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Abstract

Oxide perovskites such as SrTiO3 and CaTiO3 are the potential candidates to be used as a pho-

tocatalyst due to their exceptional electronic structure, high chemical stability, non-toxicity,

and low cost. They exhibit suitable conduction and valence band-edge positions for reduction

and oxidation of water to produce hydrogen and oxygen. Therefore, they can be exploited to

generate hydrogen via water splitting, which is a clean, sustainable, and abundant source of en-

ergy. However, owing to their wide band gap, they absorb only UV irradiation (which consists

≥4% of the solar spectrum). Hence, several works are dedicated to expand optical response

toward the visible region by reducing the band gap through doping with metals, nonmetals, or

the combination of different elements. Despite significant amount of research is done, both

experimentally and theoretically on these systems, it is still an open question concerning the

kind of dopants or codopants, that could reduce the band gap while retaining the photocatalytic

efficiency. In view of this, we systematically study the role of monodoping as well as codoping

of a metal and nonmetal in SrTiO3 in enhancing the photocatalytic efficiency for water split-

ting. Moreover, we investigate the effects of intrinsic defect (viz. O-vacancy) in CaTiO3 to

disentangle the role of O-vacancy for water splitting and N2 fixation reaction.

On the other hand, lead halide perovskites have emerged as an efficient compound semi-

conductor alternative to conventional materials used in photovoltaics. This class of materials

has suitable optical band gap, long carrier diffusion length, high charge carrier mobility and

low manufacturing cost. However, the concerns regarding toxicity of lead and phase insta-

bility restricts their usage on large scale. In an attempt to deal with toxicity and instability,

lead-free halide double perovskites such as Cs2M(I)M(III)X6 (M = metal, X = halogen) and

chalcogenide perovskites ABX3 (A, B = metals, X = chalcogen) have emerged. In this work,

we aim to design lead-free halide double perovskites with improved optoelectronic properties

since they have not shown the efficiency as that of lead halide perovskites. Furthermore, the

excitonic and polaronic effects are unraveled in the case of chalcogenide perovskites.
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We employ a robust methodological approach that integrates various levels of theories com-

bined into one multi-scale simulation to address the optical properties such as dielectric func-

tion, absorption spectra, exciton binding energy and polaronic effects in perovskites. In this

thesis work, the state-of-the-art methodologies that are used to obtain the desired objectives

are: (i) density functional theory (DFT) for ground-state properties, (ii) ab initio atomistic

thermodynamics to predict the stability, (iii) many-body perturbation theory (GW, BSE and

model-BSE) for excited-state properties, (iv) Wannier-Mott approach to determine the exciton

binding energy and exciton lifetime, and (v) density functional perturbation theory (DFPT) for

including ionic contribution to dielectric function and to capture the electron-phonon coupling.



 
 

 
 
 

सार 
 

ऑ"ाइड परैो*+ाइट्स जैस े िक SrTiO3 और CaTiO3 साम56वान उ:ीदवार ह> िज@A उनकी असाधारण 
इलेGॉिनक संरचना, उL रासायिनक िOरता, गैर-िवषाSता और कम लागत के कारण फोटोकैटिलU के Vप मA 
उपयोग िकया जा सकता ह।ै व ेहाइYोजन और ऑ"ीजन का उZादन करन े के िलए पानी का अपचयन और 
ऑ"ीकरण के िलए उपयुS चालन और संयोजकता ब^ड-एज िOित `दिशb त करत ेह>। इसिलए, पानी के िवभाजन 
के माdम स ेहाइYोजन उZe करन ेके िलए उनका दोहन िकया जा सकता ह,ै जो ऊजा6 का एक gh, िटकाऊ और 
`चुर jोत ह।ै हालांिक, उनके kापक ब^ड अंतराल के कारण, व ेकेवल यूवी िविकरण (जो सौर nेGम का लगभग 
4% होता ह)ै को अवशोिषत करत ेह>। इसिलए, धातुओ,ं अधातुओ ंया िविभe तpq के संयोजन के साथ मादन 
(डोिपंग) के माdम स ेब^ड अंतराल को कम करके tu vेw की ओर ऑिyकल `ितिzया का िव{ार करन ेके िलए 
कई काय6 समिपb त ह>। इन `णािलयq पर `ायोिगक और सै}ांितक दोनq तरह स ेिव{ृत माwा मA शोध िकए जान ेके 
बावजूद, यह अभी भी एक खुला `� ह ैिक िकस तरह के अपिम�क (डोपAट) या कोडोपAट ह>, जो फोटोकैटिलिटक 
दvता को बनाए रखत े�ए ब^ड अंतराल को कम कर सकत ेह>। इस ेdान मA रखते �ए, हम पानी के िवभाजन के िलए 
फोटोकैटिलिटक दvता को ब�ान ेमA SrTiO3 मA मोनोडोिपंग के साथ-साथ धात ुऔर अधात ुके कोडोिपंग की भूिमका 
का kविOत Vप स ेअdयन करत ेह>। इसके अलावा, हम पानी के िवभाजन और N2 िनधा6रण `ितिzया के िलए 
O-िरिS की भूिमका को सुलझान ेके िलए CaTiO3 मA आंतिरक दोष (अथा6त O-िरिS) के `भावq की जांच करत े
ह>। 

दूसरी ओर, लडै हलैाइड परैो*+ाइट्स एक कुशल यौिगक अध6चालक फोटोवोि�क मA `युS पारपंिरक सामि�यq 
के िवक� के Vप मA उभर ेह>। साम�ी के इस वग6 मA उपयुS ऑिyकल ब^ड अंतराल, लंबी वाहक `सार लंबाई, उL 
आवेश वाहक गितशीलता और कम िविनमा6ण लागत ह।ै हालांिक, लडै की िवषाSता और चरण अिOरता के बार े
मA िचंताएं ब�े पैमान ेपर उनके उपयोग को `ितबंिधत करती ह>। िवषाSता और अिOरता से िनपटन ेके `यास मA, 
लडै-रिहत हलैाइड डबल परैो*+ाइट्स जैस ेCs2M(I)M(III)X6 (M = धात,ु X = हलैोजन) और चा�ोजेनाइड 
परैो*+ाइट्स ABX3 (A, B = धात,ु X = चा�ोजेन) ) उभर ेह>। इस काम मA, हमारा ल� बेहतर ऑyोइलेGॉिनक 
गुणq के साथ लडै-रिहत हलैाइड डबल परैो*+ाइट्स को िड�ाइन करना ह ै�qिक उ@qन ेलडै हलैाइड पैरो*+ाइट्स 
जसैी दvता नह� िदखाई ह।ै इसके अलावा, चा�ोजेनाइड पैरो*+ाइट्स के मामल ेमA ए"ाइटोिनक और �ुवीय 
`भाव सुलझाय ेह>। 
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हम एक मजबूत काय6`णाली tि�कोण को िनयोिजत करत े ह> जो ऑिyकल गुणq जैस े िक परावै�ुत फलन, 
अवशोषण nेGा, ए"ाइटन बाdकारी ऊजा6 और परैो*+ाइट्स मA �ुवीय `भाव को संबोिधत करन ेके िलए एक 
ब�-{रीय अनुVपण मA संयुS िस}ांतq के िविभe {रq को एकीकृत करता ह।ै इस शोध-`ब� काय6 मA, वांिछत 
उ�ेuq को `ा� करन ेके िलए उपयोग की जान ेवाली अ�ाधुिनक प}ितया ंह>: (i) �ाउंड-Uेट गुणq के िलए घनp 
काया6�क िस}ांत (डीएफटी), (ii) िOरता की भिव वाणी करन े के िलए आिदत परमाण ुऊ¡ा गितकी, (iii) 
ए"ाइिटड-Uेट गुणq के िलए ब�िपंडी vोभ िस}ांत (जीड¢,ू बीएसई और मॉडल-बीएसई), (iv) ऐ"ाइटॉन 
बाdकारी ऊजा6 और ऐ"ाइटॉन जीवनकाल िनधा6िरत करन े के िलए वैिनयर-मॉट tि�कोण, और (v) घनp 
काया6�क vोभ िस}ांत (डीएफपीटी) परावै�ुत फलन मA आयिनक योगदान को शािमल करन ेऔर इलेGॉन-फोनॉन 
यु¤न के अdयन के िलए। 
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CHAPTER 1

Introduction

1.1 Defects in solids

A defect generally refers to any region where the microscopic arrangement of ions differs from

the perfect crystalline order. Defects can be classified into surface, line or point defects, de-

pending on the disruption is bounded on the atomic scale in one, two, or three dimensions.

