(III)X6 double perovskites. Here, we have studied their partial substi-

tution in addition to 100% substitution. Hence, for M(I) and M(III) partial substitution, there is more probability

that ∆HD will be negative. For instance, Cs2NaBiCl6 has been synthesized experimentally. So there are high

chances that partial substitution of Na at Ag-sites will also form a stable configuration. In our previous theoretical

and experimental combined study, we have reported the partial substitution of Na in Cs2AgBiCl6 [186]
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4.3.3 Inconsistency in the band gap with different percentage of substi-

tution

Note that on increasing the concentration of the external element, if the band gap is increased

(or decreased), it increases (or decreases) consistently on further increasing the concentration.

However, in some cases, we have noticed an irregular change in band gap on varying the con-

centration of the alloying atoms. For instance, on increasing the percentage of Sb at Bi-sites,

band gap decreases up to 75% substitution, and thereafter, an increment in band gap has been

observed on 100% substitution. Similar kind of change in band gap has also been observed on

complete substitution of other elements at Ag or Bi-site. To understand this change in the band

gap on 100% substitution of Sb, we have plotted the band structures of Sb-alloyed system with

different concentrations of Sb (see Figure 4.3). We can clearly see that on 100% substitution of

Figure 4.3: Band structure of (a) Cs8Ag4Sb1Bi3Cl24, (b) Cs8Ag4Sb2Bi2Cl24, (c) Cs8Ag4Sb3Bi1Cl24

and (d) Cs8Ag4Sb4Cl24 using PBE+SOC εxc functional.
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Figure 4.4: Partial density of states (pDOS) for Sb substitution at Bi-sites of Cs2AgBiCl6, using

HSE06+SOC εxc functional. Different color corresponds to different atoms in the system.

Sb at Bi-sites, the lowest energy level (where Bi is the dominating contributor) in the conduc-

tion band (that is present in Figure 4.3(a-c)) disappears. Consequently, there is an increment in

the band gap (see Figure 4.3(d)). In addition, to have a clear picture, we have plotted partial

density of dos (pDOS) for Sb substituted configurations at Bi-sites, using HSE06+SOC (see

Figure 4.4). Note that in Figure 4.4, the VBM is set to the zero of energy. However, on Sb

substitution both VBM and CBm shift can be inspected clearly from the band edge positions

given in Table 4.1. When we substitute one Sb at one of the Bi-sites, the energy difference

between Sb-5s and Cl-3p orbitals is less than that of Bi-6s and Cl-3p orbitals. As a result, Sb-

5s/Cl-3p antibonding orbital lies above Bi-6s/Cl-3p antibonding orbital and VBM is shifted to

higher energy. On the other side, Sb-5p splits into Sb-5p 1
2

and Sb-5p 3
2
. It should be noted that

in case of Sb, splitting of Sb-5p is very small in comparison of Bi-6p splitting into Bi-6p 1
2

and

Bi-6p 3
2
. Bi-6p 1

2
is of lower energy than Sb-5p. Hence, Bi-6p/Cl-3p antibonding orbital con-

tributes maximum in CBm. When we substitute one Bi with Sb, the lowest conduction band
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Table 4.1: Band edge alignment of pristine and alloyed configurations, using HSE06+SOC εxc functional

Conformers VBM (eV) CBm (eV)

Cs8Ag4Bi4Cl24 0.228 2.826

Cs8Ag4Sb1Bi3Cl24 0.582 2.900

Cs8Ag4Sb2Bi2Cl24 0.714 2.935

Cs8Ag4Sb3Bi1Cl24 0.764 2.964

Cs8Ag4Sb4Cl24 0.811 3.382

Cs8Ag3Au1Bi4Cl24 0.678 2.464

Cs8Ag2Au2Bi4Cl24 0.847 2.464

Cs8Ag1Au3Bi4Cl24 0.922 2.466

Cs8Au4Bi4Cl24 0.923 2.467

width gets decreased, and CBm is shifted to higher energy level (see Table 4.1). Although both

VBM and CBm get shifted to higher energy levels, the shift in VBM is more, which results in a

decrease in the band gap. This is why, when we substitute two or three Sb at Bi-sites the overall

band gap is decreased (see Figure 4.4 and Table 4.1). However, when we do 100% substitution

of Sb at Bi-sites, the spin-orbit coupling (SOC) effect gets diminished, which was there before

due to presence of Bi. Therefore, CBm is now shifted more to much higher energy level, where

maximum contribution is from Sb-5p and Ag-5s orbitals (see Figure 4.4. We have also plotted

electron localized function (ELF) for pristine and Sb substitution (see Figure 4.5). From Fig-

ure 4.5, we can see that on complete substitution of Sb, electron density (note the red color that

corresponds to more electron density) around Cl and Sb atoms is increased. From our results,

mainly Bi element is responsible for SOC effect in Cs2AgBiCl6. As it has been mentioned by

Savory et al. [207] that fundamental mismatch of Ag-d and Bi-s orbitals results in large and

indirect band gap. When we do substitution at Ag- or Bi-sites this mismatch decreases as in

case of Au/Sb substitution at Ag/Bi-sites. From Figure 4.6, Ag-4d/Cl-3p antibonding orbital is

contributing more than Bi-6s/Cl-3p antibonding orbital in VBM. From Figure 4.6, we can see

that for Cs2AgBiCl6 VBM is dominated by Ag-4d and Cl-3p, whereas Bi-6s is contribution is

less. Ag-5s/Cl-3p and Bi-6p/Cl-3p antibonding orbital character can be seen in CBm. More-

over, Bi-6p/Cl-3p antibonding orbital is of lower energy (hence more dominating in CBm) than

Ag-4d/Cl-3p antibonding orbital. On 25% substitution of Au at Ag, it shifts the CBm to lower
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Figure 4.5: Electron localized function (ELF) for Cs2AgBiCl6 and Sb substituted configurations.

level owing to lower energy of Au-6s/Cl-3p antibonding orbital (see Table 4.1). VBM gets

shifted upward due to occurrence of Au-5d/Cl-3p antibonding orbital that lies above Ag-4d/Cl-

3p orbital (see Figure 4.6 and Table 4.1). However, on further substitution of Au at Ag-sites.

There is no further shift in CBm, only VBM shifts to a more higher level on increasing Au

owing to the increase in the width of valence band. On 100% Au substitution, there negligible

change in band gap.

We have also observed a sudden increment in the band gap on doing 100% substitution of

Na/K at Ag sites. For 25% to 75% substitution of Na/K at Ag reduces the valence band (i.e., due

to the combination of Ag-4d and Cl-3p orbitals) width decreases. It is so because Ag-4d/Cl-3p

antibonding orbital contributes maximum in VBM. However, on 100% Na/K substitution at

Ag-sites totally eliminates this valence band and s-orbital of K/Na does not contribute in VBM.

Besides, Cl gets more attracted towards Na/K that can be attributed to their more electropositive

character. As a consequence, sudden increase in the band gap can be seen on 100% Na/K

substitution at Ag-sites (see section A.1 and A.2 in Appendix). Note, in present work we have
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pointed few cases. Overall, we can conclude that partial substitution or mixed cations studies

could be interesting in these double perovskites apart from complete substitution.

Figure 4.6: (a) Partial density of states (pDOS) of pristine and alloyed Cs2AgBiCl6 calculated using

HSE06+SOC εxc functional. (b) Band structure of (i) Cs8Ag3Au1Bi4Cl24, (ii) Cs8Ag2Au2Bi4Cl24, (iii)

Cs8Ag1Au3Bi4Cl24 and (iv) Cs8Au4Bi4Cl24, using PBE+SOC εxc functional.

4.3.4 Optical properties of potential conformers

Next, we have determined the optical properties of the 19 potential candidate structures (viz.

Cs8Ag4−xM(I)xBi4Cl24 (M(I) = Au and Cu); x ∈ [1, 4]), Cs8Ag3M(II)2Bi3Cl24 (M(II = Sn, Ge,

Rh, Ni, Co, Cd, Mn and Zn), and Cs8Ag4SbxBi4−xCl24 (xε[1, 3]), which possess band gap in

an appropriate range for solar cell and other optoelectronic applications.2 To determine optical

properties, frequency dependent complex dielectric function, ε(ω) = Re(ε) + Im(ε) has been

calculated using HSE06+SOC εxc functional as shown in Figure 4.7. Therefore, using Re(ε)

and Im(ε) of dielectric function, various optical properties, e.g., refractive index (η), extinction

coefficient (κ), and absorption coefficient (α) can be computed using following expressions:

η = 1√
2

[√
Re(ε)2 + Im(ε)2 + Re(ε)

] 1
2

(4.4)

2It may happen that at higher temperatures, different configurations can undergo phase transition, however, no

drastic change in the band gap has been observed as we go from cubic to tetragonal or orthorhombic phases [208].

Hence, we conclude that even if the phase deviates from cubic symmetry, it will not affect the optical properties

at large scale. The qualitative trend of optical properties will remain same.



4.3. Results and Discussions 106

Figure 4.7: Variation of imaginary part of dielectric constant (Im(ε)) of Cs2AgBiCl6 sublattice mixed

with (a) monovalent (M(I)), (d) divalent (M(II)) and (g) trivalent (M(III)) cations, respectively. Vari-

ation of real part of dielectric constant (Re(ε)) of Cs2AgBiCl6 sublattice mixed with (b) monovalent

(M(I)), (e) divalent (M(II)) and (h) trivalent (M(III)) cations, respectively. Absorption coefficient of

Cs2AgBiCl6 sublattice mixed with (c) monovalent (M(I)), (f) divalent (M(II)) and (i) trivalent (M(III))

cations, respectively. Note that all calculations have been done using HSE06+SOC εxc functional.

κ = 1√
2

[√
Re(ε)2 + Im(ε)2 − Re(ε)

] 1
2

(4.5)

α = 2ωκ
c

(4.6)

Here, in Equation 4.6, ω and c correspond to angular frequency and speed of light, respectively.

In Figure 4.7(a), peaks of conformers are red shifted w.r.t. Cs2AgBiCl6. Here, red shift is at-
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tributed to the reduction of the band gap. There is more red shift on increasing the concentration

of Au in comparison to Cu. On the other hand, the real part of the dielectric constant (ω = 0)

increases, with increase in the concentration of Au and decreases, with increase in the con-

centration of Cu (see Figure 4.7(b)). For high degree of charge screening, which can prohibit

radiative electron-hole recombination, a large value of Re(ω) at ω = 0 is indispensable [159].

Hence, the solar cell absorber, which exhibits large Re(ω) at ω = 0 is more efficient. In view

of this, Au substitution is more beneficial than Cu for replacing Ag-sites.

In Figure 4.7(c), we can clearly see that peaks corresponding to Au substitution are red

shifted w.r.t. Cs2AgBiCl6 and show good optical absorption within visible region. Hence,

we have discerned that in case of alloying with M(I), substitution of Au at Ag-sites acts as a

promising candidate rather than Cu. Likewise, in case of alloying with M(III), substitution with

Sb at Bi-sites acts as a promising candidate. From Figure 4.7(d), the red shift w.r.t. pristine (see

inset to have a clear view) conveys that band gap decreases on increasing the concentration of

Sb. However, for 100% SbBi, band gap increases, which can be seen from band structure (see

Figure 4.3(d)). From Figure 4.7(e) and 4.7(f), we can see that optical properties are enhanced on

increasing the concentration of Sb (upto 75%) w.r.t. pristine. Similarly, in case of alloying with

M(II), from Figure 4.7(g) and 4.7(i), there is a red shift of absorption peak w.r.t. Cs2AgBiCl6.

Moreover, static value of Re(ω) at ω = 0 for SnAg,Bi, RhAg,Bi, NiAg,Bi and GeAg,Bi is larger than

pristine system; but for other alloyed systems (viz. ZnAg,Bi, CoAg,Bi, and MnAg,Bi), it is lower

than pristine system (see Figure 4.7(h)). Out of all the M(II) selected candidates, these four

(viz. Sn, Rh, Ni and Ge) are the best aspirants. Although, only SnAg,Bi and GeAg,Bi show direct

band gap, the other two are to be more suitable for optoelectronic devices excluding solar cell.

On the other hand, since Sn is cheaper than Ge, it serves as better candidate for alloying. It has

been reported that complete substitution of Sn degrades the properties of the system [177, 178].

Therefore, in order to overcome this problem, we have done partial substitution of Sn. Also,

from Figure 4.7, we can compare the scales (viz. values of dielectric constants and peaks of

absorption coefficient in visible region) and infer that alloying with M(II) is a better choice to

enhance the optical properties.

On comparing all the above results in Figure 4.2 and 4.7, we have revealed that partial

Sn substitution acts as a promising candidate to enhance the optical properties of Cs2AgBiCl6

without degrading the stability. In addition, it also exhibits direct band gap property. Thus

SnAg,Bi acts as a rational candidate for solar cell application.
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Figure 4.8: Variation of SLME w.r.t. the thickness of solar cell absorber.

4.3.5 Spectroscopic limited maximum efficiency (SLME)

Lastly, to design highly efficient solar cell absorber, spectroscopic limited maximum efficiency

(SLME) [204, 210] has been calculated. Solar cell power conversion efficiency η is defined as

follows:

η = Pm
Pin

(4.7)

where, Pin corresponds to the total incident solar power density from sun. Pm is the maximum

output power density which can be obtained by maximizing the product of current density (J)

and voltage (V). J and V are related as follows:

J = Jsc − J0(1− e
eV

kBT ) (4.8)

In above equation, Jsc is the short-circuit current, J0 is the reverse saturation current, e is the

elementary charge, V is the voltage, kB is the boltzmann constant and T is the temperature. Jsc

can be calculated as:

Jsc = e
∫ ∞

0
a(E)Isun(E)dE (4.9)

where, a(E) is the photon absorptivity, Isun is the photon flux coming from sun to solar cell, E

corresponds to the energy. The reverse saturation current is given by the expression:

J0 = Jnr0 + Jr0 = Jr0
fr

(4.10)

Here, Jnr0 and Jr0 correspond to the non-radiative and radiative electron-hole recombination

current density, respectively. f r corresponds to the fraction of radiative recombination current
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Table 4.2: Comparison of SLME of double perovskites with hybrid perovskite at 5 µm absorber layer

thickness.

Conformers SLME (%)

Cs8Ag3Ge2Bi3Cl24 32.08

Cs8Ag3Sn2Bi3Cl24 30.91

Cs8Cu4Bi4Cl24 22.24

Cs8Ag1Cu3Bi4Cl24 21.85

Cs8Ag2Cu2Bi4Cl24 19.80

MA8Pb8I24 31.02 [168]

MA8Pb7Sn1I24 33.02 [168]

FA8Pb4Sn4Br24 26.74 [209]

(f r = e
−∆
kBT , where ∆ = Ed

g − Eid
g . Ed

g and Eid
g correspond to the direct and indirect band gap,

respectively). Using principle of detailed balance, in dark rate of emission and absorption of

photons must be equal under equilibrium. Hence, Jr0 can be can be calculated as follows:

Jr0 = eπ
∫ ∞

0
a(E)Ibb(E,T)dE (4.11)

In above equation, Ibb corresponds to the black-body spectrum at temperature T. Finally, we

can conclude that η can be computed once we have a(E) and fr. In SLME calculation, a(E) =

1-e−2α(E)L, where α(E) is the absorption coefficient that can be calculated from first principles

calculations and L is film thickness. Note that we have calculated the SLME as a function of

thickness of the absorber layer (see Figure 4.8) only for those alloyed systems, which possess

direct band gap. In Table 4.2, we have shown SLME of few double perovskites at 5 µm thick-

ness and compared our results with other efficient hybrid perovskites that are reported recently.

From Table 4.2, SLME of Cs8Ag3Ge2Bi3Cl24 and Cs8Ag3Sn2Bi3Cl24 are 32.08% and 30.91%,

respectively. These numbers are very much encouraging from application perspective in solar

cells. In addition, they are more stable, while in contact with air and moisture as compared to

IO hybrid perovskites [197, 211].
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4.4 Conclusion

In summary, we have presented a thorough study of alloying double perovskite Cs2AgBiCl6

with M(I), M(II) and M(III) cations. The role of SOC is important to accurately predict the

band gap and band-edge positions in such systems. All the mixed sublattices are structurally

stable as indicated by the Goldschmidt’s tolerance factor and octahedral factor. The enthalpies

of decomposition are negative, indicating the thermodynamic stability of alloyed systems. We

have revealed that for substitution at Bi-sites, on increasing the concentration of Sb, band gap

decreases up to 75% SbBi substitution. However, there is a sudden increase in band gap for

100% SbBi due to complete removal of Bi. A sudden increase in band gap has been observed on

complete substitution of alkali metal (Na/K) at Ag-sites. We have also identified that partial Au

substitution (i.e., 25% to 75%) can enhance the optical properties effectively due to a reduction

in band gap. Also, we have observed stability decreases on increasing the substitution at Ag or

Bi-sites. Hence, we have concluded that partial substitution of Au and Sb at Ag- and Bi-sites,

respectively, will be cost-effective, more stable and efficient to enhance the optical properties.