A schematic diagram of various defects is shown in Figure 1.1. In this thesis work, we have

Figure 1.1: Schematic illustration of (a) point (e.g., vacancy, substitutional, and interstitial), (b)

line (e.g., edge dislocation), and (c) surface (e.g., defect at grain boundaries) defects.

studied various point defects such as vacancy, interstitial, and substitutional defects. Point de-

fects play a pivotal role in field of semiconductors, and can alter their electronic and optical

properties drastically. Furthermore, point defects, specifically, vacancies and interstitials are

intrinsically present in a real crystal since their presence is a normal thermal equilibrium phe-

nomenon. Many a time, it is very difficult for the experimentalists to probe the defects and their

effect on various properties. Therefore, first-principles-based theoretical investigation comes in

handy, which could complement experiments and serve as a predictive tool. This methodology

1



1.2. Thermodynamics of point defects 2

is now used by a large number of research groups around the world. Consequently, a number of

textbooks and overview on this important active topic have been published [4, 5, 6, 7, 8, 9, 10].

In the next section, we have discussed a thermodynamic formalism for the formation of point

defects and the basic rules for doping and alloying.

1.2 Thermodynamics of point defects

According to thermodynamics, point defects are inevitable in the thermal equilibrium crystal.

We can illustrate this by considering a vacancy defect in a monoatomic Bravais lattice. A

vacancy is a point defect in which an ion is missing from the regular lattice site. The number of

vacancies, n in the thermal equilibrium crystal can be obtained by minimizing the appropriate

thermodynamic potential. It will be Gibbs free energy G for the crystal to be at constant

pressure p [11]

G = U ≠ TS + pV (1.1)

where U is the internal energy of the crystal. T represents the temperature, V is volume, and

S is the entropy. To obtain the dependence of G on n, consider a crystal having (N + n)-ion

sites with n number of vacancies. Then, the volume V (n) is approximately (N + n)v0, where

v0 is the volume per ion in the perfect crystal. The configurational entropy S
config arise from the

fixed number of vacancies is given by

S
config = kB ln

(N + n)!
N !n! (1.2)

where kB is the Boltzmann constant. Thus, the Gibbs free energy can be expressed as

G(n) = F0(n) ≠ TS
config(n) + p(N + n)v0 (1.3)

where F0(n) = U ≠ TS is the Helmholtz free energy of the imperfect crystal containing

n vacant sites. Using Stirling’s formula (for large N, ln N ! ¥ N(ln N ≠ 1)) and assuming

n << N , one can obtain
ˆG

ˆn
= ˆF0

ˆn
+ pv0 ≠ kBT ln

N

n
(1.4)

Also, for small n,
ˆF0
ˆn

¥ ˆF0
ˆn

-----
n=0

= E (1.5)

where E is the defect formation energy and independent of n. Therefore, the number of vacan-

cies that minimize G is given by

n = Ne
≠(E+pv0)/kBT (1.6)
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At atmospheric pressures, pv0 is negligible in comparison to E , and thus

n = Ne
≠E/kBT (1.7)

Equation 1.7 implies that defects having a low formation energy will occur in high concentra-

tions. Also, for T > 0, n > 0.

Point defects can be created thermally (i.e., by the thermodynamic equilibrium growth),

chemically (due to the presence of impurity species), and by irradiation or mechanical damage.

For appreciable solubility of impurities, a set of empirical requirements were put forward by

Hume-Rothery [12]. One of the requirements is that the atomic diameters of the impurity

species and the host atom should not differ by more than 14%. For the difference more than

14%, the lattice distortion is large and the solubility is restricted. The other requirements

include that the electronegativity difference of the host and the guest atoms should be small.

Moreover, the crystal structure of the host and the guest atoms should be similar.

1.3 Defect dependent properties

Even small concentrations of defect can influence key physical and chemical properties of the

materials, most notably those controlling the transport of matter and the properties that stem

from it. Moreover, they govern the thermal conductivity by scattering phonons, electronic

conduction, and related properties by acting as acceptors or donors and the optical properties

by introducing electronic states with optical transitions.

In a semiconductor, the role of impurity depends on the kind of localized energy level it

introduces in the otherwise forbidden gap, as illustrated in Figure 1.2. It also depends on the

concentration and the nature of other impurities present in the system. Mostly, shallow donors

and acceptors (states appearing closely above the valence band maximum (VBM) or below

the conduction band minimum (CBm) having an energetic distance within a few kBT ) control

the conductivity. At room temperature, the conductivity can be achieved from 10≠9 to 103 (⌦

cm)≠1 [13]. Furthermore, the conductivity can be dominated by electrons (n-type) or holes

(p-type) in a semiconductor.

The concentrations of shallow acceptors and donors can be made nonuniform, which can

be exploited to generate various effects that can be utilized in devices. One of such devices is

a p-n junction, which consists of adjacent p-type and n-type regions. A p-n junction can act

as a laser or light-emitting diode (LED) on satisfying some additional conditions. Moreover, a
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Figure 1.2: Schematic illustration of shallow and deep defect states. Here, Eg is the band gap

of the pristine material.

consecutive p-n-p or n-p-n region is used to make transistor that act as an amplifier of signals.

Similarly, other devices such as modulators, photodetectors, solar cells can be formed by p-type

and n-type regions having different concentrations of acceptor and donor.

On the other hand, deep-level (states which are energetically away from the band edges,

i.e., VBM and CBm) impurities stimulate the recombination of charge carriers. They control

the lifetime of the charge carriers. For long carrier lifetimes in a device, deep-level impurities

must be avoided. They are generally undesirable in optoelectronic devices since they limit the

efficiency. In some cases, they can be used constructively. For instance, deep levels are needed

in a photocell, which is used as a fast switch.

Point defects in semiconductor can exist in different charge states. Charged defects can

change the structure of the defect configuration, rate of thermal diffusion, trapping rates of

charge carriers, and luminescence quenching rates [14]. The formation energy of defects is

also influenced by different charge states. Charged defects are formed mostly in the aliovalent

doping, but they could be present with isovalent impurities as well.

Point defects are essential to engineer the properties of semiconductors that render them

useful for electronic and optoelectronic devices. Therefore, unraveling the role of point defects

on electronic and optical properties is of utmost importance. In this thesis work, we have

studied the role of intrinsic as well as extrinsic defects in perovskites. We have used state-of-
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the-art first-principles calculations to investigate the same.

1.4 Defects in perovskites

Perovskites are a family of compounds having the chemical formula ABX3, where A and B are

cations and X is an anion [15, 16, 17]. In an ideal cubic structure, the B cation is octahedrally

coordinated, and the [BX6]n≠ octahedra form a corner-sharing network. Since the conduction

and valence band edges of ABX3 perovskites are formed by the B-X bonds, the major elec-

tronic and optical properties are controlled by [BX6]n≠ octahedra. The A cation has a 12-fold

cuboctahedral coordination and occupies the void formed by the [BX6]n≠ octahedra [18]. It

is mainly responsible for charge neutrality and structural stability, but can also affect the B-X

octahedral network, which helps in fine tuning of electronic and optical properties [19]. The

crystal structure of perovskite is shown at the center of Figure 1.3 alongside some of its ap-

plications. Depending on the anion X, perovskites can be categorized into oxide (O2≠), halide

Figure 1.3: Schematic illustration of perovskites and their applications.
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(Cl≠,Br≠, I≠) and chalcogenide (S2≠, Se2≠, Te2≠) perovskites. The first perovskite mineral

CaTiO3 was discovered in the Ural mountains of Russia by Gustav Rose in 1839 and named

after a Russian mineralogist Lev Perovski, but did not become prominent until the 1940s when

their appositeness for electronic applications was realized [20]. Historically, oxide-based com-

pounds with chemical formula ABO3, such as CaTiO3, BaTiO3, PbTiO3, SrTiO3, BiFeO3, and

others are the focus of perovskite research [15, 21]. Oxide perovskites are used in ferroelec-

tric, piezoelectric, dielectric, pyroelectric and catalytic applications [15, 22]. They can also

be used in photovoltaics, but their typical wide band gap (> 2.5 eV) restricts the efficiency

of photovoltaic devices [23, 24]. They are more suitable for water splitting, but that too re-

quire the optimal band gap of ≥ 2 eV [25]. The typical parameters that limit the photocatalytic

performance are similar to photovoltaics, which include poor absorption, high electron-hole

recombination rate and limited stability. The major concern in oxide perovskites is large band

gap, which enables them to absorb only UV irradiation of the solar spectrum. Doping is one

of the most prominent strategies to reduce the band gap of oxide perovskites. In this thesis

work, we have investigated the role of extrinsic point defects (doping of nonmetals and metals)

in SrTiO3 to tune its physical properties, making it useful for photocatalytic water splitting.