Out of alloying with M(I), M(II) and M(III), M(II) (SnAg,Bi, RhAg,Bi, NiAg,Bi and GeAg,Bi) sub-

stitutions come out to be superior for optical properties. However, only in case of SnAg,Bi and

GeAg,Bi, direct band gaps are noticed. SLME of Cs8Ag3Ge2Bi3Cl24 and Cs8Ag3Sn2Bi3Cl24 are

32.08% and 30.91%, respectively, which definitely suggest huge promise towards prospective

solar cell absorbers.



CHAPTER 5

Exploring the effects of the defects in layered hybrid

perovskite

5.1 Introduction

In the past few years, 3D inorganic-organic hybrid perovskites (IOHPs) have brought revolution

in the field of optoelectronics owing to their exotic optoelectronic properties. These materials

exhibit high absorption coefficient, tunable bandgap, high carrier mobility and large carrier

diffusion length [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222]. Despite the huge suc-

cess, poor stability (i.e. the solar cell loses efficiency during operation) and lead-toxicity have

hindered their large scale commercialization [223, 224]. Thus, a sustainable future calls for the

development of an efficient, cost-effective, non/less-toxic, eco-friendly and environmentally

stable solar material to meet the necessity of potential energy at large scale.

In this quest, researchers are looking into 2D layered perovskites [166, 171, 172, 225, 83,

84]. A perfect 2D layered perovskite has the general formula (R-NH3)2BX4, where R is the

organic moiety, which can be derived from basic ABX3 type perovskite structure [226]. Note

that in 3D perovskite, the A-site cation sits in voids of the 3D network. However, the latter has

limited allowed space for A-site cations (see Figure 5.1(a)). In 1926, Goldschmidt derived a

tolerance factor (t) formula (Equation 5.1)[227] that determines this allowed space i.e., max-

imum allowed ionic radius for A-site cation. For a perfect cubic perovskite structure ABX3,

rA + rX = t
√

2(rB + rX) (5.1)

where, rA, rB, and rX are the effective ionic radii of A-site, B-site and X-site ions, respectively.

The Goldschmidt tolerance factor must be in the range 0.8 ≤ t ≤ 1.0 for a cubic perovskite

structure.[228, 229]. If B-site cation is a metal ion Pb2+ with rPb = 1.03 Å, and X-site anion is a

111
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Figure 5.1: (a) A 3D cubic perovskite structure with chemical formula ABX3, where A, B and X are

organic cation, divalent metal cation and monovalent halide anion, respectively. (b) Schematic drawing

of 2D layered structure of the (R-NH3)2BX4 hybrids.

halide ion I− with rI = 2.20 Å, then with maximum possible scenario i.e., t = 1.0, the geometric

limit applied on A-site cation will be rA = 2.36 Å. Hence, for rA > 2.36 Å, the 3D network

will be destroyed and could form 2D perovskite (see Figure 5.1(b)). Several studies have been

done in 2D perovskite structures, which showed that the 2D perovskite has more structural

and chemical flexibility in comparison to their 3D counterparts. Also, the long chain organic

spacers which are hydrophobic in nature of 2D perovskite can enhance the poor stability of 3D

IOHPs [230, 231, 232]. However, decreasing dimensionality of IOHPs from 3D to 2D structure

causes an increase in bandgap and exciton binding energy. Due to the wide bandgap nature,

2D IOHPs show poor optical absorption in PV applications[233, 234, 235, 236, 237, 238, 239,

240, 231].

Therefore, there is justified interest to search for a stable and efficient 2D (layered) per-

ovskite material with good optical absorption. Incidentally, we have studied and experimentally

synthesized the primary cyclic ammonium-based (CnH2n-1NH3; n = 3−6) inorganic-organic

hybrid semiconductor series [241]. However, theoretically this system ((CnH2n−1NH3)2PbI4;

n=3-6) is rather unexplored and requires further attention to get more atomistic insights and

electronic structures. Moreover, the wide bandgap nature and presence of toxicity due to lead

(Pb) prohibit their applications. Therefore, in the present work, we study the role of Ge/Sn

substitution and Pb-vacancy (Pb−�) to reduce concentration of Pb and enhance solar cell ef-

ficiency by the formation of mixed perovskite structures. To do that, we have first thoroughly

benchmarked and validated the exchange and correlation (εxc) functionals in the framework

of Density Functional Theory (DFT) so that the results are not any artefacts of the same. Af-

ter that, we have investigated the thermodynamic stability [242] by calculating the formation
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energy, and structural stability [221, 243] with the help of Goldschmidt tolerance factor and oc-

tahedral factor. Thereafter, we have analyzed the electronic and optical properties of the stable

configurations. Finally, we have computed exciton binding energy, strength of electron-phonon

coupling and the spectroscopic limited maximum efficiency (SLME) to address their suitability

and theoretical maximum efficiency as a potential solar cell materials.

Figure 5.2: Crystal structures for compounds: (a) cyclopropyl ammonium tetraiodoplumbate (CPPI, n

= 3), (C3H5NH3)2PbI4, (b) cyclobutyl ammonium tetraiodoplumbate (CBPI, n = 4), (C4H7NH3)2PbI4,

(c) cyclopentyl ammonium tetraiodoplumbate (CPEPI, n = 5), (C5H9NH3)2PbI4, and (d) cyclohexyl

ammonium tetraiodoplumbate (CHXPI, n = 6), (C6H11NH3)2PbI4.

5.2 Methodology

We have performed all the calculations using Vienna Ab initio Simulation Package (VASP)[244]

and projector augmented-wave (PAW)[45] pseudopotentials within the framework of DFT.[10][11]

We have optimized the crystal structures of all conformers using Perdew–Burke–Ernzerhof

(PBE)[33] exchange-correlation (εxc) functional with a Γ-centered 2×2×2 k-point mesh, and

set the criteria for convergence of total energy and forces (for optimization of atomic posi-

tions and lattice vectors) to 10−5 eV and 10−4 eV/Å, respectively. The energy cutoff was

set to 600 eV. Later on, from convergence test, we have found that a Γ-centered 3×3×3 k-

point mesh is sufficient for sampling the Brillouin zone (BZ), and so, the 3×3×3 k-point

mesh has been used in our further calculations. We have used advanced hybrid εxc func-

tional Heyd–Scuseria–Ernzerhof (HSE06)[193] to get more accuracy in our results because

PBE functional commonly underestimates the bandgap of the materials. The spin orbit cou-

pling (SOC) effect has been duly included in all the calculations.
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5.3 Results and Discussions

The cyclic compounds cyclopropyl ammonium tetraiodoplumbate (CPPI), cyclobutyl ammo-

nium tetraiodoplumbate (CBPI), cyclopentyl ammonium tetraiodoplumbate (CPEPI) and cy-

clohexyl ammonium tetraiodoplumbate (CHXPI) have well-defined 2D layers. There are changes

in tilting of PbI6 octahedra within layers and packing of ammonium cations between lay-

ers of these compounds, but the overall structure remains the same, i.e., 2D layered per-

ovskite crystal structure (see Figure 5.2).[226] These cyclic inorganic-organic hybrid com-

pounds have been synthesized experimentally, and show a decrement in electronic bandgap

value from n = 3 to 6, an intense narrow exciton emission, and a strong room-temperature

photoluminescence.[245, 241] However, these compounds have some drawbacks, such as wide

bandgap and presence of toxic element Pb. Therefore, to overcome these issues, which are not

good for solar cell, we have studied the effect of Ge/Sn substitution and/or Pb-� using hybrid

DFT. All these mentioned layered structures will show quite similar optoelectronic properties

due to their similarity in crystal structures. Therefore, in present work, we have chosen one of

these compounds, viz. CPPI, as our prototypical model system, and the rest of our calculations

are done by considering this system.

5.3.1 Benchmarking of DFT functionals

To ensure that our results are not merely the artefacts of DFT εxc functionals, we have bench-

marked different εxc functionals by comparing the calculated bandgap (Ecal
g ) and experimental

bandgap (Eexp
g ) of CPPI. The value of Eexp

g = 3.04 eV [245, 241]. Using PBE functional, we

have found that the value of Ecal
g for CPPI is 2.39 eV (see Figure 5.3(a)), which shows that PBE

functional underestimates the Eexp
g value. Since CPPI contains a heavy element Pb, we have

included SOC effect with PBE functional, which results in the splitting of conduction band and

the conduction band minimum (CBm) shifts to a lower value (see Figure 5.3(b)). As a result,

Ecal
g comes out to be 1.70 eV using PBE+SOC. Thus, PBE functional can not reproduce the Eexp

g

value. Therefore, we have also estimated the positions of valence band maximum (VBM) and

conduction band minimum using more advanced εxc functionals (see Figure 5.4(a)). After that,

we have checked bandgap using HSE06 functional, which corrects the electron self-interaction

error. Although HSE06 functional with default α = 25% (fraction of Hartree-Fock exact ex-

change) is reproducing the experimental bandgap (Ecal
g = 3.03 eV, see Figure 5.3(c) 5.4(a) with-
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out including SOC, we need to include SOC effect due to the presence of heavy element Pb,

as discussed earlier. Thereafter, we have obtained Ecal
g = 2.30 eV using HSE06+SOC with α =

25% (see Figure 5.4(a-b)), which is also not in good agreement with the Eexp
g value. Therefore,

to reproduce the experimental bandgap by using HSE06+SOC, we have increased the amount

of α, which further shifts the valence band maximum (VBM) with slight alteration of CBm.

Figure 5.3: Calculated band structures along with the density of states (DOS) of CPPI. The band paths

are along the high symmetry k-points Γ (0, 0, 0), F (0, 0.5, 0), Q (0, 0.5, 0.5), and Z (0, 0, 0.5) of BZ.

Thus, we have reproduced the Eexp
g value using HSE06+SOC functional with increased

amount of α = 50% (see Figure 5.3(d)). Figure 5.3 clearly depicts that band profile remains the

same by both the functionals PBE and HSE06, the only difference is in the value of the direct

bandgap at Γ point.

To validate the calculations done by HSE06+SOC with different amounts of α (see Fig-

ure 5.4(a)), we have calculated imaginary part of the dielectric function with four different

values of α (i.e., α = 25%, 30%, 40%, and 50%) and found that the respective optical peaks are

observed at 2.33, 2.45, 2.71 and 2.96 eV (see Figure 5.4(c)). The optical peak corresponding to

α = 50% at 2.96 eV has a good agreement with Eexp
g value (see Figure 5.4(c)). We have checked

for validation of different functionals of DFT for n=4, 5 and 6 in a similar way as in case n =

3. We have found that using HSE06+SOC functional with α = 50%, 55% and 55%, we can
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Figure 5.4: (a) Band edge alignment for for CPPI using PBE, PBE+SOC, HSE06 and HSE06+SOC

functionals. (b) Variation in the bandgap of CPPI with α. The point inside blue ellipse represents the

calculated bandgap, which is very close to the experimental bandgap. (c) Imaginary part of the dielectric

function calculated using HSE06+SOC with different Hartree-Fock exact exchange (i.e., α = 0.25, 0.30,

0.40 and 0.50).

reproduce experimental bandgap [245, 241] for n=4, 5 and 6, respectively. Therefore, we have

used HSE06 functional with SOC effect included in all our results.1 In Figure 5.5(a) and 5.5(b),

we have shown the pDOS for (C3H5NH3)2PbI4 with and without organic moiety (i.e. only the

inorganic cage). The CBm is contributed by Pb p-orbitals, whereas VBM is contributed by I

1Notably, in the present work, the main motive of our work is to understand the effect of Sn/Ge sub-

stitution at P-sites and Pb-� in pristine (C3H5NH3)2PbI4. That results into new a composite system viz.

(C3H5NH3)2Pb1−x−ySnx+yI4, where the SOC effect changes as a function of the amount of Pb. Thus it is

not necessary that if in the pristine 50% exact exchange gives the correct bandgap and energetics, for the same

exact exchange a composite system with x substituted Sn/Ge atoms and y Pb-� will also reproduce the accurate

energetics. In absence of any experimental inputs it is not possible to determine it accurately for the composite

system. In view of this, rest of calculations have been performed with default α = 25% as in HSE06 with SOC. For

sure over/underestimation of combined effect of the electron’s self-interaction error and SOC may lead to some

unprecedented error in the energetics. However, to compute the formation energies of pristine and mixed con-

formers, we take the difference of total energies. Thus in taking the differences of the total energies, we assume

the elimination of error (if any) in the energetics is intrinsically incorporated. Hence, it is justified to use default

value of α to perform rest of calculations for pristine and mixed conformers.
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p-orbitals and Pb s-orbitals (see Figure 5.5(a) and 5.5(b)). Here, it should be noted that these

organic moieties do not contribute to the VBM and CBm. Moreover, the overall pDOS and

bandgap remain same with and without organic moiety (see Figure 5.5(a) and 5.5(b)). The

only change is in the fermi level position, which is shifted to zero in both the cases. Here, we

have observed that electronic structure for n=3 to 6 remains the same except slight decrease in

the bandgap as we go from n=3 to n=6 (see Figure 5.6). This is due to the shift in the CBm

with change in the size of the organic-moiety. For more details see section II in SI. Moreover,

their optical properties are also quite similar (see Figure 5.7). As electronic configurations of

all these systems are quite similar and organic moieties only bring the change in the structure

(i.e., octahedral tilting with increase in the size of organic moiety) which results in the shift

in CBm. So it is justified to assume that if we do substitution at Pb-sites or Pb-� we will get

similar change in optical response for n=3 to 6. Hence, we have shown effect of substitution

or Pb-� only considering n=3 as a prototypical system. As we go from n=3 to n=6, the system

becomes larger and larger. Hence, converging HSE06+SOC for such large systems and their

mixed conformers is quite challenging as well as computationally expensive. Hence, we have

tried substitution or Pb-� effect only in one system that is the smallest one amongst all these

systems. Note that we have chosen the alternatives Ge, Sn and/or Pb-� to remove/reduce

Figure 5.5: (a) Partial density of states of (C3H5NH3)2PbI4; (b) Partial density of states of inorganic

cage of (C3H5NH3)2PbI4.

the amount of toxic Pb from CPPI (beacuse Ge, Sn and Pb belong to the same group in the

periodic table and have similar valence electronic configurations). For substitution of Ge/Sn to

replace Pb, we have used a 58 atoms supercell, i.e., (C3H5NH3)4Pb2I8, where the Pb-defect is

localized.
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Figure 5.6: Partial density of states of inorganic cage of (a) (C3H5NH3)2PbI4; (b) (C4H7NH3)2PbI4; (c)

(C5H9NH3)2PbI4; (d) (C6H11NH3)2PbI4. Notably, since VBM and CBm are contributed by In and Pb

orbitals (organic moieties mainly contribute in the deep of the conduction and valence band). Hence,

only inorganic cage has been taken into account.

5.3.2 Thermodynamic Stability

Note that the amount of substitution of Ge, Sn and Pb-� will affect the SOC role in mixed

perovskites, (C3H5NH3)2Pb1−x−ySnx�yI4 and (C3H5NH3)2Pb1−x−yGex�yI4 (x and y indicates

the contents of Sn/Ge and Pb-�, respectively), because SOC is mainly a function of extent of

Pb in this system. Thus, although the correct positions of the VBM and CBm are obtained

by using HSE06+SOC with α = 50% in the case of CPPI, it will not necessarily the same in

the case of mixed perovskites. Hence, we have used the default value α = 25% for the energy

calculations of mixed conformers. The bandgaps of different conformers with the default α are

shown in the upper panel of Fig 5.8. Note that, this may lead to some error in the total energy

expression due to under/overestimation of the combined effect of SOC and the electron’s self-

interaction error [220]. In order to eliminate this type of error, we took the difference of total
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energies for the calculation of the formation energy of different conformers with and without

defects. In the case of Ge and Sn doping, the considered precursors are PbI2, GeI2, I2, HI,

Figure 5.7: Variation of (a) imaginary (Im (ε)) and (b) real (Re (ε)) parts of dielectric function with

energy; (c) variation of absorption coefficient with wavelength for ((CnH2n-1NH3)2PbI4; n=3-5) using

HSE06+SOC functional

C3H5NH3 and SnI2. We have calculated the formation energy as follows

Ef(x, y) = E(C12H32N4Pb2−x−yGex �y I8)− (2− x− y)E(PbI2)

−xE(GeI2)− yE(I2)− 4E(HI)− 4E(C3H5NH2)
(5.2)

where, 0≤ x ≤ 2 and 0≤ y≤ 2 in the supercell of (C3H5NH3)2PbI4 i.e., (C3H5NH3)4Pb2I8. In

the case of Sn substitution, SnI2 is used instead of GeI2 in Equation 5.2.