Furthermore, we have also examined the role of intrinsic point defect (O-vacancy) in CaTiO3

for water splitting and nitrogen fixation.

Recently, lead halide perovskites (LHPs) have superseded oxide perovskites for solar ab-

sorbers [16, 18, 26]. Within just a few years, the power conversion efficiency of LHPs has

increased from 3.8% (using methylammonium lead iodide, or MAPbI3) in 2009 [27] to now

over 25% [28, 29]. This outstanding performance is due to exceptional properties, including

narrow band gaps (e.g., 1.55 eV for MAPbI3) [30, 31], high absorption coefficients [32], high

charge carrier mobilities [33], long charge carrier diffusion lengths [34], defect tolerance [35],

high photoluminescence quantum efficiencies (PLQEs) [36], and low manufacturing costs [37].

Unfortunately, the toxicity of lead and limited environmental and thermal stability hinder the

practical applications of LHPs on large scale [38]. Mixed halide and mixed cation perovskites

have been explored to cope with the stability issues [39]. Moreover, to replace lead, group IV

elements, tin [40] and germanium [41] have been employed. However, the device performance

through this approach is poor. In addition, the easy oxidation of Sn and Ge from +2 to +4 state

makes them less promising for application in stable perovskite solar cells [38]. It encourages

researchers to develop new classes of materials, which can solve the problems of lead toxicity
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Figure 1.4: Schematic representation of formation of halide double perovskites A2B(I)BÕ(III)X6

to exclude Pb from LHPs APbX3. The A+, Pb(II), B(I), BÕ(III), X≠ ions are denoted by dark

red, light blue, light green, orchid, and golden color balls, respectively.

and stability while retaining the fascinating properties of LHPs. A possible alternative is the

halide double perovskites in which two Pb2+ cations are replaced by a monovalent B(I) and a

trivalent BÕ(III) cations, as shown in Figure 1.4. The A2B(I)BÕ(III)X6 crystal structure provides

an avenue for easier substitution and incorporation of different metal cations with different

oxidation states at the B-site, various organic and inorganic cations at the A-site, and various

halide compositions at the X-site [42, 43, 44, 45, 46, 47]. They have found applications in var-

ious optoelectronic devices, such as LEDs, photodetectors, photocatalysts and solar cells [48].

However, despite being stable and environmentally benign, they do not show optimal perfor-

mance in photovoltaic devices mainly due to an indirect or a wide direct band gap. Therefore, a

pragmatic approach is required to tailor the properties of halide double perovskites via suitable

alloying or doping for specific purposes. In this thesis work, we have investigated the elec-

tronic and optical properties of alloying in a prototypical halide double perovskite Cs2AgInCl6

to enhance its optical properties for optoelectronic devices.

Another alternative of LHPs for solar cell and other optoelectronic devices is chalcogenide

perovskites. Only very few chalcogenide perovskites ABS3 have been reported and explored so

far. AZrS3 (A = Ca, Ba) have smaller direct band gap (≥ 1.9 eV) in comparison to halide double

perovskites, which makes them potential candidates for photovoltaics and optoelectronic appli-

cations [49, 50]. Chalcogenide perovskites exhibit enhanced stability as compared to halide

perovskites due to the larger Coulomb interaction and more covalent bonding character of the

metal-chalcogenide bond in the former [51, 52]. Excited-state properties of chalcogenide per-

ovskites such as exciton binding energy, and electron-phonon coupling effects have not been
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studied yet. Therefore, we have investigated the same using state-of-the-art many-body per-

turbation theory (MBPT) approaches [53], which provide scientific insights into the working

of chalcogenide perovskites. This theoretical methodology can be applied to various semicon-

ducting materials.

1.5 Problems and challenges

Understanding the defect physics of a semiconductor (e.g., a perovskite) is a key to attain

an optimal performance in application. In an attempt to explore suitable dopants/codopants,

the first step is to determine the thermodynamic stability at a realistic experimental condition

(temperature, pressure, and Fermi level). Nevertheless, even the very first step is complex. Note

that the free energy of formation of one isolated defect can be reduced significantly by several

eVs, when the charge carriers (holes or electrons) are available in the material. Disentangling

the relative stability of different types of charged defects is quite challenging. Following this, it

is to investigate very accurately the electronic structure, optical properties, and the band-edge

positions of the materials for specific applications. There are so many unknown parameters

(viz. suitable exchange-correlation functional of density functional theory (DFT) [54, 55],

thermodynamic stability, no trap states inside the forbidden region, optimum optical absorption,

favorable positions of the VBM/CBm, etc.) that need to be addressed properly for finding a

Figure 1.5: Schematic illustration of the proposed strategies to design and study thermody-

namic stability, electronic and optical properties of semiconducting perovskites for various

applications.
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suitable material. A systematic study that have covered all these aspects with the help of a

robust methodology has so far been lacking. A schematic diagram to design a material for

various applications is shown in Figure 1.5.

Theoretically, the ground-state properties of a material are efficiently computed by DFT

[56]. However, the accuracy of computational results is often constrained by the approximation

of the exchange-correlation functionals. Another major issue, particularly for defect calcula-

tions, is the convergence of size of the supercell for an isolated defect. Even though they can be

systematically improved until convergence is reached, limitations in computational resources

put severe restrictions on the extent to which such convergence can be achieved.

For computing the formation energy of defect, the supercell approach is used. In this ap-

proach, a single defect is contained in large cell, which is periodically repeated. Since realistic

defect concentrations are smaller than the defect concentration in a cell, the interaction of the

defect with its periodic images is spurious and must be corrected [57]. Therefore, the super-

cell size should be large enough to localize the defect in the system. Furthermore, an efficient

k-point sampling of the Brillouin zone should be chosen to converge the concerned physical

quantity.

The local or semi-local exchange-correlation functionals (e.g., LDA [58] and PBE [59]) in

DFT severely underestimate the band gap. Consequently, the formation energies and charge

transition levels of defects in semiconductors computed using LDA or GGA are usually erro-

neous. Moreover, they fail to capture the charge localization emanating from narrow bands or

local geometry distortions around defects. This is largely due to the electron’s self-interaction

error. This problem can be circumvented by using hybrid functional such as HSE06 [60, 61].

Defect energetics are improved by the hybrid functionals. However, they require an appropriate

amount of exact exchange mixing in order to reproduce the experimental band gap [62].

To capture the excited-state properties, one needs to go beyond DFT. These are accurately

determined by quasiparticle calculations based on Green’s function methods within the MBPT

(namely, the GW approximation [63, 64] and the Bethe-Salpeter equation (BSE) approach

[65, 66]). In practice, these calculations depend on the DFT orbitals. Therefore, one needs

to compare the theoretical results with the experimental ones to predict the reliability of the

computational approach. Generally, the single-shot GW (G0W0) accurately predicts the band

gaps [67]. However, GW and BSE calculations pose challenges due to a huge computational

cost and memory requirements. In this thesis work, we have taken care of the aforementioned
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parameters to carry out our calculations and designed the perovskites for photocatalytic and

optoelectronic applications.

1.6 A short overview of this thesis

• Chapter 2: This chapter presents the theoretical methodology adopted in this work. A brief

overview of first-principles-based DFT is provided, which is used to determine the struc-

tural and electronic properties of the perovskites. A brief discussion of ab initio atomistic

thermodynamics is also included, which is needed to figure out the thermodynamic stabil-

ity. A discussion about the MBPT approaches, specifically, the GW approximation, and

the BSE approach, which are useful to understand the optical properties including exci-

tonic parameters, is also given. Furthermore, a brief introduction of the density functional

perturbation theory (DFPT) is also included, which determines the lattice dynamics.

• Chapter 3: This chapter presents an exhaustive study of codoped (metal-nonmetal) SrTiO3

for enhancing the photocatalytic efficiency under visible light. In order to search for suit-

able dopants/codopants, it’s of paramount importance to provide theoretical guidance to

experiment about the stability of different dopants as a function of charges at a realis-

tic condition (temperature, pressure, and doping). Moreover, it is of utmost importance

to investigate the electronic structure, optical properties as well as the band-edge posi-

tions of the materials for understanding the synergistic effects of codopants. Therefore,

we have systematically studied the role of monodoping as well as codoping of a metal

(namely, Mn, and Rh) and nonmetal (namely, N, and S) in SrTiO3 in enhancing its pho-

tocatalytic efficiency for water splitting. With the framework of state-of-the-art hybrid

DFT, and ab initio atomistic thermodynamics, we have studied the stability of various

point defect configurations of monodoped and codoped SrTiO3 by calculating the free

energy of formation. Thereafter, we have analyzed the electronic structure of undoped,

monodoped and codoped SrTiO3. We have also studied the optical properties of pristine

and doped SrTiO3 using the MBPT approach which includes a first order Green’s func-

tion technique (viz., G0W0@HSE06). Subsequently, we have obtained the band-edge

positions of undoped and doped SrTiO3 with respect to water redox potentials. Finally,

we have determined the effective mass, which is helpful to estimate the effect on charge

carrier mobility. We have found that the codoping of metal at the Sr site and nonmetal
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at the O site are stable mainly in positive charge states. All the dopants but MnSr have

reduced the band gap of SrTiO3 and induced the visible light absorption. Our results

infer that MnTiSO and MnSrNO codoped SrTiO3 are the most promising candidates for

producing hydrogen via photocatalytic water splitting because these reduce the band gap

to ideal visible region (≥ 2 eV), passivate the localized trap states, and form the shallow

defect states with suitable band-edge positions.