First, we have determined the most favourable Pb site for Ge/Sn substitution alongside ex-

istence of Pb-� via an iterative procedure [200, 220]. Here, it should be noted that both Pb

sites are equivalent sites. Therefore, we can substitute alternative Ge/Sn at any Pb sites. We

have found that the mixed conformer, which has complete Pb-� with no Ge/Sn substitution is
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thermodynamically unstable with respect to the CPPI (see bottom panel of Figure 5.8)2. As

the content of Sn substitution increases without Pb-�, a gradual increase in thermodynamic

stability is observed (see bottom panel of Figure 5.8). However, as the content of Ge substi-

tution increases, it shows less thermodynamic stability with respect to CPPI (see bottom panel

of Figure 5.8). Complete Sn substitution is thermodynamically the most stable one. Thus, Sn

substitution is thermodynamically more preferable than Ge substitution. For the validation of

our results, we have also calculated the formation energy along different possible paths. We

have also performed ab initio Molecular Dynamics (AIMD) simulation to confirm the thermo-

dynamic stability of Sn substituted conformers at higher temperature. We have also done ab

initio Molecular Dynamics (AIMD) simulation for 4 picosecond for pristine and Sn substituted

conformers. In Figure 5.9, we have plotted the radial distribution function (RDF) and compared

the DFT structure (0K) with the one at 400K. From Figure 5.9, we can see from this RDF plot

that there is no visible change in 1st, 2nd and so on nearest neighbors, which confirms the

structural stability of (C3H5NH3)2Pb1−xSnxI4 on substitution with Sn in place of Pb.

5.3.3 Structural Stability

To investigate the structural stability of CPPI and all mixed conformers thoroughly, we have

calculated Goldschmidt tolerance factor (t),[227] of all the therodynamically stable configu-

rations. This Goldschmidt tolerance factor indicates the structural stability of the perovskite

structure, as defined in Equation 5.1. We have found that all mixed conformers have t > 1, and

form 2D perovskites.[226] However, the Goldschmidt tolerance factor alone is not sufficient to

predict the stable perovskite structure. An additional criterion i.e., the octahedral factor (µ) is

considered, which determines the stability of the BX6 octahedra,[246] defined as

µ = rB

rX
(5.3)

For stable BX6 octahedra, the range of µ is 0.377 < µ < 0.895.[246] If the value of µ is beyond

this range, then the perovskite structure will become unstable, even though the tolerance factor

2On doing 50% or 100% Pb-vacancy (Pb-�) moderate structural changes are noted. Therefore, these systems

may be treated as new materials. As our converged supercell consists of only two leads, we could do calculations

only for 50% and 100% Pb-�. For other percentage of Pb-� we need to make an even larger supercell of several

hundreds of atoms, where doing calculations with HSE06+SOC becomes computationally extremely expensive.

However, such calculations are not required since the systems having Pb-� are not usually stable. Hence, we have

not considered such systems for electronic and optical calculations.
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Figure 5.8: Formation energy (eV/atom) of different mixed conformers (the blue dotted line is the

reference line corresponding to prototypical material (CPPI)), and their respective bandgap using

HSE06+SOC with α = 25%.

is in some favorable range for the perovskite formation. The effective ionic radii of Pb2+, Ge2+,

Sn2+, and I− are 1.03, 0.77, 0.97, and 2.20 Å, respectively.[247, 248] The octahedral factor for

all mixed conformers are shown in Figure 5.10. We have found that all mixed conformers with

Pb-� and (C3H5NH3)4Ge2I8 have octahedral factor µ < 0.377 and do not possess the octahedral

stability (see Figure 5.10). Therefore, these are unstable perovskite structures, even though they

have tolerance factor t > 1.0 and a favorable thermodynamic stability for 2D layered perovskite

structures. The remaining mixed conformers, which are inside the blue box in Figure 5.10 have

octahedral factor between the range 0.377 < µ < 0.895, and thus, these are structurally stable.

5.3.4 Electronic Properties

We have observed that the mixed conformers with Pb-� have indirect bandgap (see upper panel

of Figure 5.8) and thus, poor optical performance. Therefore, the mixed conformers containing

Pb-� are not suitable for solar cell applications. Hence, we have studied bandgap engineering

by Ge and Sn substitutions only (i.e. without Pb-�) (see Table 5.1), where both VB and CB

are shifted downward in the case of Sn substitution and upward in the case of Ge substitution

(for more details see section VI in SI). We have plotted pDOS for stable mixed conformers

to understand the high optical absorption of IOHPs. Figure 5.11(a) shows that Pb 6s and I 5p
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Figure 5.9: Radial distribution of stable phanses of (C3H5NH3)2Pb1−xSnxI4 at two different tempera-

tures i.e., 0K and 400K.

orbitals are mainly contributing to the VBM, whereas the CBm is mainly composed of unoccu-

pied Pb 6p, I 5s, and I 5p orbitals. A similar orbitals contribution has been observed in the case

of (C3H5NH3)4Sn2I8, where Sn 5s and I 5s orbitals are mainly contributing to the VBM with a

small contribution by Sn 5p orbitals, whereas the CBm is composed of unoccupied Sn 5p, I 5s,

and I 5p orbitals (see Figue 5.11(c)). In the case of (C3H5NH3)4SnPbI8, the VBM is primar-

ily contributed by Sn 5s, Pb 6s, and I 5p orbitals with a small contribution by Pb 6p orbitals,

whereas the CBm is mainly composed of unoccupied Sn 5p, Pb 6p, and I 5p orbitals with a

small contribution by I 5s orbitals (see Figure 5.11(b)). Similarly, we can observe the behavior

of orbitals contribution in the case of (C3H5NH3)4GePbI8, as shown in Figure 5.11(d). Thus, a

strong s–p and p–p coupling exist, that help in reducing the bandgap. Moreover, on increasing

the Ge/Sn concentration, the bandgap is decreasing. Due to these direct p–p and s–p elec-

tronic transitions, strong absorption is expected in (C3H5NH3)4GePbI8, (C3H5NH3)4SnPbI8,

and (C3H5NH3)4Sn2I8 materials [241]. Here, Sn, Ge and Pb show a similar contribution to the

pDOS because of their similar valence electronic configurations. Thus, these electronic struc-

ture studies motivate us to explore the optical properties and theoretical maximum efficiency

of the stable mixed conformers.
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Figure 5.10: Calculated octahedral factor for different conformers.

Table 5.1: The bandgaps (Eg) calculated by HSE06+SOC with α = 25% of mixed conformers

Conformers Eg (eV) VB shift (eV) CB shift (eV)

(C3H5NH3)4Pb2I8 2.30 0.000 0.000

(C3H5NH3)4GePbI8 2.13 −0.051 −0.236

(C3H5NH3)4Ge2I8 2.04 −0.183 −0.447

(C3H5NH3)4SnPbI8 2.04 +0.348 +0.091

(C3H5NH3)4Sn2I8 1.94 +0.583 +0.218

5.3.5 Optical properties

We can predict the suitability of the materials for optoelectronic applications by studying their

optical properties such as dielectric function, extinction coefficient, refractive index and ab-

sorption coefficient. The linear optical properties are described by the frequency dependent

complex dielectric function, ε(ω) = Im(ε) + Re(ε). Here, Im(ε) and Re(ε) are the imaginary

and real part of the dielectric function, respectively. Using these, we have determined various

optical properties, viz., refractive index (η), extinction coefficient (κ) and absorption coefficient

(α). The respective formulae are [249, 243]

η = 1√
2

[√
Re(ε)2 + Im(ε)2 + Re(ε)

] 1
2

(5.4)

κ = 1√
2

[√
Re(ε)2 + Im(ε)2 − Re(ε)

] 1
2

(5.5)
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α = 2ωκ
c

(5.6)

where, ω is the frequency and c is the speed of light. The calculation of these optical properties

is important for optoelectronic devices because these provide the response of the materials to

incident electromagnetic radiations and demonstrate about the optimal solar energy conversion

efficiency.

Since the optical calculation is hugely dependent on the bandgap, if we consider SOC effect

with HSE06 εxc functional, then the optical properties get underestimated because HSE06+SOC

with α = 25% hugely underestimates the CPPI bandgap (Ecal
g = 2.30 eV, see Figure 5.4(a)).

To avoid this problem, we have calculated the optical properties by using both HSE06 and

HSE06+SOC with α = 25% and compared the results. We have found that the lead-free mixed

conformers follow the same trend using both HSE06 and HSE06+SOC. This is an expected

result because those conformers do not contain the heavy element Pb, and thus, the inclu-

sion/exclusion of SOC with HSE06 εxc functional has negligible effect on the results. The

imaginary part of the dielectric function shows a red-shift towards the infrared region with in-

creasing concentration of Sn/Ge (see Figure 5.12(a)). This is attributed to a decrement in the

bandgap on increasing the amount of Sn/Ge. A large static value of the dielectric constant, i.e.,

Re(ε) (at ω = 0) is an essential requirement for an efficient solar absorber because it results in a

high degree of charge screening, which can prohibit radiative electron-hole recombination and

improves performance of the devices. From Figure 5.12(b), we have observed a rise in value of

Re(ε) (at ω = 0) with increasing Sn/Ge concentration. Sn and Ge substituted conformers have

higher optical absorption peak intensity and red-shifted peaks in comparison to pristine CPPI

within the UV region (see Figure 5.15(a)).

5.3.6 Spectroscopic limited maximum efficiency (SLME)

To identify efficient materials with high power conversion efficiency (PCE) for PV applica-

tions, we have calculated SLME[215, 250, 251] of different stable mixed conformers. Another

way to select the efficient materials for solar cell applications is the Shockley–Queisser (SQ)

limit,[252] but SQ limit only considers the bandgap of materials and does not take care of

material’s properties such as absorber layer thickness and absorption coefficient. Therefore, to

overcome these shortcomings of SQ limit, Yu and Zunger proposed the SLME approach, which

considers the absorber layer thickness and absorption coefficient of the system. It also depends
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Figure 5.11: Calculated total and partial density of states for (a) (C3H5NH3)4Pb2I8, (b)

(C3H5NH3)4SnPbI8, (c) (C3H5NH3)4Sn2I8, and (d) (C3H5NH3)4GePbI8 using the HSE06+SOC with

α = 25%. The VBM is set to 0 eV.

on nature of the bandgap (direct or indirect), and temperature. Thus, we have used this SLME

metric and calculated the maximum theoretical efficiency for all the stable mixed perovskite

structures using HSE06+SOC with α = 25% (see Figure 5.13(b)). We have also tabulated the

SLME values at 6 µm absorber thickness in Table 5.2. The temperature is set to 300 K. We

have found that the conformer (C3H5NH3)4Sn2I8 has the maximum efficiency ∼ 24%, which

is higher than that of CPPI PCE (see Table 5.2). Thus, we can conclude that complete removal

of toxic element Pb with alternative Sn is possible with enhanced PCE. Therefore, we can rec-

ommend the substitution of Sn to replace toxic Pb completely, and to enhance the efficiency of
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solar cell based on 2D layered perovskites.

Figure 5.12: (a) Calculated imaginary part of the dielectric function, Im(ε), and (b) calculated real part

of the dielectric function, Re(ε) for different stable conformers using HSE06+SOC with α = 25%.

Figure 5.13: (a) Calculated absorption coefficient, and (b) SLME vs film thickness, of different stable

conformers using HSE06+SOC with α = 25%.

5.3.7 Wannier-Mott approach and exciton binding energy

For a screened interacting electron-hole (e-h) pair the exciton binding energy (EB) can be cal-

culated employing Wannier-Mott approach [253]. According to Wannier-Mott model EB for a

system is defined as follows:

EB =
(
µ

ε2eff

)
R∞ (5.7)

where, µ, εeff, and R∞ are the reduced mass, effective dielectric constant and Rydberg constant,

respectively. Note here that we have considered only electronic contribution to dielectric con-

stant. Hence, for our case εeff = ε∞, where ε∞ corresponds to the electronic static dielectric
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constant. The effective mass of electrons and holes have been calculated using Wannier-Mott

approach by plotting E-k dispersion curve (see Figure 5.10) for pristine (C3H5NH3)4Pb2I8 and

different configurations obtained after doing substitution at Pb. The parabolic fitting of the dis-

persion curves have been done to compute the effective mass of the electrons and holes. The

effective mass can be calculated using following equation:

m∗ = ~2

d2E(k)
dk2

(5.8)

where m∗ is the effective mass, E(k) is the energy, k is the wave vector, and ~ is the reduced

Plank’s constant. The calculated effective mass, reduced mass in terms of rest mass of electron

(m0) and exciton binding energy are tabulated in Table 5.3. From Table 5.3, we have observed

Table 5.2: SLME of different stable conformers at 6 µm absorber layer thickness

Conformers SLME (HSE06) (%) SLME (HSE06+SOC) (%)

(C3H5NH3)4Pb2I8 4.26 20.02

(C3H5NH3)4GePbI8 11.16 20.02

(C3H5NH3)4SnPbI8 12.10 21.54

(C3H5NH3)4Sn2I8 23.85 23.78

that these compounds exhibit large exciton binding energy. On substituting Sn at Pb the exciton

binding energy increases whereas it decreases when we substitute Ge at Pb. Large exciton

binding energy shows that electron-hole pairs are strongly bouned in these materials than in

conventional lead halide perovskites [220].3

5.3.8 Electron-phonon coupling strength

Electron-phonon coupling is an alluring paradox as it influences the physical/chemical prop-

erties of a material. In polar semiconductors (e.g., lead halide perovskites), the charge car-

riers interact with macroscopic electric field generated by longitudinal optical (LO) phonons,
3Note that here in order to predict the exciton binding energy (EB), we have employed Wannier-Mott approach

along with Fermi’s golden rule. However, correct EB can be obtained using BSE approach. Since our system

consists of large number of atoms i.e. 58 atoms, it is computationally challenging to converge GW or BSE for

large super cells with sufficiently large k-mesh and vacant orbitals. Moreover, Wannier-Mott is a well established

approach to predict EB in semiconductors. Hence, we can assume that provided numbers are sufficient enough

to understand the trend of EB in pristine and mixed conformers. Notably, here we have ignored the role of ionic

contribution to dielectric constant as it is negligible for these systems.
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known as the Fröhlich interaction. Hence, we have also studied electron-phonon coupling in

our prototypical system ((C3H5NH3)4Pb2I8) using mesoscopic model, viz., Fröhlich’s polaron

model. Fröhlich coupling strength can be measured in terms of a dimensionless Fröhlich pa-

rameter [254] α that is given as:

α = 1
4πε0

1
2

( 1
ε∞
− 1
εstatic

) e2

~ωLO

(2m∗ωLO

~

)1/2
(5.9)

where ε∞ and εstatic correspond to the electronic and ionic static dielectric constants, respec-

tively. m∗ is the effective mass. ε0 is the permittivity of free space. The characteristic fre-

quency ωLO can be calculated by taking the spectral average of all the possible infrared active

optical phonon branches [255]. The calculated characteristic frequency and electron-phonon

coupling constant for pristine ((C3H5NH3)4Pb2I8) are 3013.04 cm−1 and 0.67, respectively.

Note that, the electron-phonon coupling constant is relatively smaller than that of hybrid halide

perovskites [256]. Hence, electron-phonon coupling is expected to be smaller in Sn/Ge sub-

stituted configurations as well. From above results, we have observed that if we completely

replace the Pb with Sn in hybrid layered perovskites the power conversion efficiency increases

but decrease in the carrier mobility will degrade the practical performance. Hence, we have

studied the lead free hybrid perovskites and studied the role of defects in such systems. Here,

we have studied monoclinic 2D (PEA)4NaInCl8 and its Mn2+ doped configurations. First,

to gain more insights at the atomistic level on how the dopant distribution affects the lattice,

we have performed the DFT calculations to understand which dopant configuration leads to

the lattice contraction or expansion. First lattice constants are obtained for pristine, Mn2+

substitutionally doped, and Mn2+ interstitially doped 2D (PEA)4NaInCl8 configurations. The

optimized lattice constants of monoclinic 2D (PEA)4NaInCl8 and Mn2+ doped configurations

are given in Table 5.4. Substitutional sites (In and Na) doping by Mn2+ results in overall lat-

tice contraction (see Figure 5.14(a) and Table 5.15). On the other hand, for Mn2+ interstitially

doped perovskite, the Mn2+ atom resides between two benzene rings, bounded with H and C

atoms of two benzene rings close to the octahedra. Pushing them apart from each other, hence

causing expansion in the lattice (see Figure 5.14(b) and Table 5.4). Optimized DFT model for

pristine LDP, its band structure and partial density of states (pDOS) are shown in Figure 5.15.In

undoped system, conduction band minima (CBM) is contributed by hybridized orbital of In 6s

and Cl 3p orbitals. Here, 6s orbital of In is strongly hybridized with the 3p orbital of Cl, not with

other orbitals. Hence, we observe a single band at CBM, whereas other dispersive conduction

bands are slightly higher in energy. In valence band maxima (VBM), maximum contribution is
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Table 5.3: Effective mass of hole m∗h, electron m∗e , reduced mass µ in terms of rest mass of electron m0,

static value of electronic dielectric constant (ε∞), and exciton binding energy EB (eV).