• Chapter 4: In this chapter, we have systematically studied the role of O-vacancy in CaTiO3

for H2 evolution and N2 fixation reactions using hybrid DFT. We have investigated the

oxygen vacancy sites, which ameliorate the photocatalytic performance of CaTiO3. To

determine the nature of defect states, we have calculated electronic structure. Subse-

quently, we have done the band-edge alignment of (un)defective CaTiO3 with respect to

water redox potentials. Finally, we have calculated the Gibbs free energy of formation

to know about the energy barrier for hydrogenation of N2. Our results reveal that an

O-vacancy in the TiO2 plane can ameliorate the photocatalytic efficiency of CaTiO3 for

water splitting as well as N2 fixation. The deep defect states are formed in the case of

an O-vacancy in the CaO plane, which deteriorate the photocatalytic efficiency for water

splitting. We have found that the defective CaTiO3 (containing an O-vacancy) accelerates

the hydrogenation of N2.

• Chapter 5: This chapter presents a detailed study of the sublattice mixing by partial substitu-

tion of several metals M(I), M(II), M(III) and halogen X at Ag/In and Cl site, respectively,

to bring about the visible light absorption in Cs2AgInCl6. The structural stability of the

(un)alloyed Cs2AgInCl6 is determined by evaluating the Goldschmidt tolerance factor

and octahedral factor. Subsequently, using the DFT and hybrid DFT, we have studied the

thermodynamic stability of different configurations by calculating the decomposition en-

ergy. Further, we have analyzed the electronic structure of (un)doped Cs2AgInCl6 using

hybrid DFT. The optical properties are investigated using the G0W0@HSE06. Our results

show that partial mixing of Co(II), Ni(II), and Cu(II) in Cs2AgInCl6 is thermodynami-

cally not stable. The sublattices with Cu(I) and Au(I) at the Ag site, Ir(III) at the In site,

Zn(II) at the Ag and In site simultaneously, Mn(II) at the Ag and In site simultaneously,

and Br and I substitutions at the Cl site have tuned the optical properties. These mixing

can enhance the optical properties of Cs2AgInCl6 for various optoelectronic devices in
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the visible light spectrum.

• Chapter 6: This chapter reports a systematic study of electronic and optical properties of

chalcogenide perovskites AZrS3 (A = Ca, Sr, Ba) using DFT and MBPT approaches

(viz., GW and BSE). The exciton binding energy and the oscillator strength are deter-

mined by solving BSE on top of G0W0@PBE. The carrier nonradiative lifetime is found

to be longer for electrons in comparison to the holes. The exciton binding energies for

CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3 are found to be 0.23, 0.54, 0.25, and 0.21

eV, respectively. The electron–phonon coupling parameters are determined using DFPT,

which show that the charge-separated polaronic state is more stable than the bound exci-

ton for the considered chalcogenide perovskites except –≠SrZrS3. We have found that

the ionic contribution to the effective dielectric screening is negligible and hence, does

not affect the exciton binding energy. The calculated spectroscopic limited maximum ef-

ficiency (SLME) values at 1 µm absorber layer thickness are 21.33%, 25.45%, 21.19%,

and 25.02% for CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3, respectively, suggesting

their usage in photovoltaics.

• Chapter 7: This chapter concludes the work presented in this thesis and presents a brief

description of future projects.



CHAPTER 2

Theoretical methodology

2.1 Computer simulation

A computer simulation is the process of running programs on an assembly of computers con-

nected through network to depict the real-world process through an abstract model. It has

become an integral part of scientific research and innovation as it can complement, confirm,

or preclude the theory and experimentation. With the combination of mathematical modeling,

computer simulations are used in various natural systems in the field of physics, chemistry,

biology, climatology, as well as in human systems such as medical science, economics, social

science, security, and engineering. Simulations can be applied to estimate the properties of the

systems that are too complex to solve analytically. That’s why “computer simulation" has en-

trenched itself as the third pillar of science apart from the theory and experiment. In the present

scenario, advancement in computer architecture makes it possible to address the problem at a

wide range of length and time scales. Multi-scale computer simulation includes length scale

starting with the nucleus, electronic structure, atomistic and nanoscale, mesoscale, all the way

to micro/macro-scale and time scale, from picoseconds, all the way to months and years. In

physics, the properties of materials and their behavior in different environmental conditions can

be determined from the multi-scale computer simulation of one level or the other. The methods

used at various length and time scales to describe a system are shown in Figure 2.1. These lev-

els are distinguished as: (i) atomistic methods, specifically, Electronic Structure calculations,

Molecular Dynamics and Monte Carlo, (ii) mesoscale methods viz. Dislocation Dynamics and

Phase Field, and (iii) continuum methods such as Finite Element and Finite Difference ap-

proaches. The results from one level are used in another level, while capturing the relevant

physics. Multi-scale modeling is useful in computational materials engineering since it allows

one to predict the material properties or the system behavior based on the information of atomic

13
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structure and properties of elementary processes. Computational techniques can be utilized to

determine ground-state and excited-state properties such as geometries, ground-state energies,

charge densities, band gaps, optical spectra, and vibrational spectra to name a few. Depending

on the phenomena and properties one is interested in, the aforementioned classified models can

be implemented.

Figure 2.1: Multi-scale simulation in various length and time scales.

In this thesis work, the first-principles electronic structure calculations are employed to

design the materials for photocatalysis and photovoltaics. The theoretical framework of our

work is outlined as follows: First, a short description of the basic idea behind first-principles

calculations is introduced, which explains how the properties of condensed matter system can

be determined under quantum mechanical description by solving many-electron Schrödinger

equation. Then, we discuss the origin behind the density functional theory (DFT), which is a

practical route to solve many-electron quantum system. Further, we categorize the exchange-

correlation functionals, which contain different approximations. For determining the excited-

state properties of the systems, we introduce the Green’s function approaches, specifically, GW

approximation and Bethe-Salpeter equation (BSE).
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2.2 First-principles calculation

The calculation that is based on the established science (i.e., follows the basic laws of physics)

and does not assume any empirical law or parameter fitting is termed as “First-principles cal-

culation”. It is mainly governed by the principles of quantum mechanics and provides a de-

tailed insight into the origin of electronic, optical, and magnetic properties of materials and

molecules. Our surroundings consist of condensed matter having sufficiently low energy to

form stable systems of atoms and molecules, specifically, solid, or liquid phases. The con-

stituents of condensed matter are atoms, which are made of positively charged nucleus sur-

rounded by negatively charged electron clouds. Therefore, the interactions between atoms, such

as covalent, ionic, chemical, and molecular bonding can be traced to the interactions of their

constituents, specifically, electrons and nuclei. These fundamental interactions are responsible

for the physics behind the condensed matter system. The modeling of these basic interactions

accurately is a daunting task. If we can model these interactions accurately, then the complex

physical phenomena that arise because of these interactions should emerge naturally in our

calculations. The rules that dictate the interaction of electrons and nuclei in condensed matter

are relatively simple. The dynamics of these particles is governed by mathematical formalism

of basic quantum mechanics, mainly by Schrödinger equation. The properties of condensed

matter can be easily determined by solving Schrödinger equation. However, the size of the

problem in terms of a numerical formulation, makes it difficult to solve the Schrödinger equa-

tion. The fundamental laws, which are essential for the mathematical treatment of major part of

physics and chemistry, are fully known, but the equations that results from the applicability of

these laws are very complicated to be solved. Therefore, the center of attention of the ongoing

research in this field is the development of efficient and accurate computational techniques to

deal with many-body problem.

2.3 Many-body physics: A theoretical framework

Many-body physics paves the way for understanding the collective behavior of many interact-

ing quantum particles. The properties of a system can be determined by solving the funda-

mental equation of quantum mechanics, specifically, the Schrödinger equation. On solving the

Schrödinger equation, one could get the many-body wave function that describes the quantum
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state of a system. Further, all the physical phenomena of a system can be obtained from wave

function. However, solving the many-electron Schrödinger equation is practically impossible

except for very simple cases, such as H-atom, He+, harmonic oscillator etc. Due to finite

speed and memory of computers, the numerical solution is possible only for a few number of

electrons. Since determining the exact solution is computationally a daunting task, the normal

strategy is to reduce it to a closely related problem, for which the exact solution is known.