Conformers m∗h m∗e µ ε∞ EB (eV)

(C3H5NH3)4Pb2I8 -0.48 0.28 0.67 3.37 0.80

(C3H5NH3)4GePbI8 -0.47 0.25 0.53 3.42 0.61

(C3H5NH3)4Ge2I8 -0.48 0.23 0.44 3.48 0.49

(C3H5NH3)4SnPbI8 -0.40 0.26 0.74 3.41 0.87

(C3H5NH3)4Sn2I8 -0. 31 0.24 1.06 3.43 1.23

Table 5.4: Lattice parameters of pristine and Mn2+ doped configurations, with respective change in the

lattice parameters with respect to pristine.

Configuration a (Å) b (Å) c (Å) ∆ a% ∆ b% ∆ c%

(PEA)4NaInCl8 6.59 38.09 6.48 0 0 0

Substitutionally doped system 6.56 37.98 6.47 -0.46 -0.29 -0.15

Interstitially doped system 6.82 38.21 6.77 +3.49 +0.32 +4.48
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Figure 5.14: Single Mn+2 substitutionally doped at In-site of 2D RP (PEA)4NaInCl8 (a) optimized

crystal structure of unit cell (b) band structure and (c) partial Density of States (pDOS). Single Mn+2

interstitially doped 2D RP (PEA)4NaInCl8 (d) optimized crystal structure of unit cell, (e) band structure

and (f) pDOS. (g) Variation of absorption coefficient with the wavelength doped at In-site of 2D RP

(PEA)4NaInCl8. (h) As a function of the displacement of atoms, the formation energies in two different

charges states i.e., q=0 and q=1 are plotted.

from Cl 3p and C 2p orbitals. From the band structure, the VBM and CBM both lie at the Γ

point with a band gap estimated to be 3.5 eV, which is not in agreement with the experimental

value of 4.5 eV. Note that, we have done all DFT calculations with Perdew Burke–Ernzerhof

(PBE) functional, which underestimates the band gap owing to self-interaction error of a many-

electron system.

To overcome this problem advanced hybrid exchange–correlation (εxc) functional viz. HSE06

or GW becomes essential. As our unit cell consists of 188 atoms, doing HSE06 or GW is

computationally very expensive and beyond our scope. However, the inferences derived from

the present calculations should be qualitatively correct. The band structure and pDOS for

substitutionally and interstitially doped configurations are shown in Figure 5.14(b,c) and Fig-

ure 5.14(e,f), respectively. In substitutionally doped system, VBM is contributed by C 2p and

CBM is contributed by C 2p, In 5s, Cl 3p orbitals. A slight increase (∼0.02 eV) in the band

gap of dispersive bands is observed for the case of substitutionally doped system. Whereas,

in interstitially doped system, VBM is contributed by C 2p and Mn 3d orbitals and CBM is
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Figure 5.15: (a) Optimized crystal structure, (b) band structure, and (c) partial Density of States (pDOS)

of 2D (PEA)4NaInCl8.

contributed by C 2p, In 5s, Cl 3p and Mn 3d orbitals. Mid-gap states are introduced by the im-

purity; doping Mn2+ either substitutionally or interstitially. For substitutionally doped system,

there are two spin-up and two spin-down mid-gap bands. The lowest spin-up band lies 0.54 eV

above the VBM. Two spin-down lies 0.81 eV below the CBM. As it is seen from the pDOS

that these mid-gap bands are contributed by the Mn2+ 3d orbitals and bounded Cl 3p orbitals.

Here, we expect Mn2+ d-d transition from spin-up bands above the VBM to spin-down bands

below the CBM. In interstitially doped system, from band structure and pDOS, we observe

three spin-up and three spin-down mid-gap bands. Where, two spin-up and one spin-down lie

near the VBM. One spin-up and two spin-down bands lie near the CBM. Mn2+ d-d transitions

from middle gap spin-up/spin-down bands near VBM to spin-down/spin-up bands near CBM

in addition to band gap transition are expected.

Further, we have also plotted absorption spectrum using DFT approach by calculating di-

electric coefficients for pristine and Mn2+ doped configurations. So that we can observe the

red shifted absorption in case of Mn2+ doped configurations and absorption peak due to d-d

transitions. Notably, as we have used PBE functional, we have manually shifted the energy

by 12.04 eV so that the absorption peak of pristine coincides with that of experimental. From

Figure 5.14(g), we can see that the absorption peak from the band gap transition is slightly red-

shifted in the case of Mn2+ substitutionally doped and even more red-shifted in case of Mn2+
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interstitially doped. In the case of Mn2+ doped configuration, the absorption peak at 420 nm

corresponds to the Mn2+ d-d transition, which is absent in the case of pristine LDPs.

Lastly, to capture the optical transition for the Mn2+ substituted at In-site, we have also

plotted the configuration coordinate (CC) diagram [159]. As Mn2+ substituted at In-site is a

cation, hence we have shown optical transition from q=0 state to q=1 state (see Figure 5.14(h)).

Here, absorption peak occurs at 2.82 eV i.e, in agreement with the experimental value.

5.4 Conclusion

We have systematically investigated the structural and optoelectronic properties of (un)defected

2D hybrid (C3H5NH3)2PbI4, using first principles calculations. The spin-orbit splitting of con-

duction band is noticeable, which leads to a decrement in the bandgap. Therefore, SOC effect

has been duly considered in all the calculations to determine accurate optical properties of

mixed conformers. The 2D perovskite material CPPI is a wide bandgap semiconductor with

a poor absorption spectrum. We have tuned the bandgap of CPPI system by substituting less

toxic alternatives Ge and Sn in place of toxic element Pb, and observed the enhancement in

the optoelectronic properties of the system. Similarly, we can tune the bandgap and enhance

the optoelectronic properties in the case of compounds CBPI, CPEPI, and CHXPI. We have

observed that complete removal of toxic Pb from CPPI is possible using Sn, whereas only par-

tial replacement of Pb is possible with Ge. Moreover, the mixed conformers with Sn are more

stable and have higher PCE in comparison to the conformers with Ge. Thus, we conclude that

Sn substitution is more favorable in comparison to Ge substitution to replace toxic lead from

CPPI. Lead-free 2D halide perovskite (C3H5NH3)2SnI4 has highest efficiency with enhanced

stability, which is useful for PV devices. Pristine and mixed configurations exhibit large ex-

citon binding energy. The electron-phonon coupling is smaller than conventional lead halide

perovskites. These results give more promise for experimental realization of more these type

of new lead-free 2D perovskites for optoelectronic devices. We have concluded that lattice

contracts and expands when Mn2+ doped substitutionally and interstitially, respectively in lead

free hybrid 2D RP (PEA)4NaInCl8. Moreover, several red shifted peaks are absorbed for the

doped systems owing to the Mn2+ d-d transition.



CHAPTER 6

Exciton and polaron dominated photo-physical

phenomena in Ruddlesden popper phases of

chalcogenide perovskites

6.1 Introduction

Perovskites with general chemical formula ABX3 have found great attention in dielectric, opto-

electronics, and solar cell applications due to their superb ferroelectric, piezoelectric, supercon-

ductive and photovoltaic properties [257, 258, 259]. During the last decade, in the field of solar

cell applications, hybrid lead-halide perovskites namely, CH3NH3PbX3 and CH(NH2)2PbX3 (X

= Cl, Br and I) have achieved great success owing to their small band gap, long carrier mobility,

low manufacturing cost and high power conversion efficiency [260, 261, 262, 263, 264, 265,

266]. However, due to the presence of organic molecules, the stability of perovskites is affected

towards heat, light and moisture, thereby degrading their efficiency with time in the practical

world [173]. Moreover, presence of toxic lead in these materials makes them hazardous for the

environment [174]. These shortcomings have hindered their practical applications.

In search of alternative perovskites that can alleviate the limitations of lead-halide per-

ovskites, chalcogenide perovskites with S or Se-anion have been proposed for photovoltaic ap-

plications [267]. Several prototypical chalcogenide perovskites (viz. SrHfS3 [268], AZrS3 (A =

Sr, Ca, Ba) [269, 270, 271], along with their related phases) have been synthesized successfully.

Amongst them, BaZrS3 consists of earth-abundant elements and is having moderate band gap

(∼1.82 eV [272]) ideal for photovoltaics. Moreover, it also exhibits ambipolar doping [273]

and is stable against different environmental conditions [274]. In order to optimize the solar cell

absorption, doping at Ba/Zr-sites have been attempted in this material [275, 271, 276]. How-

ever, such doped/alloyed configurations seem to lack stability [277]. Thin films of BaZrS3 are

133
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also reported, which has directed the research towards its new phases named as Ruddlesden-

Popper (RP) phases [278]. Tremendous efforts have been invested to tune the electrical and

optical properties [272]. The RP phases as an imitative of the perovskite structure are evolv-

ing as a semiconductor for optoelectronic applications [279, 280]. Their general formula is

An+1BnX3n+1, where perovskite structure blocks of unit cell thickness “n” are separated by rock

salt layer AX along [001] direction. Alternate perovskite blocks are displaced in in-plane di-

rection by half of the unit cell. The RP phases are included in the broad category of “2D

perovskites” owing to their layered structural arrangement (see Figure 6.2). Note that several

studies assigning to the layered perovskites as “2D perovskites” exist in the literature, where

periodic stacking of perovskite layers result in a bulk structure. Their material properties can

be tuned either by substitution or dimensional reduction [200, 221, 281]. Due to quantum con-

finement effects [282], considerable change in bulk physical properties (such as bulk modulus,

elastic modulus, charge carrier properties and optical properties) can be seen on reducing the

dimension of material [283, 11]. Research in this field is highly evolving [280, 284, 285, 10].

In optoelectronic materials exciton formation greatly influence the charge separation proper-

ties and hence, excitonic parameter such as exciton binding energy (EB) acts as an important

descriptor for optoelectronic applications. Solar cell performance depends upon the fraction of

thermally dissociated excitons into electrons and holes, giving rise to the free-charge carriers.

In addition, the concept of polarons has been used to explain multiple photo-physical phenom-

ena in these materials [286]. Polaronic effects have been suggested to play an important role in

the excitation dynamics and carrier transport. The separation of free charge is also influenced

by the carrier mobility. Hence understanding the effect of electron-phonon coupling in terms of

polaron mobility is important. A systematic study on the excitonic and polaronic effect in the

RP phases of BaZrS3 is hitherto unknown. The present Letter, therefore, explores the excitonic

properties along with polaronic effect in RP phases of Ban+1ZrnS3n+1 (n=[1-3]) under the frame-

work of Many Body Perturbation Theory. The electron-phonon coupling is also taken care of

using Fröhlich model to compute the polaron mobility.

6.2 Methodology

We have executed a systematic study to explore the optical, electronic and excitonic properties

using Density Functional Theory (DFT) [11, 10] and beyond approaches under the framework
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of Many Body Perturbation Theory [287, 288, 159]. All calculations are performed with Pro-

jected Augmented Wave (PAW) potentials as implemented in Vienna Ab initio Simulation Pack-

age (VASP) [244, 289]. The PAW potential of elements viz., Ba, Zr and S contain ten, twelve

and six valence electrons, respectively. Ban+1ZrnS3n+1 (n=[1-3]) RP phases are tetragonal struc-

ture having space group I4/mmm [139]. All the structures are optimized using Generalized

Gradient Approximation (GGA) as implemented in PBE [33] exchange-correlation (εxc) func-

tional until the forces are smaller than 0.001 eV/Å. The Γ-centered 2×2×2 k-mesh sampling

is employed for optimization calculations (optimized structures are shown in Figure 6.2). The

electronic self-consistency loop convergence is set to 0.01 meV, and the kinetic energy cutoff

is set to 600 eV for plane wave basis set expansion. To explore the optical properties and ex-

citonic effects, Bethe-Salpeter Equation (BSE) is solved. Initially, we have used light 4×4×1

k-mesh for energy calculation (see Figure 6.1(a)). The convergence criteria for the number

of occupied and unoccupied bands in BSE calculations is shown in Figure 6.1(b)). In order

to have improved spectral features with denser k-mesh, we have employed the model-BSE

(mBSE) [290] approach. Following this, we have performed Density Functional Perturbation

Theory (DFPT) [291] with k-mesh 12×12×1, to discern the role of ionic contribution to dielec-

tric function along with electronic contribution. Note that for GW and BSE calculations, we

have used converged NBANDS i.e., 800. Lastly, by employing Fröhlich model approach [256],

we have studied polaron effect in our systems. All the calculations are very well validated and

benchmarked to test the convergence details, which are given in SI to ensure that the numbers

are devoid of numerical error.

Figure 6.1: (a) Real (Re(ε)) and imaginary (Im(ε)) part of dielectric function for Ban+1ZrnS3n+1 (n=[1-

3]) RP phases using PBE exchange-correlation εxc functional. (b) Variation of imaginary part (Im(ε)) of

dielectric function with number of occupied (NO) and unoccupied (NV) bands using BSE for Ba2ZrS4.
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6.3 Results

The exciton binding energy is defined as the energy required to decouple the exciton into indi-

vidual electron (e) and hole (h) pair. Theoretically, the exciton binding energy (EB) is calculated

by taking the difference of the energy of bounded electron-hole (e-h) pair (i.e., BSE gap) and

unbounded e-h pair (i.e., GW gap). In order to determine the optical response of Ban+1ZrnS3n+1

(n=[1-3]) RP phases, we have calculated the imaginary part of dielectric function (Im (ε)). Ini-

tially, we have benchmarked the exchange-correlation (εxc) functional for our system. As it is

already known that single shot GW (G0W0) calculation strongly depends on the starting point,

we need to validate the suitable starting point for G0W0 calculation. Note that spin-orbit cou-

pling (SOC) effect is negligible in these systems (see Figure 6.3). Hence, we have excluded

SOC in our calculations. The band gap of Ba2ZrS4, Ba3Zr2S7 and Ba4Zr3S10 are quite underes-

timated using PBE and the values are 0.61 eV, 0.42 eV and 0.34 eV, respectively. On the other

hand, the same with default parameters (viz. exact exchange = 25% and screening parameter

0.2 Å−1) of HSE06 are 1.39 eV, 1.18 eV and 1.08 eV, respectively. The HSE06 numbers are

in good agreement with the experimental findings [272]. Further, the peak position, which

is underestimated by PBE is improved by performing G0W0 by taking both PBE and HSE06

as a starting point, which shifts the peak to 2.11 eV (see Figure 6.6(a)) and 2.17 eV, respec-

tively. Notably, the quasiparticle gaps computed using G0W0@PBE and G0W0@HSE06 are

overestimated in comparison to the experimental band gap, as they do not take into account the

exciton binding energy. Since, BSE takes into account the excitonic effect (which is ignored in

G0W0 calculation), the results get improved when we solve the BSE to obtain optical band gap.

Therefore, we have performed BSE@G0W0@PBE and BSE@G0W0@HSE06 to incorporate

e-h interactions. By performing BSE@G0W0@PBE and BSE@G0W0@HSE06, we find the

optical peak position of Ba2ZrS4 is respectively 1.71 eV (1.33 eV [272]) (see Figure 6.6(a))

and 1.85 eV (see Figure 6.4). Since, the former is more close to the experimental value, we

have preferred to compute GW/BSE on top of the PBE Kohn-Sham orbitals as starting point.

Similarly, we have performed G0W0@PBE and BSE@G0W0@PBE calculations to capture the

optical and excitonic effect for Ba3Zr2S7 and Ba4Zr3S10, respectively. As per the previous anal-

ysis, we report the BSE peak position for Ba3Zr2S7 and Ba4Zr3S10 as 1.49 eV (1.28 eV [272])

and 1.43 eV, respectively, whereas the G0W0@PBE peak is obtained at 1.82 eV and 1.69 eV,

respectively (see Figure 6.6(a-c)). Note that Figure 6.6(a-c) correspond to the average of opti-
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Figure 6.2: Optimized crystal structure of Ban+1ZrnS3n+1 (n=[1-3]) Ruddlesden-Popper phases (RP

phases).

cal response in x, y and z directions. However, Figure 6.6 (d-f) and Figure 6.6 (g-i) show the

directional optical response of the RP phases along E||xy and E||z direction, respectively (see

discussion later).

It should be noted here that these numbers are highly dependent on the k-mesh and it’s

very challenging (even with the fastest supercomputers) to converge the BSE calculation to

obtain the excitonic peak for computing EB with absolute accuracy. In Figure 6.6, occurrence

of red-shifted peak in BSE@G0W0@PBE than G0W0@PBE signifies the excitonic effect in

the considered RP phases. The computed EB of first bright exciton of Ba2ZrS4, Ba3Zr2S7 and

Ba4Zr3S10 RP phases are found to be 0.40 eV, 0.33 eV and 0.26 eV, respectively. However, the

discrepancy in the BSE peak position from the experimental value [272] may lead to some un-

precedented error in the EB values. Unfortunately, we have already ensured the highest possible

k-mesh to compute the BSE@G0W0@PBE calculations. Involving a denser k-mesh is not fea-

sible for the superstructures of RP phases for computing G0W0@PBE and BSE@G0W0@PBE

– solely due to computational limitation. Therefore, this poses constrains to estimate the accu-

rate EB for the given systems using BSE@G0W0@PBE.

To compute exciton energy and EB precisely, one needs to accurately calculate the optical

spectra or optical gap using conventional BSE@G0W0 approach. However, there is inconsis-

tency observed in BSE exciton peak, due to insufficient number of k-points. We can not afford

higher k-mesh (viz. ∼ 8×8×1) due to computational limitations even with the fastest super-

computers. This results in the incorrect EB value. Therefore, to overcome this issue, a less

expensive but robust model-BSE (mBSE) approach was proposed. In this model, the conver-
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gence of the optical spectra as a function of the number of k-mesh is performed. This method

is generally based on two approximations:

(i) Using Eq. 6.1 the RPA static screening W is replaced by a simple analytical model. Here,

the dielectric function is replaced by the local model function:

ε−1
G,G(|q+G|) = 1− (1− ε−1

∞ ) exp(−|q+G|2

4λ2 ) (6.1)

where, ε∞ is the static ion-clamped dielectric function in the high frequency limit. ε−1
∞ is

calculated either from DFPT or G0W0. q and G are the wave vector and lattice vector of the

reciprocal cell, respectively. λ is the screening length parameter, calculated by fitting ε−1 at

small wave vectors with respect to |q+G| (see Figure 6.3 (a-c)). The parameters obtained for

the Ban+1ZrnS3n+1 (n=[1-3]) RP phases are collected in Table 6.1. In Figure 6.3 (d-f) the k-mesh

convergence is also shown. Note that using BSE@G0W0@PBE computing the same beyond

4× 4× 1 k-mesh is not possible. A more detailed with even denser k-mesh convergence is also

shown in Figure 6.4. Seeing it, we can say 8× 8× 1 k-mesh is almost a converged one keeping

in mind the computational cost for 10 × 10 × 1 k-mesh and very minor shift of the peak w.r.t

8× 8× 1 k-mesh.

Table 6.1: The calculated inverse of static ion-clamped dielectric function ε−1
∞ and the screening length

parameter λ (Å−1) used in mBSE (Eq. 6.5) for Ban+1ZrnS3n+1 (n=[1-3]) RP phases.

Ban+1ZrnS3n+1 ε−1
∞ (PBE) λ (PBE)

Ba2ZrS4 0.14 1.17

Ba3Zr2S7 0.15 1.19

Ba4Zr3S10 0.15 1.17

Now to validate the accuracy of mBSE@G0W0@PBE w.r.t BSE@G0W0@PBE, in Fig-

ure 6.5, we have plotted that the imaginary part of the dielectric function calculated with

BSE@G0W0@PBE as well as mBSE@G0W0@PBE. We find the latter (mBSE@G0W0@PBE)

matches pretty well with the former (BSE@G0W0@PBE). Seeing the spectra, we can say that

the excitonic feature (i.e first peak) is also very well preserved by mBSE method. Notably,

both the calculations are performed using 4×4×1 k-mesh with the same starting point since we

couldn’t afford BSE@G0W0@PBE beyond this k-mesh. But with mBSE@G0W0@PBE we
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Figure 6.3: Variation of inverse of the dielectric function ε−1 with respect to |q+G| for (a) Ba2ZrS4,

(b) Ba3Zr2S7, and (c) Ba4Zr3S10, respectively. The red curve is obtained by fitting based on Eq. (5).

The mBSE calculated spectra with different k-mesh for (d) Ba2ZrS4, (e) Ba3Zr2S7 and (f) Ba4Zr3S10,

respectively.

Figure 6.4: Model-BSE (mBSE) calculation with dense k-mesh and low NBANDS for Ba2ZrS4. Here,

NBANDSO and NBANDSV correspond to number of occupied and vacant orbitals, respectively.

can do computation until 12×12×1 as shown in Figure 6.4.

As per the mBSE calculation, it is seen that a denser k-mesh sampling indeed red-shifts the

BSE peak (see mBSE calculations in section V in SI). The EB values are updated respectively

to be 0.33 eV, 0.29 eV and 0.23 eV for n=[1-3] of Ban+1ZrnS3n+1 (with maximum possible

error of ±0.03 eV as detailed in the SI section V). These numbers fall well within the range of

EB estimated via state-of-the-art method comprising of Wannier-Mott and Density Functional

Perturbation Theory (DFPT) approach as explained later. The first two excitons are bright
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excitons in the considered RP phases and several dark excitons also exist below the second

bright exciton of these systems. From the above studies, it’s also noted the order of EB of

Ban+1ZrnS3n+1 follows a trend viz. n = 1 > n = 2 > n = 3 > n =∞ (i.e., bulk BaZrS3 [292]).

Moreover, for Ba2ZrS4 (i.e. n = 1 RP phase) the difference between the direct and indirect band

gap is ∼0.1 eV, which increases to ∼0.3 eV in case of n = 2, 3 RP phases. The optimal value

of the band gap and relatively smaller difference between direct and indirect values for n = 1

RP phase, may suggest this to be ideal for solar cell application. Next, we have computed other

Figure 6.5: Imaginary part (Im (ε)) of the dielectric functional for Ba3Zr2S7 using BSE and mBSE.

excitonic parameters. The excitonic lifetime (τ ) is inversely proportional to the probability of

wavefunction for electron-hole pair at zero seperation (|φn(0)|2). The excitonic temperature

can be calculated by using relation that E = kBT, where E, kB and T correspond to energy,

Boltzmann constant and temperature, respectively. The exciton radius (rexc) is determined as

follows:

rexc = m0

µ
εeffn2rRy (6.2)

where m0, µ, εeff and n are the free electron mass, reduced mass, static effective dielectric

constant, and exciton energy level, respectively. rRy is the Bohr radius for 2D system i.e., half

of the Bohr radius for 3D system. Hence, in our case rRy = 0.0529/2 = 0.0265 nm. Using

excitonic radius we can calculate the probability of wavefunction for e-h at zero separation as

follows:

|φn(0)|2 = 1
π(rexc)3n3 (6.3)

The excitonic parameters (computed using mBSE approach) are tabulated in Table 6.2. We find

the probability of wavefunction for e-h pair at zero separation (|φn(0)|2) decreases on increasing
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Table 6.2: Excitonic parameters for RP phases (calculated using mBSE@G0W0@PBE).

Excitonic parameters Ba2ZrS4 Ba3Zr2S7 Ba4Zr3S10

EB (eV) 0.33 0.29 0.23

Texc (K) 3804 3364 2669

rexc (nm) 0.34 0.37 0.55

|φn(0)|2(1027m−3) 8.10 6.28 1.91
1

|φn(0)|2 (10−27m3) 0.12 0.20 0.52

n in Ban+1ZrnS3n+1. Hence, the lifetime τ is expected to get increased with increasing n in

Ban+1ZrnS3n+1 i.e., τn=3 > τn=2 > τn=1. Note that the trend in the exciton lifetime can also

be further verified from mBSE peaks. This is estimated from the Full Width at Half Maxima

(FWHM) of the first peak of Im(ε). In Figure 6.7, we have shown the broadening of excitonic

peak, which is well in agreement with previous experiments [272]. Therefore, the qualitative

trend of exciton lifetime for Ban+1ZrnS3n+1 (n=[1-3]) is τn=3 > τn=2 > τn=1 – which is very

much inline as per our findings as in Table 6.2. Here broadening has shown the contribution

due to the e-h interaction and it does not include the electron-phonon coupling effect. The

latter is important especially for layered systems. But since the trend matches well with the

experiment [272] it’s therefore expected that it will remain same even after the inclusion of

electron-phonon coupling. The role of electron-phonon coupling is discussed in greater details

later but on a different context.

Ban+1ZrnS3n+1 (n=[1-3]) RP phases have tetragonal structure and exhibit optical anisotropy.

Hence, it is required to study their optical and excitonic properties along E||xy (i.e., in-plane

along x- or y-direction) and E||z (i.e., out-of-plane along z-direction) direction. We have ob-

served anisotropy in Ba2ZrS4, Ba3Zr2S7 and Ba4Zr3S10 which can greatly affect their perfor-

mance in practical application. Therefore, it is of paramount importance to understand the

anisotropic effect in the optical and excitonic properties of Ban+1ZrnS3n+1 (n=[1-3]) RP phases.

In Figure 6.6 (d-i), we have shown optical and excitonic contribution of Ban+1ZrnS3n+1 (n=[1-3])

RP phases along different directions viz. x, y and z. Employing Shockley-Queisser (SQ) crite-

rion [206] for the solar cell and other optoelectronic devices, we can remark that Ban+1ZrnS3n+1

(n=[1-3]) RP phases are optically active in in-plane (i.e., along x- and y-direction) and optically

inactive in out-of-plane (i.e., z-direction). These systems possess similar optical as well as ex-
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Figure 6.6: Imaginary part (Im (ε)) of the dielectric function for (a) Ba2ZrS4, (b) Ba3Zr2S7, (c)

Ba4Zr3S10 using single shot GW (G0W0) and BSE. Im(ε) of dielectric function for (d) Ba2ZrS4 (e)

Ba3Zr2S7 and (f) Ba4Zr3S10 along E || xy direction and Im(ε) of dielectric function for (g) Ba2ZrS4

(h) Ba3Zr2S7 and (i) Ba4Zr3S10 along E || z direction, using G0W0 and BSE. Here, coloured region is

indicating the energy window that lies in visible region of electromagnetic spectra.

citonic properties along x- and y-direction (see Figure 6.6(d-f)). However, along z-direction,

their optical and excitonic spectra are not only blue-shifted but also the feature of G0W0 and

BSE peaks are quite different than that in case of in-plane direction (see Figure 6.6(g-i)). It

is well known that exciton lifetime is inversely proportional to the width of the exciton peak.

Hence, change in the feature of exciton peak greatly influences the excitonic parameters as

well in different directions. The d-orbital contribution in valence band maximum (VBM) and

conduction band minimum (CBm) could be responsible for the optical anisotropy in these sys-

tems. In bulk BaZrS3, we have observed that Ba(6s), Zr(4d) and S(2p) orbitals are hybridized

in the VBM. It is basically dominated by 2px, 2py, 2pz orbitals of S element. The CBm of bulk

BaZrS3, consists hybridized orbitals of S(2px, 2py, 2pz) and Zr(4dxy, 4dyz, 4dxz, 4dz2). Now, in

case of Ba2ZrS4, the VBM hybridization is same as that of bulk BaZrS3. However, in CBm,
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Figure 6.7: Full width at half maximum (FWHM) of exciton peak using mBSE@G0W0@PBE approach

with dense k-mesh. Broadening of exciton peak is mainly due to electron-hole interaction. Here, Γ

corresponds to the FWHM.

dxy is strongly hybridized with S(2p)/Ba(6s)-orbitals and dyz, dxz are weakly hybridized. The

hybridized orbitals obtained from the mixing of dyz, dxz and other orbitals of S and Ba are of

higher energy. One the other hand orbitals that include dxy are of lower energy. This results

in polarization dependent optical gap. As CBm is contributed by dxy, the optical transitions

are allowed only for in-plane polarized light and not for out-of-plane polarized light. We have

used Wannier-Mott model [253] for a simple screened Coulomb potential. Recently, it’s re-

ported that excitons of the RP phases of MAPbX3 are known to be strongly influenced by the

quantum confinement effects in the z-direction, exhibiting a quasi-2D character [293, 294]. In

the present case as well, we notice the difference in the xy and z-direction spectrum, which

signifies overall weak hybridization along z-direction. 1 For n = 1, 2 it’s expected more to fol-

low the 2D Wannier-Mott model. However for n = 3 or above the numbers generated via 3D

1In Ref. [294] we also note that with increasing number of layers, there is deviation from ideal 2D nature. This

has been attributed to the screened Coulomb potential. In view of this due to unavailability of experiments, we

have performed our calculation using Wannier-Mott model for 3D excitons as well. Despite for low dimensional

systems it’s expected that the excitons follow the 2D model, there are reports, where sometimes it shows deviation

from ideal 2D nature. This has been attributed to the screened Coulomb potential. Due to this ambiguity it’s

called quasi-2D nature. Therefore, for n = 1, 2 it’s expected more to follow the 2D Wannier-Mott model, for n

= 3 or above the numbers generated via 3D Wannier-Mott may also seem to be relevant. In view of this, due to

unavailability of experimental inputs in this system, we have provided theoretical values using either approaches.
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Wannier-Mott may also seem to be relevant. Therefore, as per Wannier-Mott excitons in a 2D

layered systems, the EB for screened interacting e-h pair is given by:

EB = 1
(n− 1

2)2

(
µ

ε2eff

)
R∞ (6.5)

where, µ is the reduced mass in term of rest mass of electron, εeff is the effective dielectric

constant (which includes electronic as well as ionic contribution to dielectric constant) and R∞

is the Rydberg constant. The reduced mass of Ba2ZrS4, Ba3Z2S7 and Ba4Zr3S10 in term of

electron rest mass are 0.32, 0.26 and 0.23, respectively. However, in the above expression, εeff

is still unknown for these systems. It is already reported that lattice relaxation can influence

the exciton binding energy [295]. For example, if ωLO corresponds to longitudinal optical

phonon frequency and EB << ~ωLO, one needs to consider the effect of lattice relaxation.

Therefore, for εeff, a value intermediate between the static electronic dielectric constant at high

frequency i.e., εe and the static ionic dielectric constant at low frequency i.e., εi should be

considered. However, if EB >> ~ωLO, the effect of lattice relaxation can be ignored as in such

cases εeff → εe, where εe is the static value of dielectric constant at high frequency that mainly

consists of electronic contribution. In Figure 6.8(a-c) and Figure 6.8(d-f), we have shown the

electronic and ionic contribution to the dielectric function respectively, where ionic contribution

is computed using DFPT approach. Notably, electronic contribution is computed using BSE

approach. The static real part of ionic dielectric constant for Ba2ZrS4, Ba3Z2S7 and Ba4Zr3S10

are 39.35, 31.19and57.59, respectively. As per Figure 6.7, a considerable increase in the static

According to this model the EB for 3D system is given by:

EB =
(
µ

ε2eff

)
(R∞) (6.4)

where, µ, εeff and R∞ are the reduced mass, effective dielectric constant and Rydberg constant, respectively.

Table 6.3: Electronic and ionic contribution to the dielectric constant for Ban+1ZrnS3n+1 (n=[1-3]) RP

phases, where εe and εi correspond to the static value of electronic and ionic dielectric constant, respec-

tively. EBu and EBl correspond to upper and lower bound of exciton binding energy, respectively.

Ban+1ZrnS3n+1 εe EBu (meV) εi EBl (meV)

Ba2ZrS4 8.94 56.00 39.25 2.9

Ba3Zr2S7 8.32 50.14 31.19 3.49

Ba4Zr3S10 8.51 63.45 57.59 1.39



Chapter 6. Exciton and polaron dominated photo-physical phenomena in Ruddlesden
popper phases of chalcogenide perovskites 145

Figure 6.8: Electronic (Im (εe) and Re (εe)) (a)-(c) and ionic (Im (εi) and Re (εi)) (d)-(f) contribution

to dielectric function for Ba2ZrS4, Ba3Zr2S7 and Ba4Zr3S10. Red and black color correspond to real

(Re(ε)) and imaginary (Im(ε)), respectively.

low frequency of ionic dielectric constant is attributed to the occurrence of optically active

phonon modes below 10 meV. This shows the ionic nature of the RP phases. Using electronic

and ionic contribution of the dielectric constant and equation 6.5, we have calculated the upper

and lower bound for the EB (see Table6.4). The effective value of the dielectric constant and

hence, the binding energy lies in between these upper and lower bounds listed in Table6.4. Note

that in Table6.4, the static values of electronic and ionic dielectric constant for the considered

RP phases are comparable with that of APbX3 (A = MA, FA; X= I, Br) perovskites [296, 297].