Then, the difference between these two, which is assumed to be small, is treated as a pertur-

bation to the exactly solvable problem. Therefore, the approximate solution is determined in

many-electron problem and subsequently, it is improved by small corrections to the previously

obtained approximate value. To tackle the many-electron system, the first approximation is

the Born-Oppenheimer approximation, in which the electrons and nuclei motion is decoupled.

This is because as the nuclei are much heavier than the electrons, they can be assumed to be at

rest with respect to electrons. Although this approximation makes the many-electron problem

a bit easy, it is still challenging to deal with the electron-electron interaction. For an N-electron

system, one needs to deal with 3N-variables. Mainly, two types of approaches are common

to solve N-electron system: (i) wave function-based approach, and (ii) DFT. The N-electron

wave function in the former and the 3-dimensional electron density in the latter case are the

quantities of concern in solving the N-electron problem. One of the traditional wave function

methods is performed by Hartree in 1928, in which he treated the electrons as independent, and

each electron interacts via only a central potential due to other electrons and nuclei. Therefore,

the total wave function can be written as a product of N independent electrons wave functions.

However, the wave function obtained from this method fails to satisfy the antisymmetric na-

ture, which should be followed by the electrons being fermions. Later, in 1930, Fock replaced

the Hartree product of wave functions with the Slater determinant that satisfies the antisym-

metric condition. This approximation is the well-known Hartree–Fock approximation. The

Hartree–Fock method considers the direct Coulomb and exact exchange interactions of elec-

trons. However, the electronic correlation was still missing, leading to large deviation from

experimental results. To overcome the drawbacks of Hartree–Fock method, post-Hartree-Fock

methods are formulated, which include the electronic correlation in many-electron wave func-

tion. These include Møller-Plesset (MP) perturbation theory, configuration interaction (CI),

coupled cluster (CC) methods, multi-configurational self-consistent field (MCSCF) and quan-

tum Monte Carlo (QMC) methods. However, these accurate methods come with the price of
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very high computational cost, such that they are only applicable to a system of few atoms.

In search of the practical solution to many-electron problem, density functional based ap-

proaches have been devised that can take care of large number of interacting particles in the

system as well as include the electronic correlation. DFT has been formulated as an exact the-

ory to deal with many-electron system, in which the energy is a functional of electronic density.

However, the exact relationship between energy and density is not known. Therefore, DFT is

implemented with suitable approximations to the exchange and correlation effects. DFT has

gained unparalleled success in determining the properties of various materials, which is as-

cribed to the good balance of accuracy and computational cost. Moreover, the DFT provides

the good estimate for ground-state properties. For predicting the excited-state properties, ab ini-

tio many-body perturbation theory calculations such as GW approximation and Bethe-Salpeter

equation (BSE) approach work better.

2.4 Time-independent many-body Schrödinger equation

The starting point of quantum mechanical approach to find the electronic structure of matter

is the Schrödinger equation. One has to find the solution of time-independent non-relativistic

Schrödinger equation

Ĥ�k (r1, r2, . . . , rN , R1, R2, . . . , RM) = Ek�k (r1, r2, . . . , rN , R1, R2, . . . , RM) (2.1)

Here, Ĥ is the Hamiltonian operator for a system of M nuclei and N electrons. The Hamilto-

nian operator Ĥ can be written as

Ĥ = ≠
Nÿ

i=1

~2

2me
Ò2

i ≠
Mÿ

I=1

~2

2M I
Ò2

I ≠
Nÿ

i=1

Mÿ

I=1

ZIe
2

|RI ≠ ri|

+ 1
2

Nÿ

i=1

Nÿ

j ”=i

e
2

|ri ≠ rj|
+ 1

2

Mÿ

I=1

Mÿ

J ”=I

ZIZJe
2

|RI ≠ RJ |

(2.2)

where i and j run over N electrons while I and J run over M nuclei in the system. me is the

mass of electron and MI is the mass of nucleus I . ZI is the nuclear charge of nucleus I . The

first two terms of equation 2.2 represent the kinetic energies of an N electrons and M nuclei,

respectively. The last three terms correspond to the attractive electrostatic interaction between

the nuclei and electrons, the repulsive interaction between the electron-electron and nucleus-

nucleus, respectively. The wave function �k (r1, r2, . . . , rN , R1, R2, . . . , RM) corresponds to

the state k of the system. Ek is the corresponding energy (eigenvalue). The wave function
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itself does not correspond to any physical quantity, but its square, i.e., |�|2 1 represents the

probability density. Simply put, |�|2 is the probability density to find a particle at a particular

point in space, at a particular instant of time. For the wave function to be physically accepted, it

should be continuous, doubly differentiable, and square integrable. An introduction to quantum

mechanics can be found in Ref [68].

However, due to the large dimensionality (i.e., all constituting particles have three degrees

of freedom) and constraints on wave function, the Schrödinger equation cannot be solved ex-

actly for many-electron system. Hence, the approximations are used to solve the Schrödinger

equation. The first and foremost approximation is the Born–Oppenheimer or adiabatic approxi-

mation, in which the dynamics of the electrons and nuclei is treated separately. Since the nuclei

are much heavier than the electrons, the motion of electrons and nuclei can be separated. The

electrons will adjust their positions instantly whenever nuclei move and the movement of elec-

trons depends parametrically on the positions of nuclei. Therefore, under Born–Oppenheimer

approximation, the wave functions of electrons and nuclei can be decoupled and expressed as

follows

�total = Âelectronic ◊ Ânuclear

� (r1, r2, . . . , rN , R1, R2, . . . , RM) = Â (r1, r2, . . . , rN ; R1, R2, . . . , RM) ◊ Â (R1, R2, . . . , RM)
(2.3)

The components of energy due to nuclei (i.e., kinetic energy of nuclei and internuclear

repulsion energy) can be added later after solving for the electrons. Therefore, the nuclear and

electronic degrees of motion can be decoupled and the Hamiltonian for the theory of electronic

structure can be written as

Ĥ = T̂ + V̂ ext + V̂ int (2.4)

In atomic units ~ = me = e = 4fi
‘0

= 1. The kinetic energy operator for the electrons T̂ is

T̂ = ≠
Nÿ

i=1

1
2Ò2

i (2.5)

V̂ext is the potential acting on the electrons due to the nuclei,

V̂ext =
Nÿ

i=1

Mÿ

I=1
VI (|ri ≠ RI |) (2.6)

and V̂int is the electron-electron interaction,

V̂int = 1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj|

(2.7)

1|�|2 = �ú�, where �ú is the complex conjugate of �.
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After the implementation of Born–Oppenheimer approximation, it is still difficult to solve the

Schrödinger equation with the electronic Hamiltonian. Therefore, further approximations are

needed to solve the Schrödinger equation, which are discussed in the following sections.

2.4.1 The Hartree approximation

The assumption made by Hartree is that we may write the many-electron wave function as

� (r1, r2, . . . , rN) = „1 (r1) „2 (r2) . . . „N (rN) (2.8)

where ri contains the spatial coordinates and a spin coordinate for the i-th electron and „i (rj)

is the single-electron spin-orbital. Equation 2.8 implies that the electrons are independent, and

interact only with the averaged density of electrons. Now, the electronic Hamiltonian can be

written as

Ĥel =
Nÿ

i=1
ĥi + V̂int (2.9)

where

ĥi = ≠1
2Ò2

i + v̂i (2.10)

and ĥi only depends on coordinates ri of i-th electron. V̂int is approximated by the sum of the

interaction of individual electron with averaged density of N -1 electrons as follows

V̂int ¥
Nÿ

i=1
ĝi (r) (2.11)

where

ĝk (r) =
⁄

fl
(k) (rÕ) 1

|r ≠ rÕ|drÕ (2.12)

and

fl
(k) (r) =

Nÿ

i=1
i”=k

|„i (r)|2 (2.13)

Therefore, many-electron Schrödinger equation becomes N independent single electron equa-

tions
3

≠1
2Ò2

i + v̂i + ĝi

4
„i (r) = ‘i„i (r) (2.14)

The ‘i is the energy of the i-th electron. Practically, we make a guess of orbitals „i (e.g., from

hydrogen atom wave function). From spin-orbitals, ĝi can be calculated. Then, we solve the N

independent single electron equations and get the N new spin-orbitals. Now, we use the new

spin-orbitals as a starting point and iterate until convergence. The converged orbitals are known
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as self-consistent field spin-orbitals. We obtain the many-electron wave function � using these

spin-orbitals and then, find out the total energy E of the ground state. The total energy is

not equal to the sum of individual orbital energies ‘i because the electron-electron interaction

counted twice when we formulate the effective potential. Therefore, the corrected total energy

is given by

E =
Nÿ

i=1
‘i ≠ 1

2

Nÿ

i=1

Nÿ

j ”=i

Jij (2.15)

where Jij is the Coulomb interaction between electron i and j. These are called Coulomb

integrals and given by

Jij =
⁄ ⁄

fli (r1) flj (r2)
|r1 ≠ r2|

dr1dr2 =
⁄ ⁄

|„i (r1)|2
1

|r1 ≠ r2|
|„j (r2)|2dr1dr2 (2.16)

Jij =
⁄ ⁄

„
ú
i (r1) „i (r1)

1
|r1 ≠ r2|

„
ú
j (r2) „j (r2) dr1dr2 (2.17)

Hartree approximation lays the foundation for subsequent developments in the methodologies

to solve the many-electron system.