Hence, we can say their optical response resembles with that of APbX3 perovskites. Despite

there was slight discrepency in the BSE peak position, we still can compare the EB obtained

after taking difference of G0W0 and BSE peaks and the same as summarized in Table6.4 using

2D Wannier-Mott model. We find the order of divergence of the upper bound value follows n

= 1 > n = 2 > n = 3. This clearly implies that order of significance of ionic contribution to

dielectric constant is n = 1 > n = 2 > n = 3. It means for bulk BaZrS3 ionic contribution to

dielectric constant must be negligible, which is in good agreement with recent report regarding

bulk chalcogenide [292]. Recently, Ming et al. have reported the effect of strain on the band

gap and octahedron rotation for Ba2ZrS4 [298]. According to their report, a significant change

in the band gap and octahedron rotation is observed with the application of strain. However,

in our case of Ba2ZrS4 RP phases, monotonic change in the band gap (but not as large as in

case of Ming et al. [298]) has been observed on applying upto ±7% strain along b-axis and
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Table 6.4: Electronic and ionic contribution to the dielectric constant for Ban+1ZrnS3n+1 (n=[1-3]) RP

phases, where εe and εi correspond to the static value of electronic and ionic dielectric constant, respec-

tively. EBu and EBl correspond to upper and lower bound of exciton binding energy, respectively.

Ban+1ZrnS3n+1 εe EBu (eV) εi EBl (meV)

Ba2ZrS4 4.11 1.06 39.25 2.9

Ba3Zr2S7 3.65 1.03 31.19 3.49

Ba4Zr3S10 4.89 0.70 57.59 0.95

Figure 6.9: Capturing excitonic peak and estimation of EB for the RP phases of Ban+1ZrnS3n+1 (n=[1-3])

using mBSE@G0W0@PBE method.

c-axis (see Figure 6.10). The effect on the band gap along b- and a-direction are symmetric.

Figure 6.10: Variation of the bandgap with strain along different axis.

Further, the effect of strain on the band gap in out-of-plane direction is more significant than

in in-plane direction. We have also noticed slight octahedral tilt under the application of strain

along b-axis. In case of strain along c-axis, a small rotation of octahedron about c-axis has been
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observed. Here, we have calculated the elastic modulus of the RP phases that is given by

C2D =
( 1

A

)
δ2E
δε2

(6.6)

where A, ε and E correspond to the area of a unit cell, strain and total energy, respectively.

We have observed that elastic modulus of the 2D RP phases is larger than previously reported

2D RP phases [298]. In order to compute carrier mobility, we have used deformation potential

model [299, 300, 301, 302]. According to this model, the mobility of charge carrier is defined

as:

µDP = e~3C2D

kBTm∗mdE2
l

(6.7)

where T is the temperature, m∗ is the effective mass of charge carrier and e is the elementary

charge of electron. md correspond to the density-of-state effective mass that is defined as md =
√mxmy. El is the deformation potential (for more details regarding calculation of C2D and El

see section VIII in SI). In Table 6.5, we have listed the values of C2D, El and µDP for electron

and hole of Ban+1ZrnS3n+1 (n=[1-3]) RP phases. As elastic modulus increases down the column

(see Table 6.5), we can say that softness of the RP phases decreases on increasing the value of n

in Ban+1ZrnS3n+1 (n=[1-3]). Mobility of electron also decreases on increasing n in Ban+1ZrnS3n+1

(n=[1-3]).

Table 6.5: Elastic modulus, deformation potential and predicted carrier mobility of Ban+1ZrnS3n+1 (n=[1-

3]) RP phases.

Ban+1ZrnS3n+1 C2D (eV Å−2) El (eV) µDP (cm2 V−1 s−1)

Ba2ZrS4 (e) 20.02 6.36 5217.77

Ba2ZrS4 (h) 20.02 6.61 862.43

Ba3Z2S7 (e) 23.77 6.41 3731. 67

Ba3Zr2S7 (h) 23.77 6.39 57.92

Ba4Zr3S10 (e) 24.11 6.72 2694.99

Ba4Zr3S10 (h) 24.11 6.73 37.06

After analyzing the specific free volume (for details see section IX in SI), we find that study

of electron-phonon coupling is important in these materials. Also, the presence of polarization

in the RP phases lays emphasis on the polaron study. We have examined the electron-phonon
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Table 6.6: Polaron parameters for Ban+1ZrnS3n+1 (n=[1-3]) RP phases.

width=0.70

Ban+1ZrnS3n+1 1/ε∗ α mP/m∗ lP (Å) µP (cm2V−1s−1)

Ba2ZrS4 0.09 1.84 1.39 354.30 164.75

Ba3Z2S7 0.08 2.36 1.53 307.12 117.20

Ba4Zr3S10 0.10 1.77 1.37 292.49 76.39

interaction in our system by the mesoscopic model, viz. Fröhlich’s model [254, 303, 255]

for the polarons. The dressed “quasiparticles”, formed due to screened interaction of electron

and hole by the lattice, are known as polarons. Fröhlich introduced a parameter to describe

theoretically the momentum of electron in the field of polar lattice vibration. This parameter is

known as dimensionless Fröhlich coupling constant [304, 254, 303].

α = 1
ε∗

√
Ry

chωLO

√
m∗

me
(6.8)

where coupling constant α quantifies the electron-phonon coupling, m∗ is the effective mass

of electron, me is the rest mass of the electron, h is Planck’s constant, c is the speed of light,

ωLO (in [cm−1] units) is the optical phonon frequency, 1/ε∗ is the ionic screening parameter

(1/ε∗ = 1/ε∞ - 1/εstatic where, εstatic and ε∞ are static and high frequency dielectric constant)

and Ry is the Rydberg energy. We have observed that electron-phonon coupling constant of

considered RP phases (Table6.6), are smaller than that of their bulk BaZrS3 [292]. Further,

using the extended form of Fröhlich’s polaron theory, given by Feynman, the effective mass of

polaron (mP) [303] is defined as:

mP = m∗
(

1 + α

6 + α2

40 + ......

)
(6.9)

where m∗ is the effective mass calculated from the band structure calculations (see section VII

in SI). The polaron radii [305] can be calculated as follows:

lP =
√

h

2cm∗ωLO
(6.10)

Polaron mobility according to the Hellwarth polaron model is defined as follows:

µP = (3
√
πe)

2πcωLOm∗α
sinh(β/2)
β5/2

w3

v3
1
K

(6.11)
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where, β = hcωLO/kBT, w and v correspond to temperature dependent variational parameters. K

is a function of v, w, and β [255] i.e., defined as follows:

K(a, b) =
∫ ∞

0
du[u2 + a2 − bcos(vu)]−3/2cos(u) (6.12)

Here, a2 and b are calculated as:

a2 = (β/2)2 + (v2 − w2)
w2v

βcoth(βv/2) (6.13)

b = (v2 − w2)
w2v

β

sinh(βv/2)
(6.14)

We have used lowest frequency of LO phonon i.e, 1.34, 1.46 and 1.36 THz for Ba2ZrS4,

Ba3Zr2S7 and Ba4Zr3S10, respectively for our calculation (see Figure 6.8(d-f)). µP gives the

upper limit of the charge carrier mobility, under the assumption that charge carrier (electron)

interact only with the optical phonon. A significant change in the mobility of charge carrier can

be seen on comparing the mobility of electron without including its interaction with the optical

phonon (see Table 6.5) and with including interaction with the optical phonon (see Table 6.6).

Here in Table 6.6, ionic screening is indicative of the ionicity for a system. On comparing

our results with the hybrid inorganic-organic halide perovskites (ionic screening of MAPbI3,

MAPbBr3 and MAPbCl3 are 0.17, 0.18 and 0.22, respectively [305]), we can say that Ba2ZrS4,

Ba3Zr2S7 and Ba4Zr3S10 are less ionic than MAPbX3 (X = Cl, Br, I). Also, the obtained cou-

pling constant is comparable or larger than MAPbX3 (see Table 6.6). The lowering of mobility

of charge carriers on the inclusion of LO phonon modes indicate that optical phonon modes are

dominating over the acoustical phonon modes in these materials. Note that, in the absence of

experimental data, these results may help as guideline for further research. Moreover, for qual-

itative analysis, our results are very informative to understand the charge transport properties of

these RP phases. From Table6.6, we can clearly see that on increasing n in Ban+1ZrnS3n+1 (n=[1-

3]) i.e., down the column the polaron mobility decreases and for bulk BaZrS3 [270] phase it is

very small. In view of this, the considered RP phases are expected to be better optical material

than their bulk phase.

6.4 Conclusions

In conclusion, we have reported the electronic and excitonic properties of the RP phases of

Ban+1ZrnS3n+1 (n=[1-3]) using Many Body Perturbation Theory. The exciton binding energy
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decreases on increasing the thickness of the perovskite layer. Double peak character is observed

in the first excitonic peak calculated in in-plane direction of Ba2ZrS4. The difference between

direct and indirect band gap increases with increasing n in Ban+1ZrnS3n+1 (n=[1-3]), thereby,

making the band gap becomes more indirect. Using Wannier-Mott approach, we have obtained

the upper and lower bound of EB, from the electronic and ionic contribution of the dielectric

constant, respectively. We have observed that significance of ionic contribution to dielectric

function decreases on increasing n in Ban+1ZrnS3n+1. The charge carrier mobility is maximum

in Ba2ZrS4, as computed by employing deformation potential of the same. Further, amongst

Ban+1ZrnS3n+1 and bulk BaZrS3, the electron-phonon coupling constant is relatively smaller

for former RP phases. From our polaron study, we conclude that the optical phonon modes are

dominating as compared to the acoustical phonon modes for these systems. A large discrepancy

is noticed in the mobility of charge carriers (which includes the effect of acoustical phonon

modes only in electron-phonon coupling) and polaron mobility (which includes the effect of

optical phonon modes in addition to the acoustic modes in electron-phonon coupling). It shows

the dominating character of optical phonon modes in the electron-phonon coupling and must

be studied to understand charge transport properties of RP phases. Finally, from the perspective

of device applications, these RP phases are expected to be promising optoelectronic materials.



CHAPTER 7

Role of defects and surrounding on the catalytic

activity of the catalyst in energy fuel and bio-mass

conversion

7.1 Introduction

Any chemical substance that stimulates the chemical reaction without undergoing any change

in its composition is known as catalyst. In order to control any chemical reaction or process

under practically attainable environmental conditions, the catalysts act as workhorses. In our

daily life, catalysts have huge impact, for example catalysts are used in fuel cells, CO2 capture,

water purification, bio-mass conversion, and air pollution remediation, etc. In this chapter, we

have discussed role of defects and surrounding ligands on the catalytic activity of the catalysts.

7.2 SO3 decomposition over silica-modified β-SiC supported

CuFe2O4 catalyst: atomistic insights

There are various ways to produce hydrogen through water-splitting. One of the potential

way is sulfur-iodine (S-I) thermochemical water-splitting cycle. The S-I cycle involves several

reaction steps, where SO3 decomposition is most endothermic in nature. CuFe2O4 dispersed

over treated or untreated β-SiC is used for SO3 decomposition. Here, using DFT approach, we

have studied the role of O-vacancy in enhansing the catalytic activity of the CuFe2O4 catalyst.
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7.2.1 Computational details

Spin-polarized density functional theory (DFT) calculations are carried out using the projected

augmented wave (PAW) pseudopotential as implemented in the Vienna ab initio Simulation

Package (VASP) [244, 289]. All the modeled geometries are optimized using Perdew-Burke-

Ernzerholf (PBE) exchange-correlation (εxc) functional within generalized gradient approxima-

tion (GGA) [33]. In all of the calculations, electronic self-consistency has been attained with

an energy tolerance of 105 eV. For high precision calculations, we have used a cutoff energy

of 500 eV for the plane-wave basis set. For obtaining the optimized ground-state structure,

HellmanFeynman forces have been converged with a limit of 0.001 eV/Åby conjugate gradient

(CG) minimization. The Brillouin zone is sampled at the Γ point for all the DFT calculations.

We have employed a hybrid functional (HSE06) to compute the change in Gibbs free energy

for adsorption and dissociation of SO3 molecule on top of the supported cluster. The change in

Gibbs free energy (∆G) for different reaction steps are calculated as follows:

∆G1 = Gcatalyst−SO3 – GSO3 – Gcatalyst

∆G2 = GSO2−catalyst−O – Gcatalyst−SO3

Where Gcatalyst, GSO3, Gcatalyst+SO3 and GSO2−catalyst−O correspond to the total energy of

the catalyst (supported nanoparticles i.e, CuFe2O4/β-SiC(T) and CuFe2O4/β-SiC (UT)), the

adsorbate in the gas phase and the adsorbate adsorbed on the catalyst, adsorbate dissociated on

the catalyst, respectively. To have qualitative understanding of the bonding nature of adsorbed

configurations, electron density difference analysis is carried out. Electron density difference

(∆ρ) is calculated as:

∆ρ = ρ(catalyst + SO3) - ρ(SO3) - ρ(catalyst)

To locate the transition states (TSs) along the minimum energy path the climbing-image nudged

elastic band (Cl-NEB) method is used [306]. We have extracted nano cluster CuFe2O4-np of 5

Åradius from its bulk tetragonal crystal CuFe2O4 (space group I41/amd). Note that through-

out the paper we have used CuFe2O4 notation for the nano cluster CuFe2O4-np. Similarly, 5

Ånano cluster of Fe2O3 is extracted from its bulk phase. Note that we have used the 111 facet

of “β-SiC” phase to build the computational model of SiC to support CuFe2O4. A Layer of

SiO2 consisting of 84 is stacked over SiC support to represent our experimental model system

viz. β-SiC (T). To prevent interaction among periodic images a vacuum region is set to 20 Å.



Chapter 7. Role of defects and surrounding on the catalytic activity of the catalyst in
energy fuel and bio-mass conversion 153

7.2.2 Result

In order to get insight to our experimental results, first we have modeled our supercell consist-

ing of the substrate (SiO2/SiC) of 222 atoms plus catalyst (CuFe2O4) bonded over it and denote

this sytem with CuFe2O4/β-SiC (T). Similarly, we have simulated a supercell consisting of sub-

strate (SiC) of 187 atoms and catalyst on top of it and denote this system with CuFe2O4/β-SiC

(UT). Figure 7.1, shows the change in Gibbs free energy (∆G) for adsorption (in first step)

and dissociation (in second step) of SO3 on top of CuFe2O4/β-SiC (T) and CuFe2O4/β-SiC

(UT), respectively. Here, adsorption and dissociation of SO3 both are exothermic processes.

The change in free energy for both the above mentioned processes is more negative in case

of the treated substrate. This shows the high catalytic activity and stability of the CuFe2O4/β-

SiC (T). Further, to get insight into the reaction mechanism, the activation barrier is estimated

Figure 7.1: Free energy profile for adsorption and dissociation of SO3 on the surface of CuFe2O4/β-SiC

(UT) and CuFe2O4/β-SiC (T) catalyst, respectively.

using nudge elastic band (NEB) method. Notably, performing NEB calculation with support

(consisting of more than 200 atoms) is computationally very challenging. Hence, to estimate

the activation barrier for SO3 dissociation, we have eliminated the effect of support. In Fig-

ure 7.2(a,b), we have shown reaction profile of dissociation of SO3 on the surface of catalyst.

We have estimated the activation barrier at two different sites (a) Fe-O-Cu site and (b) O-

vacancy site (i.e., Fe-O-vacancy-Cu). A significant change in the activation barrier for the

adsorption of SO3 at O-vacancy site than other site is observed. This indicates that O-vacancies

at the surface of catalyst facilitate the decomposition of SO3. In order to understand interac-

tion of SO3 molecule and catalyst, we have plotted the atom projected density of states (see
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Figure 7.2: Reaction profile for the decomposition of SO3 with initial state (IS), transition state (TS)

and final state (FS) on (a) CuFe2O4 cluster and (b) CuFe2O4 cluster with oxygen vacancy. Structure and

charge density difference contours for SO3 adsorbed on top of cluster (c) CuFe2O4, (d) CuFe2O4 with

O-vacancy) and (e) Fe2O3 with O-vacancy. In charge density difference plots cyan and yellow colour

correspond to the negative and positive charge, respectively.