2.4.2 The Hartree–Fock approximation

A crucial drawback of Hartree approximation is that the antisymmetry property of the elec-

tronic wave function is not satisfied. The electronic wave function fails to satisfy the Pauli

exclusion principle and hence, the description of electronic component is incomplete. The

main purpose of Hartree–Fock approximation is to correct the failure of Hartree approxima-

tion. In this approximation, the variational wave function is in the form of a Slater determinant

which satisfies the antisymmetric condition. Pauli exclusion principle is the direct consequence

of the antisymmetric condition. According to this, any two fermions cannot occupy the same

orbital at the same time.

Slater determinant for N orbitals is represented as

� (r1, r2, . . . , rN) = 1Ô
N !

--------------

„1 (r1) „2 (r1) · · · „N (r1)

„1 (r2) „2 (r2) · · · „N (r2)
...

... . . . ...

„1 (rN) „2 (rN) · · · „N (rN)

--------------

(2.18)
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where ri contains the spatial coordinates and a spin coordinate for the i-th electron and „i (rj)

is the i-th single-electron spin orbital. Now, the total energy is given by

E = È�|H|�Í =
Nÿ

i=1
Hi + 1

2

Nÿ

i=1

Nÿ

j=1
(Jij ≠ Kij) (2.19)

where

Hi =
⁄

„
ú
i (r) ĥi„i (r) dr (2.20)

ĥi is defined by equation 2.10, Jij is Coulomb integral defined by equation 2.17, and Kij is

called as exchange integral, defined as

Kij =
⁄ ⁄

„
ú
i (r1) „j (r1)

1
|r1 ≠ r2|

„i (r2) „
ú
j (r2) dr1dr2 (2.21)

This exchange term is the consequence of the Pauli exclusion principle, and create repulsion

for the electrons of same spin.

The Hartree–Fock approximation takes care of exact exchange, but electronic correlation

is missing, which plays an important role in bond breaking and bond formation. Also, many

wave functions are possible that satisfy antisymmetric nature, which cannot be described by the

single Slater determinant form, and are unattainable within Hartree–Fock approximation. To

account for the correlation effects, one needs to go to the correlated methods, which deal with

the multi-determinant wave functions. However, these post-Hartree–Fock methods are compu-

tationally very expensive, and their computational demand increases further with increase in

the size of the systems. On the other hand, density functional theory is a conceptually sim-

ple and computationally practicable strategy that incorporates the effects of both exchange and

correlation.

2.5 Density functional theory (DFT)

In DFT, the basic quantity of concern is electron density, which is a scalar function of posi-

tion. This approach is different from wave function approach to solve Schrödinger equation.

The use of electron density rather than the wave function simplify the many-electron system

problem since the dimensionality is reduced from 3N to 3. The electron density remains three-

dimensional, i.e., it does not change the dimension on increasing the number of electrons.

This facilitates the DFT to be used for a large number of atoms with reasonable computational

cost. Therefore, DFT is widely used to tackle the many-electron systems, specifically, atoms,
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molecules and solids. It is mainly used to describe the ground-state properties of the systems,

which are the functionals of electron density. The development of DFT is described in the

subsequent sections.

2.5.1 Thomas-Fermi-Dirac approximation

Instead of the wave function approaches like Hartree and Hartree–Fock, a different approach

was proposed by Thomas and Fermi in 1927. Thomas and Fermi proposed electronic density

as the fundamental variable for calculating the energy of the many-electron system. In their

original work, Thomas and Fermi proposed an expression for the kinetic energy of the many-

electron system, which is approximated as a functional of density. They assumed the system

as non-interacting uniformly distributed electron with density equal to the local density at any

given point and used fermion statistical mechanics to derive the kinetic energy for uniform

electron gas as particles in a box

TT F [n] = C1

⁄
n

5
3 (r) dr (2.22)

where C1 = 3
10 (3fi

2)
2
3 n(r) = 2.871 in atomic units and n (r) is the electronic density for a

uniform electron gas. They neglected the exchange and correlation among electrons. Exchange

can be introduced with local approximation by considering Slater’s expression for the uniform

electron gas (Dirac, 1930; Slater, 1951)

EX [n] = C2

⁄
n

4
3 (r) dr (2.23)

where C2 = ≠3
4

1
3
fi

2 1
3 = 0.739 in atomic units. Therefore, the energy functional for electrons

in presence of external potential Vext (r)

ET F D [n] = C1

⁄
n

5
3 (r) d

3
r +

⁄
Vext (r) n (r) d

3
r + C2

⁄
n

4
3 (r) d

3
r

+ 1
2

⁄
n (r) n (rÕ)

|r ≠ rÕ| d
3
rd

3
r

Õ
(2.24)

where the last term is the classical electrostatic Hartree energy. With including approximated

exchange term, the theory is known as Thomas-Fermi-Dirac (TFD).

The ground-state density and energy can be found by minimizing the functional E[n] for all

possible n (r) subject to the constraint that the total integrated charge be equal to the number

of electrons
⁄

n (r) d
3
r = N (2.25)
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Using the method of Lagrange multipliers, the solution can be found by an unconstrained min-

imization of the functional

�T F [n] = ET F [n] ≠ µ

;⁄
n (r) d

3
r ≠ N

<
(2.26)

where the Lagrange multiplier µ is the Fermi energy. Equation 2.26 leads to the expression

1
2

1
3fi

2
2 2

3
n

2
3 (r) + V (r) ≠ µ = 0 (2.27)

where V (r) = Vext (r) + VHartree (r) + Vx (r) is the total potential.

This model is not good to describe the electronic structure of matter since it is based on

crude approximations and essential physics (namely, correlation effects) is missing.

2.5.2 The Hohenberg-Kohn theorems

In 1964, Hohenberg and Kohn [54] proved two theorems in their famous paper which is the

foundation of modern density functional theory.

Theorem I: For any system of interacting electrons in an external potential Vext (r), the po-

tential Vext (r) is determined uniquely, apart from a trivial additive constant, by the electronic

ground-state density n (r).

For the proof let us assume that there exists two different potentials Vext (r) and V
Õ

ext (r), which

give rise to same ground-state density n (r). These two different potentials leads to two different

Hamiltonians H and H
Õ. On solving the Schrödinger equation, we will get different wave

functions � and �Õ corresponding to Hamiltonians H and H
Õ. Then, the ground-state energies

corresponding to � and �Õ are calculated as: E = È�|H|�Í and E
Õ = È�Õ|H Õ|�ÕÍ. Here, we

have considered the non-degenerate case, but Hohenberg-Kohn theorem proof can be extended

to degenerate case as well [69]. Further, using variational principle

E < È�Õ|H|�ÕÍ = È�Õ|H Õ|�ÕÍ+È�Õ|H≠H
Õ|�ÕÍ = E

Õ+
⁄

n (r) [Vext (r) ≠ V
Õ

ext (r)] dr (2.28)

Similarly, if we solve for E
Õ, we can swap the indexes in Equation 2.28 such that

E
Õ
< È�|H Õ|�Í = È�|H|�Í + È�|H Õ ≠ H|�Í = E +

⁄
n (r) [V Õ

ext (r) ≠ Vext (r)] dr (2.29)

On adding Equation 2.28 and 2.29, we obtain

E + E
Õ
< E + E

Õ (2.30)
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which is a contradictory inequality. Therefore, our initial assumption was wrong and the

ground-state density uniquely determines the potential.

Corollary I: Since n (r) uniquely determines Vext (r), in turn, Vext (r) fixes the Hamiltonian

and hence, the many-body wave functions are determined. Therefore, all the properties of the

system are determined provided only the ground-state density n (r).

Theorem II: A universal energy functional E[n] using density n (r) can be defined, valid for

any number of particles and any external potential Vext (r). For a given potential Vext (r), the

E[n] equals the correct ground-state energy of the system which is the global minimum value

for the correct ground-state density n (r).

For the proof, we restrict the space of densities to be V-representable, which can be represented

by a potential. It can also be proved without this restriction and a general proof can be found

in Ref [70]. Since, all the properties of a system can be determined from the functional of the

density, the energy functional can be written as

EHK [n] = T [n] + Eint [n] +
⁄

Vext (r) n (r) dr

= FHK [n] +
⁄

Vext (r) n (r) dr
(2.31)

where

FHK [n] = T [n] + Eint [n] (2.32)

is the universal functional of n (r) which includes kinetic and interaction energy of electrons.

Since Vext (r) depends on nuclear coordinates, its contribution is system-specific. Now, con-

sider the ground-state density of a system is n1 (r) corresponding to potential V
1

ext (r). Then,

the energy is the expectation value of the Hamiltonian

E1 = EHK [n1] = È�1|H|�1Í (2.33)

where �1 is the wave function corresponding to the ground state. Let us consider a differ-

ent density n2 (r) that corresponds to a different wave function �2. Then, using variational

principle

E1 = EHK [n1] = È�1|H|�1Í < È�2|H|�2Í = EHK [n2] = E2 (2.34)

Hence, the Hohenberg-Kohn functional obtained from the true ground-state density provides

the lowest energy than for any other arbitrary density. It follows that if the functional of the

density is known, then the ground-state energy and density can be determined by minimizing

it with respect to the variations in the density. Note that only the ground state is accessible

through this functional. The guidance regarding excited states is not provided.
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Although these theorems prove the existence of a universal functional FHK [n], but there is

no prescription on how to determine it. The Kohn-Sham equations provide a practical frame-

work to solve the many-electron system.

2.5.3 The Kohn-Sham ansatz

Figure 2.2: Schematic representation of mapping of interacting system to a non-interacting

many-electron system through the same ground-state electron density.

In 1965, Kohn and Sham [55] suggested an approach to determine the unknown functional

FHK [n]. They introduced a non-interacting particle system and assumed that the ground-state

density of the original interacting system and auxiliary non-interacting system is same. A

schematic illustration of the same is shown in Figure 2.2. The auxiliary Hamiltonian is chosen

to have the usual kinetic energy operator and an effective local potential V
‡

eff (r) acting on an

electron of spin ‡ at point r

Ĥ
‡
aux = ≠1

2Ò2 + V
‡

eff (r) (2.35)

Â
‡
i (r) are the eigenstates (Kohn-Sham orbitals) with the lowest eigenvalues ‘

‡
i of the above

Hamiltonian. The density of the auxiliary system is given by

n (r) =
ÿ

‡

n (r, ‡) =
ÿ

‡

N‡ÿ

i=1
|Â‡

i (r)|2 (2.36)

The kinetic energy Ts of independent-electron auxiliary system is expressed as a functional of

the Kohn-Sham orbitals

Ts = ≠1
2

ÿ

‡

N‡ÿ

i=1
ÈÂ‡

i |Ò2|Â‡
i Í = 1

2
ÿ

‡

N‡ÿ

i=1

⁄
|ÒÂ

‡
i (r)|2dr (2.37)

Classical coulomb interaction energy of the electron density n (r) interacting with itself

EHartree [n] = 1
2

⁄
n (r) n (rÕ)

|r ≠ rÕ| drdrÕ (2.38)
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Therefore, the total energy in the Kohn-Sham formulation can be written as

EKS = Ts [n] +
⁄

Vext (r) n (r) dr + EHartree [n] + Exc [n] (2.39)

All the many-body interactions of exchange and correlation are wrapped into the exchange-

correlation energy Exc. Exc can also be expressed as

Exc [n] = FHK [n] ≠ (Ts [n] + EHartree [n]) (2.40)

or

Exc [n] = ÈT̂ Í ≠ Ts [n] + ÈV̂intÍ ≠ EHartree [n] (2.41)

Here, ÈT̂ Í is the kinetic energy and ÈV̂intÍ is the internal interaction energy of the original

many-body interacting system. Exc [n] is responsible for binding atoms into molecules and

solids. Therefore, the Kohn-Sham equations can be written as

H
‡
KSÂ

‡
i (r) = ‘

‡
i Â

‡
i (r) (2.42)

where

H
‡
KS (r) = ≠1

2Ò2 + V
‡

KS (r) (2.43)

and

V
‡

KS (r) = Vext (r) + ”EHartree

”n (r, ‡) + ”Exc

”n (r, ‡)

= Vext (r) + VHartree (r) + V
‡

xc (r)
(2.44)

These equations can be solved self-consistently as shown in Figure 2.3. However, the exact

dependence of Exc [n] on the density n is not known. Therefore, certain approximations are

used to determine the exchange-correlation functional.

2.5.4 Exchange-correlation functionals

2.5.4.1 Local Density Approximation (LDA)

In 1965, Kohn–Sham approximated exchange-correlation functional Exc [n] as a local or nearly

local functional of the density. Exc [n] provides a self-interaction correction. It also describes

how one electron avoids another.

E
LDA
xc [n] =

⁄
n (r) Á

unif
xc (n (r)) dr (2.45)
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Figure 2.3: Flow chart to solve the Kohn-Sham equations self-consistently.

where Á
unif
xc (n (r)) is the exchange-correlation energy per electron in a gas of electrons with

uniform density n (r). LDA is exact for any uniform density. LDA is accurate for any n (r)

that varies slowly over space:

|Òn|
n

π kF =
1
3fi

2
n

2 1
3 (2.46)

and
|Òn|

n
π kS = 2Ô

fi

1
3fi

2
n

2 1
6 (2.47)

where kF is the Fermi wave vector and kS is the Thomas-Fermi wave vector. From Wigner

(1938) approximation, Á
unif
xc (n) can be written as

Á
unif
xc (n) = Á

unif
x (n) + Á

unif
c (n) (2.48)
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Dirac (1930) formulated Á
unif
x (n) as

Á
unif
x (n) = ≠ 3

4fi

1
3fi

2
n

2 1
3 = ≠ 3

4fi
kF = ≠ 3

4fi

1
9fi
4

2 1
3

rs
(2.49)

where Seitz radius, rs =
1

3
4fin

2 1
3 , is the radius of a sphere which on average contains one

electron and

Á
unif
c (n) ¥ ≠0.056

Q

a n
1
3

0.079 + n
1
3

R

b ¥ ≠ 0.44
7.8 + rs

(2.50)

is formulated by Wigner (1938). In high density limit (rs æ 0), Á
unif
c æ ≠0.056, and in low

density limit (rs æ Œ), Á
unif
c æ ≠0.44

rs
. Quantum Monte Carlo (QMC) calculations with exact

high and low density limits give an accurate Á
unif
c .

In 1972, Barth and Hedin extend LDA to spin polarized case known as local spin density

approximation (LSDA):

E
LSDA
xc [nø, n¿] =

⁄
n (r) Á

unif
xc (nø (r) , n¿ (r)) dr (2.51)

If a system is or can be spin polarized in its ground state, with same up and down spin depen-

dent external potential, i.e., vø (r) = v¿ (r) = v (r), LSDA energies are more accurate than

LDA. LSDA is more useful for calculating energies of molecules and solids, usually, extended

system where spin symmetry is broken.This suggests a strategy to construct functionals beyond

LDA:

(1) Add additional ingredients to the argument list of Áxc.

(2) Use these added ingredients to satisfy more exact constraints and more appropriate norms.

These two steps suggest the Jacob’s ladder of density functional approximations for the exchange-

correlation energy stretching from the Hartree world up to the heaven of chemical accuracy [1].

Figure 2.4 shows the Jacob’s ladder. It shows the exchange-correlation functional approxima-

tions hierarchy. The complexity, accuracy, computational cost, and time increases as we step

up the ladder.

Binding energies of atoms are overestimated by LSDA. Also, the bond lengths are under-

estimated. Therefore, we need more appropriate approximations.

2.5.4.2 Generalized Gradient Approximation (GGA)

The idea for the GGA is proposed by the Langreth and Mehl in 1983 [71].