Figure 7.3). The isolated phase SO3 exhibits discrete and sharp peaks in the pDOS spectrum,

HOMO level is contributed by O atoms and LUMO is contributed by unoccupied states of S

and O (see Figure 7.3(a). However, after adsorption of SO3 on top of catalyst the S states get

dispersed, broader and shifted to higher energy. Such shift owing to charge transfer from cata-

lyst to SO3 molecule, which results in elongation and weakening of one of S-O bond. This is

evident from the S states appearing near Fermi level is an evident for the charge transfer from

the cluster to SO3. Therefore, if more S states are appearing near the Fermi level, more the

charge transfer from cluster to SO3 and more elongation of the S-O bond. For example, more

S states are observed near fermi level when SO3 is adsorbed at O-vacancy of CuFe2O4 (see

Figure 7.3(c)) than SO3 is adsorbed at Fe-O-Cu site of CuFe2O4. As a result, the S-O bond

length for SO3 adsorbed at O-vacancy and Fe-O-Cu site of CuFe2O4 are 0.18 and 0.15 nm,

respectively. To depict this charge transfer we have also plotted the charge difference density

for different configurations. Charge is more localized for SO3 adsorbed at O-vacancy than at

Fe-O-Cu site (see Figure 7.3(c,d)). As it is clear that charge transfer plays a significant role

in the elongation and dissociation of S-O bond. This criteria, is more than sufficient to predict

catalytic activity of any cluster. For SO3 adsorbed at O-vacancy of CuFe2O4, more S states near

fermi level are observed than SO3 adsorbed at O-vacancy of Fe2O3 cluster (see Figure 7.3(c,d).
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Similarly, on comparing charge density difference of SO3 adsorbed at O-vacancy of CuFe2O4

and Fe2O3 (see Figure 7.3(d,e)), we discern that charge is more localized for CuFe2O4 catalyst.

Hence, O-vacancy in CuFe2O4 catalyst are more favorable for SO3 decomposition rather than

O-vacancy in Fe2O3 catalyst.

Figure 7.3: Partial density of states (pDOS) for (a) isolated SO3, SO3 adsorbed over the cluster (b)

CuFe2O4, (c) CuFe2O4 with O-vacancy and (d) Fe2O3 with O-vacancy. Here, blue and red color corre-

spond to S and O states, respectively.

7.3 Partial hydogenation of the xylose/glucose into useful sweat-

ners using single Ru-atom catalyst surrounded by differ-

ent ligands.

In solid catalysis, the atomically disperesed metal-single-atoms have evolved as a frontier ow-

ing to their distinctive electronic properties. Although, metal-single-atoms have achived great

success in the solid catalysis, the biomass conversion using metal-single-atoms is still a chal-

lenging task in absence of inadequate metal-support interactions and poor yield. In our work,
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theoretically, we have studied role of different ligands surrounded single-Ru-atoms on the cat-

alytic activities of the single-Ru-atoms in partial hydrogenation of the xylose/glucose.

7.3.1 Computational

Density functional theory (DFT) calculations were performed with Projector augmented wave

(PAW) Pseudopotential[5,6] as implemented in Vienna ab initio Simulation Package (VASP). In

all the calculations, the generalized gradient approximation (GGA) was used with the Perdew-

Burke-Ernzerof (PBE) exchange-correlation functional. We have also validated results using

more advanced hybrid functionals (viz. HSE06). For highly-accurate calculations, the cut-off

energy of 500 eV was preferred for the plane-wave basis set. The electronic self-consistency

was attained with an energy tolerance of 0.001 meV. For obtaining fully relaxed electronic

configurations, Hellman-Feynmann forces were converged with a limit of 0.005 eV/Åusing

conjugate gradient (CG) minimization. The Γ-centered 1x1x1 k-grid sampling is employed for

the optimization of electronic configurations. To obtain the partial charges of all the atoms in

different electronic configurations the Hirshfeld model was used. The adsorption energy (Ead)

of the adsorbate (glucose/xylose) is computed taking the difference of respective ground state

energies, i.e.

Ead = Ecatalyst+glucose/xylose - Eglucose/xylose - Ecatalyst

Where, Ecatalyst, Eglucose/xylose, and Ecatalyst+glucose/xylose correspond to the total energy of the cata-

lyst (Ru atom surrounded by different ligands), adsorbate (glucose/xylose) and the adsorbate

adsorbed on the catalyst. Notably, the more negative is the Ead, more is the adsorption strength.

To have a qualitative understanding of the charge distribution, electron density difference anal-

ysis is carried out. Electron density difference ∆ρ = ρ(Ru-atom + ligands surrounding Ru) –

ρ(Ru-atom) – ρ(ligands surrounding Ru).

7.3.2 Results

DFT calculations were performed to explore the catalytic activity of Ru-atoms surrounded by

different ligands, namely triphenylphosphine, triphenylamine, and catechol. For this purpose,

the adsorption energy strengths were calculated for the adsorption of xylose and glucose on

the surface of Ru-atoms surrounded by different ligands. From Figure 7.4(a), we can see that

adsorption energy (Ead) is maximum for Ru-PPh i.e. when Ru-atoms are surrounded by ligand
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containing P. On the other hand, adsorption energies are less negative for Ru-AmPh and Ru-

Figure 7.4: (a) Variation in the enumerated adsorption energy strength for glucose and xylose on the Ru-

atom surrounded by different ligands. (b) The calculated Hirshfeld charge for the Ru atom in Ru-PPh,

Ru-AmPh, and Ru-Cat, respectively. (c) The computed H-bonding energies between xylose (C5) and

PPh, AmPh, and Cat, respectively. Energy minimized structures of (d) Ru-PPh-MesoSi, (e) Ru-AmPh,

and (f ) Ru-Cat along with their respective electron density difference plots; and (g) the change in Gibbs

free energy for the partial hydrogenation of xylose to xylitol in the presence of different ligands (using

PBE exchange–correlation functional); in the electron density difference plot, the cyan and the yellow

colors correspond to the negative and positive charge densities, respectively..
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Figure 7.5: (a) Reaction profile for the adsorption and partial hydrogenation of the carbonyl group of the

xylose with initial state (SI), transition state (TS) and final state (FS) on the single Ru atom surrounded

by triphenylphosphine (Ru-PPh-MesoSi). (b) Reaction profile for the desorption of xylitol from the

single Ru atom surrounded by triphenylphosphine (Ru-PPh-MesoSi).

Cat, this conveys that the catalytic performance of Ru-atoms for the hydrogenation of C5 and

C6 sugar degrades in the presence of ligands containing N and O. DFT calculation shows that

adsorption free energy of glucose/xylose on Ru-atoms increases on increasing the electronic

charges on Ru-atoms, this indicates that electronic charge on Ru-atoms favours high activity

(see Figure 7.4(b)). Hence, we can say that in the hydrogenation of C5/C6 sugars, the charge on

Ru-atoms plays an important role and is consistent with the experimental results. However, the

observed trend of the adsorption energy can also be related to the ligands surrounding Ru-atoms

rather than the charge. The ligands could interact with the carbonyl group of the xylose/glucose

during the catalytic process through the aromatic rings to intensify the activity. The computed

interaction energies of xylose with triphenylphosphine, triphenylamine and catechol are -0.31

eV, -0.31 eV and -0.46 eV, respectively (see Figure 7.4(c)). Here, the strong interaction of

catechol with sugars can cause difficulty in the desorption of the hydrogenated sugars from the

catalysts. On the other hand, triphenylamine and triphenylphosphine ligands having suitable

interaction strength with sugars acted as binding sites to induce the adsorption of sugars on

Ru-atoms, leading to efficient hydrogenation of sugars into sweeteners. From Figure 7.4, we

can see that both amine and phosphine ligands possess the same interaction energy with the

sugars, however, the adsorption energy is different.

This shows that the charge on “Ru atoms” plays a crucial role in the hydrogenation of sug-

ars into sweeteners. It is also validated through the electron density difference plot of Ru-PPh,
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Ru-AmPh, and Ru-Cat as shown in Figure 7.4(d-f). Charge density is highly localized at Ru-

single-atom in the case of Ru-PPh (see Figure 7.4(d)). However, for Ru-AmPh and Ru-Cat

charge density is distributed throughout the system and hence degrades the catalytic activity

of Ru-single-atoms (see Figure 7.4(d-f)). Therefore, as per the theoretical analysis, it states

that the electronic and geometric factors are controlling the activity of metal single atoms for

the hydrogenation of bulky sugars. Low activity of Ru/C can be correlated by lacking such

functionality of the support. Thus, we see the conjunction between the Ru-single-atoms and

the neighbouring aromatic rings of triphenylphosphine govern as adsorption and desorption

sites, facilitating xylose and glucose hydrogenation reaction. Moreover, it is known that the

adsorption strength of substrate, electronic charge and geometry of the ligands - all together

are collectively important in the partial hydrogenation of the xylose [307]. As for instance, the

partial hydrogenation takes place if the adsorbate gets adsorbed into the substrate and in fact

more negative adsorption energy is favourable for subsequent hydrogenation. Hence, the yield

of the desired products are indirectly dependent on the adsorption strength of the substrates.

Moreover, if there is more charge-transfer from the ligand to the Ru-atom, then it weakens the

“Ru-H” bond and it can easily donate the H-atom to the adsorbate. Regarding this, we have

also calculated the change in Gibbs free energy of formation (G) for the partial hydrogenation

of xylose to xylitol in the presence of different ligands (see Figure 7.4(g)). Here, more negative

value of G shows the ease of reaction i.e., hydrogenation. Hence, from Figure 7.4(g), we can

discern that partial hydrogenation of xylose is more favorable in the presence of triphenylphos-

phine ligands. This can be explained from the charge transfer analysis. Not only G values, we

also proved that partial hydrogenation depends on the interaction energy with the substrate, and

the more the interaction energy of ligand, the harder will be the desorption of products from

the catalyst, and hence the loss of selectivity in products is thus obvious, as agreed with our

experimental results in Fig. 5c j. To have complete energy profile of the reaction, we have

also performed NEB calculation for the partial hydrogenation of xylose on single Ru-atom sur-

rounded by triphenlyphosphine ligands (see Figure 7.5 and 7.5).

After all, our findings firmly justifies the role of charge density, adsorption energy of substrate

and the effect of ligand geometry (steric effect) in partial hydrogenation reaction. The effect of

ligand is also profoundly applied towards un-functionalized carbon surface for controlled hy-

drodeoxygenation reaction [308]. Henceforth, a tailorable adsorption selectivity of substrates

is shown through an important ligand effect on Ru-sites.
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Energy profile for hydrogenation of the xylose to xylitol, using NEB approach We have

done NEB for xylose adsorption and partial hydrogenation of carbonyl group over the Ru single

atom surrounded by the triphenylphosphine ligands (the most promising catalyst i.e., Ru-PPh-

MesoSi). In Figure 7.5(a), from ist initial state (SI) to iiird transition state (TS) the distance

between the oxygen of the carbonyl group of xylose and the Ru atom decreases. At TS reaction

step the H initially bonded with Ru atom interacts with the carbonyl group and in the ivth

reaction step this H makes bond with C atom of the carbonyl group of the xylose and O atom

is bonded with the Ru atom. In vth reaction step i.e., final state (FS) the bond length of Ru

and O atom decreases, and this configuration is of minimum energy. Here, in Figure 7.5(a),

partial hydrogenation of the xylose has been shown from ist reaction step to the vth reaction

step. Further, in Figure 7.5(b), we have shown reaction steps for the complete hydrogenation

of xylose and desorption of the xylitol form the Ru atom. In Figure 7.5(b), in first reaction step

(i), the H+ ion from the formic acid and NEt3 system [307, 309, 310] interacts with oxygen

adsorbed on the Ru atom. In step ii, oxygen atom makes bound with H+ ion and it’s bond with

Ru atom becomes weak. In step iii the bond length of O and Ru atom increases, this shows

that Ru-O bond is breaking. Here, steps ii and iii show the desorption of xylitol from the Ru

atom. Also, from the energies of the i, ii and iii reaction steps, we conclude that after complete

hydrogenation of xylose to xylitol desorption is energetically favorable reaction.

7.4 Conclusion

O-Vacancy in the catalyst facilitates the dissociation of the SO3 molecule due to more charge

localization at O-vacancy in the catalyst. The charge is more localized at O-vacancy in the

CuFe2O4 catalyst than in Fe2O3 CuFe2O4 nano-clusters are more suitable for SO3 dissocia-

tion than Fe2O3 nano-clusters. Catalytic performance of the Ru single atoms for the hydro-

genation of C5 and C6 sugar degrades in the presence of ligands containing N and O. Large

electronic charge on Ru single atom favours high activity. Electronic and geometric factors

controls the activity of the metal single atoms for the hydrogenation of the bulky sugars.



CHAPTER 8

Summary

In conclusion, we have investigated the thermodynamic stability of point defects in LISICON

using DFT simulations. We have found that the thermodynamically most stable configurations

are Li56−xSi14−yPy �x O56 (x=y), where x and y ∈ [0, 4]. To get insights on improved ionic

conductivity, AIMD calculations are carried out. For both pristine and doped systems, the dif-

fusion of Li-ions rises with temperature. We have also demonstrated that the Li-ion diffusion

in LISICON increases when point defects (Li-�, P, Al, and Ge substitutional impurities) are

introduced at a certain temperature. The anisotropy in our system is shown by the jumps (vi-

brations) of Li-ions, which are in the order of plane ac > ab > bc. Furthermore, the impurities

polarize the system, which causes bond softening and, as a result, a decrease in the activation

barrier, which makes Li-ion hopping simpler. Our findings show that adding different point

defects to LISICON increases its ionic conductivity. In case of double perovskite materials, we

have given a complete analysis of alloying Cs2AgBiCl6 double perovskites with M(I), M(II),

and M(III) cations. Here, we have demonstrated the significance of SOC in such systems by

comparing the optical characteristics obtained using HSE06 and HSE06+SOC. To correctly

estimate the band gap and band-edge locations in such systems, SOC plays a crucial role. The

Goldschmidt tolerance factor and octahedral factor describe the structural stability and we have

observed that all the mixed sublattices are structurally stable. The enthalpies of decomposition

are negative, demonstrating the alloyed system’s thermodynamic stability. We have reported

that partial replacement of Au can be used instead of 100% Au at Ag site to improve the optical

characteristics of Cs2AgBiCl6. We have demonstrated that band gap increases for replacement

at Bi-sites as Sb concentration rises.We have shown that for substitution at Bi-sites with Sb,

the band gap shrinks by up to 75% when the concentration of Sb is increased. The entire re-

moval of Bi, however, results in a rapid rise in band gap for 100% substitution. When alkali

metals (Na/K) are completely substituted at Ag-sites, the band gap increases abruptly. We have
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also shown that band gap reduction makes partial Au replacement (between 25% and 75%), an

efficient way to improve optical characteristics. Additionally, we have seen that the stability de-

clines as replacement levels at Ag- or Bi-sites rise. Therefore, we have come to the conclusion

that partial replacement of Au and Sb at Ag- and Bi-sites, respectively, will be more econom-

ical, stable, and effective to improve the optical characteristics. We have concluded that in

double perovskites, alloying with M(II) cations not only enhance the thermodynamic stability,

but also enhance the power conversion efficiency. Furthermore, we have thoroughly examined

the structural and optoelectronic characteristics of (un)defected 2D hybrid (C3H5NH3)2PbI4.

The conduction band’s spin-orbit splitting is apparent, which causes the band gap to decrease.

Therefore, to accurately calculate the optical characteristics of mixed conformers, SOC effect

has been properly taken into account in all computations. Wide bandgap semiconductor CPPI,

made of 2D perovskite, has a subpar absorption spectrum. We have adjusted the band gap of

the CPPI system by replacing the hazardous element Pb with the less hazardous alternatives,

Ge and Sn, and we have seen an improvement in the system’s optoelectronic capabilities. The

band gap may also be adjusted and the optoelectronic characteristics improved in the case of

the compounds CBPI, CPEPI, and CHXPI. We have shown that utilising Sn allows for the en-

tire removal of harmful Pb from CPPI, but using Ge only allows for the partial replacement of

toxic Pb. In addition, compared to conformers with Ge, mixed conformers with Sn are more

stable and have greater PCE. Thus, we have drawn the conclusion that, when replacing harm-

ful lead from CPPI, Sn replacement is preferable than Ge substitution. The most efficient and

stable 2D halide perovskite (C3H5NH3)2SnI4 is suitable for photovoltaic (PV) devices. Exces-

sive exciton binding energy is present in both pure and mixed forms. Compared to traditional

lead halide perovskites, the electron-phonon coupling is lower. These materials exhibit low

electron-phonon coupling than the conventional lead halide perovskites. It is observed that on

replacing Pb with Sn, the effective masses of the charge carriers increase, and as a result charge

carrier mobility decreases. This degrades the practical performance of Sn substituted conform-

ers. Hence, in search for suitable optoelectronic solar cell material, we focused on layered type

Ruddlesden-Popper phases of the chalcogenide perovskites. Using MBPT, we have reported

the electronic and excitonic characteristics of the RP phases of Ban+1ZrnS3n+1 (n=[1-3]). As the

perovskite layer becomes thicker, the exciton binding energy drops. The first excitonic peak

computed in the direction of Ba2ZrS4 has a double peak nature. With rising n in Ban+1ZrnS3n+1

(n=[1-3]), the difference between the direct and indirect band gaps grows, making the band gap
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more indirect. We have determined the upper and lower bounds of EB using the Wannier-Mott

technique, based on the electronic and ionic contributions to the dielectric constant, respec-

tively. We have demonstrated using the Wannier-Mott technique that ionic contribution to the

dielectric constant may result in a reduction in EB. However, compared to traditional lead

halide perovskites, the ionic contribution is not as strong. In Ban+1ZrnS3n+1, we have noticed

that the importance of the ionic contribution to the dielectric function diminishes as n increases.

According to calculations made using the deformation potential of Ba2ZrS4, the charge carrier

mobility is at its highest in this material. Additionally, the electron-phonon coupling constant

is substantially less for former RP phases compared to bulk BaZrS3 and Ban+1Zrn+1S3n+1. Our

polaron investigation leads us to the conclusion that for these systems, optical phonon modes

predominate over acoustical phonon modes. There is a significant difference between charge

carrier mobility (which solely takes into account the influence of acoustical phonon modes in

electron-phonon interaction) and polaron mobility (which includes the effect of optical phonon

modes in addition to the acoustic modes in electron-phonon coupling). To comprehend the

charge transport characteristics of RP phases, it must be investigated since it demonstrates the

dominant nature of optical phonon modes in the electron-phonon connection. Finally, these RP

phases are anticipated to be attractive optoelectronic materials from the standpoint of device ap-

plications. In conclusion, we have found that catalytic activity of catalysts is greatly affected by

the presence of point defects and the surrounding. Overall, defects play crucial role in modulat-

ing various properties such as ion transport properties, electronic properties, optical properties,

activation barrier of chemical reactions, and many other physical and chemical properties of the

advanced energy materials. Hence, special attention must be paid to the defects existing in the

materials developed. Our future efforts are to find and create more advanced energy materials

using more advanced methodologies.
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Appendix

Double perovskites materials

A.1 Band gap, tolerance factor, octahedral factor and en-

thalpy of decomposition of different configurations

Table A.1: Tolerance and octahedral factor of different conformers

Conformers Tolerance

factor (t)

Octahedral

factor (µ)

Cs8Ag4Bi4Cl24 0.90 0.60

Cs8Ag3Au1Bi4Cl24 0.89 0.62

Cs8Ag2Au2Bi4Cl24 0.88 0.63

Cs8Ag1Au3Bi4Cl24 0.87 0.65

Cs8Au4Bi4Cl24 0.87 0.66

Cs8Ag3Cu1Bi4Cl24 0.91 0.58

Cs8Ag2Cu2Bi4Cl24 0.93 0.55

Cs8Ag1Cu3Bi4Cl24 0.95 0.52

Cs8Cu4Bi4Cl24 0.96 0.50

Cs8Ag3In1Bi4Cl24 0.91 0.58

Cs8Ag2In2Bi4Cl24 0.93 0.55

Cs8Ag1In3Bi4Cl24 0.94 0.53

Cs8In4Bi4Cl24 0.96 0.51

Cs8Ag3K1Bi4Cl24 0.89 0.62
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Cs8Ag2K2Bi4Cl24 0.88 0.63

Cs8Ag1K3Bi4Cl24 0.87 0.65

Cs8K4Bi4Cl24 0.87 0.66

Cs8Ag3Na1Bi4Cl24 0.90 0.59

Cs8Ag2Na2Bi4Cl24 0.91 0.58

Cs8Ag1Na3Bi4Cl24 0.92 0.58

Cs8Na4Bi4Cl24 0.92 0.57

Cs8Ag3Ti1Bi4Cl24 0.91 0.58

Cs8Ag2Ti2Bi4Cl24 0.92 0.56

Cs8Ag1Ti3Bi4Cl24 0.93 0.54

Cs8Ti4Bi4Cl24 0.95 0.52

Cs8Ag4Cr1Bi3Cl24 0.91 0.59

Cs8Ag4Cr2Bi2Cl24 0.92 0.57

Cs8Ag4Cr3Bi1Cl24 0.93 0.55

Cs8Ag4Cr4Cl24 0.94 0.54

Cs8Ag4Ga1Bi3Cl24 0.92 0.57

Cs8Ag4Ga2Bi2Cl24 0.93 0.55

Cs8Ag4Ga3Bi1Cl24 0.95 0.52

Cs8Ag4Ga4Cl24 0.97 0.49

Cs8Ag4In1Bi3Cl24 0.91 0.59

Cs8Ag4In2Bi2Cl24 0.92 0.57

Cs8Ag4In3Bi1Cl24 0.93 0.55

Cs8Ag4In4Cl24 0.94 0.54

Cs8Ag4Sb1Bi3Cl24 0.91 0.58

Cs8Ag4Sb2Bi2Cl24 0.92 0.56

Cs8Ag4Sb3Bi1Cl24 0.93 0.55

Cs8Ag4Sb4Cl24 0.94 0.53

Cs8Ag4Sc1Bi3Cl24 0.91 0.58

Cs8Ag4Sc2Bi2Cl24 0.92 0.56

Cs8Ag4Sc3Bi1Cl24 0.93 0.54

Cs8Ag4Sc4Cl24 0.95 0.52



Cs8Ag4Tl1Bi3Cl24 0.91 0.60

Cs8Ag4Tl2Bi2Cl24 0.91 0.58

Cs8Ag4Tl3Bi1Cl24 0.92 0.57

Cs8Ag4Tl4Cl24 0.92 0.56

Cs8Ag4Y1Bi3Cl24 0.90 0.59

Cs8Ag4Y2Bi2Cl24 0.91 0.58

Cs8Ag4Y3Bi1Cl24 0.92 0.58

Cs8Ag4Y4Cl24 0.92 0.57

Cs8Ag3Cd2Bi3Cl24 0.91 0.58

Cs8Ag3Co2Bi3Cl24 0.93 0.55

Cs8Ag3Cu2Bi3Cl24 0.93 0.55

Cs8Ag3Ge2Bi3Cl24 0.93 0.55

Cs8Ag3Mn2Bi3Cl24 0.93 0.54

Cs8Ag3Ni2Bi3Cl24 0.94 0.54

Cs8Ag3Sn2Bi3Cl24 0.90 0.61

Cs8Ag3V2Bi3Cl24 0.92 0.56

Cs8Ag3Zn2Bi3Cl24 0.93 0.55

Cs8Ag3Rh2Bi3Cl24 0.93 0.55



Table A.2: Band gap and enthalpy of decomposition of different conformers (double perovskites) for

M(III) substitution

Conformers PBE

(eV)

PBE

+SOC

(eV)

HSE06

+SOC

(eV)

HSE06

(eV)

∆HD

(PBE+SOC)

(eV)

∆HD

(HSE06+SOC)

(eV)

Cs8Ag4Cr1Bi3Cl24 1.47 1.34 2.37 - -9.19 -11.25

Cs8Ag4Cr2Bi2Cl24 1.10 1.03 2.06 2.43 -8.96 -11.77

Cs8Ag4Cr3Bi1Cl24 0.78 0.77 2.73 2.86 -8.65 -12.29

Cs8Ag4Cr4Cl24 0.80 0.79 2.81 2.94 -8.27 -12.81

Cs8Ag4Ga1Bi3Cl24 1.91 1.55 2.52 - -9.20 -10.84

Cs8Ag4Ga2Bi2Cl24 1.57 1.38 2.45 - -8.98 -

Cs8Ag4Ga3Bi1Cl24 2.17 2.03 3.11 - -8.71 -10.17

Cs8Ag4Ga4Cl24 1.31 1.27 2.62 - -8.33 -9.70

Cs8Ag4In1Bi3Cl24 1.91 1.61 2.58 - -9.43 -

Cs8Ag4In2Bi2Cl24 1.52 1.37 2.40 - -9.47 -11.30

Cs8Ag4In3Bi1Cl24 2.04 1.97 3.07 - -9.16 -

Cs8Ag4In4Cl24 1.19 1.17 2.56 - -9.46 -11.38

Cs8Ag4Sb1Bi3Cl24 1.80 1.44 2.31 - -9.30 -10.94

Cs8Ag4Sb2Bi2Cl24 1.71 1.37 2.22 - -9.23 -10.76

Cs8Ag4Sb3Bi1Cl24 1.68 1.34 2.20 - -9.16 -10.59

Cs8Ag4Sb4Cl24 1.69 1.64 2.57 - -9.09 -

Cs8Ag4Sc1Bi3Cl24 2.13 1.70 - - -9.27 -

Cs8Ag4Sc2Bi2Cl24 2.18 1.69 - - -9.15 -

Cs8Ag4Sc3Bi1Cl24 2.71 2.14 - - -9.01 -

Cs8Ag4Sc4Cl24 3.32 3.29 - - -8.84 -

Cs8Ag4Tl1Bi3Cl24 0.65 0.62 - - - -

Cs8Ag4Tl2Bi2Cl24 0.45 0.42 - - - -

Cs8Ag4Tl3Bi1Cl24 0.83 0.82 0.45 0.42 - -

Cs8Ag4Tl4Cl24 0.40 0.39 - - - -

Cs8Ag4Y1Bi3Cl24 2.11 1.74 - - -9.28 -

Cs8Ag4Y2Bi2Cl24 2.28 1.80 - - -9.19 -

Cs8Ag4Y3Bi1Cl24 2.87 2.21 - - -9.11 -

Cs8Ag4Y4Cl24 3.73 3.69 - - -9.01 -



A.2 Path of decomposition of Cs2AgBiCl6 into binary/ternary

compounds on alloying with monovalent, trivalent and

divalent configurations

• 1. Cs8Ag4Bi4Cl24 = 4AgCl + 2CsCl + 2Cs3Bi2Cl9

• 2. Cs8Ag4Bi4Cl24 = 3AgCl + Cs2AgCl3 + 2Cs3Bi2Cl9

• 3. Cs8Ag3M(II)2Bi3Cl24 = 8CsCl + 2M(II)Cl2 + 4AgCl + 4BiCl3

• 4. Cs8Ag3M(II)2Bi3Cl24 = 2CsM(II)Cl3 + 3Cs3Bi2Cl9 + 3AgCl + 3CsCl



Table A.3: Band gap and enthalpy of decomposition of different conformers (double perovskites) for

M(I) substitution

Conformers PBE

(eV)

PBE

+SOC

(eV)

HSE06

+SOC

(eV)

HSE06

(eV)

∆HD

(PBE+SOC)

(eV)

∆HD

(HSE06+SOC)

(eV)

Cs8Ag4Bi4Cl24 2.06 1.67 2.60 3.15 -9.36 -11.11

Cs8Ag3Au1Bi4Cl24 1.15 0.88 1.79 2.17 -9.18 -10.90

Cs8Ag2Au2Bi4Cl24 1.02 0.76 1.62 2.01 -9.00 -10.70

Cs8Ag1Au3Bi4Cl24 0.96 0.69 1.54 1.94 -8.80 -10.49

Cs8Au4Bi4Cl24 1.46 0.70 1.54 1.95 -8.62 -10.28

Cs8Ag3Cu1Bi4Cl24 1.27 1.07 2.23 2.61 -9.26 -10.97

Cs8Ag2Cu2Bi4Cl24 1.20 1.00 2.12 2.54 -9.15 -10.83

Cs8Ag1Cu3Bi4Cl24 1.15 0.94 2.01 2.49 -9.04 -10.69

Cs8Cu4Bi4Cl24 1.13 0.89 1.95 2.48 -8.92 -10.54

Cs8Ag3In1Bi4Cl24 0.45 0.07 0.39 1.22 -9.25 -11.01

Cs8Ag2In2Bi4Cl24 0.30 0.13 0.11 1.10 -9.14 -10.90

Cs8Ag1In3Bi4Cl24 0.14 0.23 0.17 0.98 -9.02 -10.80

Cs8In4Bi4Cl24 0.29 0.55 0.46 - -8.89 -10.71

Cs8Ag3K1Bi4Cl24 2.07 1.71 - - -10.37 -

Cs8Ag2K2Bi4Cl24 2.15 1.80 - - -10.37 -

Cs8Ag1K3Bi4Cl24 2.32 1.97 - - -10.86 -

Cs8K4Bi4Cl24 4.18 3.31 - - -11.34 -

Cs8Ag3Na1Bi4Cl24 2.06 1.69 - - -9.36 -

Cs8Ag2Na2Bi4Cl24 2.16 1.78 - - -9.36 -

Cs8Ag1Na3Bi4Cl24 2.35 1.96 - - -9.36 -

Cs8Na4Bi4Cl24 3.12 3.09 - - -9.35 -

Cs8Ag3Ti1Bi4Cl24 0.20 0.02 0.05 0.40 -9.10 -11.04

Cs8Ag2Ti2Bi4Cl24 0.03 0.01 - - -8.88 -11.57

Cs8Ag1Ti3Bi4Cl24 0.05 0.01 0.06 - -8.71 -11.91

Cs8Ti4Bi4Cl24 0.04 0.01 0.02 - -8.56 -12.51



Table A.4: Band gap and enthalpy of decomposition of different conformers (double perovskites) for

M(II) substitution

Conformers PBE

(eV)

PBE

+SOC

(eV)

HSE06

+SOC

(eV)

HSE06

(eV)

∆HD

(PBE+SOC)

(eV)

∆HD

(HSE06+SOC)

(eV)

Cs8Ag3Cd2Bi3Cl24 1.12 1.08 1.96 2.14 -9.12 -10.76

Cs8Ag3Co2Bi3Cl24 0.77 0.71 2.01 - -8.24 -11.79

Cs8Ag3Cu2Bi3Cl24 Metal Metal - - -8.87 -

Cs8Ag3Ge2Bi3Cl24 1.06 0.56 1.27 2.12 -9.18 -11.50

Cs8Ag3Mn2Bi3Cl24 1.00 0.77 2.02 2.31 -9.56 -13.20

Cs8Ag3Mo2Bi3Cl24 Metal Metal - - -8.31 -

Cs8Ag3Ni2Bi3Cl24 0.79 0.07 1.64 1.73 -8.70 -11.63

Cs8Ag3Sn2Bi3Cl24 1.05 0.41 1.06 2.07 -9.17 -10.87

Cs8Ag3V2Bi3Cl24 1.90 0.31 0.77 1.26 -8.87 -11.74

Cs8Ag3Zn2Bi3Cl24 1.04 0.93 1.87 2.05 -8.80 -10.43

Cs8Ag3Rh2Bi3Cl24 0.50 0.19 1.32 1.76 -9.38 -11.99



Table A.5: The formula and space group of different secondary phases which include binary and ternary

compounds

Formula Space

group

# Formula Space

group

#

AgCl Fm-3m 225 CsAgCl2 P4/nmm 129

AuCl I4-1/amd 141 CsAuCl2 P4/nmm 129

BiCl3 Pnma 62 CsCl Pm-3m 221

CdCl2 R-3m 166 CsCdCl3 Pm-3m 221

CoCl2 C2/m 12 CsCoCl3 P6-3/mmc 194

CrCl3 C2/m 12 CsCuCl3 Cmcm 63

Cs2AgCl3 Pnma 62 CsCuCl2 P4/nmm 129

Cs2AuCl3 Pnma 62 CsGeCl3 R3m 160

Cs2CuCl3 Pnma 62 CsNiCl3 P6-3/mmc 194

Cs2ZnCl3 Pnma 62 CsSnCl3 P2-1/c 14

Cs3Bi2Cl9 P6-3/mmc 194 CuCl F-43m 216

Cs3Cr2Cl9 P6-3/mmc 194 CuCl2 C2/m 12

Cs3Ga2Cl9 P-3m1 164 GeCl2 P2-1/c 14

Cs3In2Cl9 R-3c 167 InCl Cmcm 63

Cs3Sb2Cl9 P-3m1 164 InCl3 P6-3/mmc 194

Cs3Sc2Cl9 R-3c 167 KCl Fm-3m 225

Cs3Tl2Cl9 P6-3/mmc 194 MnCl2 P-3m1 164

Cs3Y2Cl9 P-3m1 164 MoCl2 Cmcm 64

NaCl Fm-3m 225 NiCl2 R-3m 166

RhCl2 P4-2/mnm 136 SbCl3 Pnma 62

ScCl3 R-3 148 SnCl2 Pmma 62

TcCl2 P-3m1 164 TiCl R-3m 166

TiCl3 P-31m 162 TlCl Pm-3m 221

VCl2 P-3m1 164 YCl3 C2/m 12

YbCl2 P4-2/mm 136 ZnCl I-42d 122
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