E
GGA
xc [n] =

⁄
n (r) Á

GGA
xc (n, |Òn|) dr (2.52)
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Figure 2.4: Jacob’s ladder of density functional approximations [1]

Ma and Bruekner in 1968 [72] derived the gradient expansion (GE) as

E
GE
xc =

⁄
n (r) Á

unif
xc (n (r)) dr +

⁄
Bxc (n) |Òn|2

n
4
3

dr (2.53)

where the coefficient Bxc (n) is calculated approximately. Bxc (n) has an exchange part which

is independent of density n, and a correlation part which depends weakly on density n. It is

exact for slowly varying electron gas, to order |Òn|2. For real systems built up from atoms, the

correlation part contains large error. So, GE is bad approximation for real systems. Therefore,

the gradient expansion should be carried out more carefully retaining all the relevant contri-

bution to desired order. Also, it should fulfill the exact constraints required by exchange and

correlation hole. In order to satisfy these conditions, gradient expansions are modified, and

named generalized gradient approximations (GGA’s). In 1996, Perdew, Burke and Ernzerhof

(PBE) presented a derivation of GGA, in which all parameters are fundamental constants [59].

It is widely used GGA. BLYP is another GGA functional used, where the parameters are fitted

to experimental molecular data.

Binding energies of atoms are improved by GGA. Also, the bond lengths are improved.

The GGA has certain limitations in the accuracy because non-local effect of exchange term is
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not taken into account completely, and self-interaction error is not fully recovered.

2.5.4.3 Meta-Generalized Gradient Approximation (meta-GGA)

Perdew et. al. (PZKB) in 1999 proposed

E
MGGA
xc [n] =

⁄
n (r) Á

MGGA
xc (n, |Òn|, ·) dr (2.54)

where · is the kinetic energy density for the non-interacting system given by

· (r) =
occupÿ

i

1
2 |Ò„i (r)|2 (2.55)

and
⁄

· (r) dr = Ts [n] (2.56)

· can satisfy some exact constraints that no GGA can satisfies.

meta-GGA is semi-local functional. In spite of some improvement, meta-GGA still has

certain issues. The self-interaction correction is incomplete in it. It can only be corrected by a

non-local approximation.

2.5.4.4 Hybrid functionals

The idea of hybrid functionals is originated in 1993 by Becke. He mixed a fraction of exact

exchange (Hartree-Fock (HF) exchange) with GGA exchange and correlation.

E
hyb
xc = –E

HF
x + (1 ≠ –) E

GGA
x + E

GGA
c (2.57)

where coefficient – can be fitted empirically or estimated theoretically.

Accuracy of hybrid functionals is quite high. Non-local effects are taken into account in

hybrid functionals. However, calculating the HF exchange computationally is a daunting task,

especially for extended systems. Therefore, to circumvent this, Heyd, Scuseria and Ernzerhof

proposed the screened hybrid functional (HSE) [60, 61]. In HSE, the long-range part of HF

exchange is screened out by using a screened Coulomb potential. It lowers down the computa-

tional cost. The Coulomb potential is separated in short-range (SR) and long-range (LR) parts

1
r

= 1 ≠ erf(Êr)
r¸ ˚˙ ˝

SR

+ erf(Êr)
r¸ ˚˙ ˝

LR

(2.58)
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where Ê is the screening parameter that defines the range of separation, and the error function

is given by

erf(Êr) = 2Ô
fi

⁄ Êr

0
e

≠x2
dx (2.59)

Then, the exchange-correlation energy is calculated as

E
HSE
xc = –E

HF,SR
x (Ê) + (1 ≠ –)EP BE,SR

x (Ê) + E
P BE,LR
x (Ê) + E

P BE
c (2.60)

HSE06 functional with – = 0.25 and Ê = 0.11 bohr≠1 as default values predicts the enthalpies

of formation, ionization potentials, electron affinities, band gaps, and lattice constants with

good accuracy. These parameters can also be varied to match the experimental values. This

implies that we are lacking some understanding of how to construct them as they require at

least one empirical parameter.

In the present thesis, we have mainly used PBE functional of GGA for relaxing the structure

and HSE06 hybrid functional for energy calculations. Several codes are available to perform

DFT calculations. We have performed the calculations as implemented in Vienna ab initio

simulation package (VASP).

2.6 Basis set

The many-electron wave function is expanded in terms of the set of functions, which forms the

basis set. The choice of basis functions is crucial for the efficiency of a given computational

method and the first step in the implementation of a DFT method is to find a suitable basis set.

Plane waves and Gaussian-type orbitals (GTOs) are two most commonly used basis functions.

The former basis set is primarily used in the periodic crystals, whereas the latter one in the

molecular systems. Plane waves basis sets are used in conjunction with pseudopotentials to

treat the interaction of core electrons with nuclei. Plane waves pseodopotential method is free

from basis set superposition error (BSSE), whereas BSSE is present in localized basis sets-

based methods (GTOs calculations). Therefore, the corrections are needed to take care of

BSSE. In this thesis work, we have performed the calculations on periodic solids and the plane

waves pseudopotential method is used for the electronic structure calculations.
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2.6.1 Plane waves basis set

A practical numerical scheme is required to solve the single-particle Kohn-Sham equations for

the extended systems. The prevailing approach to handle this problem is to expand the single-

particle eigenstates of the Kohn-Sham equations into a set of basis functions. This lead to

the transformation of Schrödinger equation into algebraic equation of expansion coefficients,

which could be solved numerically. Particularly, plane waves are the most suitable basis func-

tions set for extended systems. Plane waves are orthonormal and do not depend on energy.

Thus, the Schrödinger equation becomes a basic matrix eigenvalue problem for the expansion

coefficients. Since plane waves are independent of atomic positions, the pulay forces are absent

and the Hellmann-Feynman theorem can be applied directly to calculate atomic forces.

Typically, the plane wave basis set is comprised of plane waves up to a certain wave vector

cutoff. The convergence of the basis set is simply specified by a single parameter, i.e., the length

of the cut off wave vector. However, a large number of plane waves is required to represent the

rapid oscillations that are exhibited by the valence wave functions in the core region near nuclei.

Therefore, the plane waves are used in conjunction with the pseudopotentials to approximate

the effect of core electrons.

Additionally, while implementing plane waves, various integrals and operations are easier

to carry out with Fast Fourier Transforms (FFTs). It allows the usage of plane waves in larger

systems.

Now, in this section we will introduce the basic terms that are used for describing infinitely

extended periodic systems. After that, the usefulness of plane wave basis set for expansion of

wave function is shown. In next sections, the pseudopotential approach is described.

Supercells

Despite the simplification of many-body electron problem to a set of single-particle equations,

the calculation of the single-electron wave functions for an extended (or even infinite) system

is still a daunting task. To make the solution feasible, the extended system can be represented

by a box of atoms which is periodically repeated in all the three spatial directions. The box is

described by three vectors a1, a2, and a3, which define a lattice in real space. The volume of

the corresponding cell is given by

�c = | a1 · (a2 ◊ a3)| (2.61)
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The general lattice vectors are multiples of the primitive lattice vectors, such that any translation

vector (T) can be written as

T = N1a1 + N2a2 + N3a3 (2.62)

where N1, N2, and N3 are three integers. The box can be primitive unit cell or a large supercell

containing a larger volume, mimicking the solid phase locally. The supercells are particularly

useful to model the point defects, surfaces or isolated molecules. The supercell should be

sufficiently large so that the periodic images of defects, surfaces or molecules do not interact.

The convergence of a particular quantity should be checked with respect to the size of the

supercell.

Fourier representations

The computational cost for solving the Kohn-Sham equations can be decreased by exploiting

the translational symmetry of atomic arrangements. The effective potential experienced by the

electron is a periodic function having periodicity of the lattice, which can be expressed as

Veff (r + T) = Veff (r) (2.63)

where the translation vector (T) is defined above in Equation 2.62. Since the effective potential

Veff is periodic, it can be expanded in Fourier series given by

Veff (r) =
ÿ

G
Veff (G)eiG·r and Veff (G) = 1

�c

⁄

�c

Veff (r)e≠iG·r
dr (2.64)

The sum runs over all the reciprocal lattice vectors G. These reciprocal lattice vectors G follow

the condition G · T = 2fiM , where M is an integer and T is a translation vector of the unit cell.

These vectors G form the reciprocal lattice, whose primitive vectors b1, b2, and b3 are defined

as

ai · bj = 2fi”ij ; i, j = 1, 2, and 3 (2.65)

where the Kronecker delta ”ij is 1 when i = j and zero otherwise. The volume of the corre-

sponding reciprocal unit cell is given by

| b1 · (b2 ◊ b3)| = (2fi)3

�c
(2.66)
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Bloch’s theorem

According to Bloch’s theorem, the eigenstates of the single-particle Schrödinger equation in a

periodic crystal in terms of plane waves can be expressed as

Â (r + T) = e
ik·T

Â (r) (2.67)

for every T in the Bravais lattice. Here, k is the wave vector. The values of k can be confined

to the reciprocal unit cell. Conventionally, this unit cell is taken to be the first Brillouin zone

(BZ). For a given k, different independent eigenstates exist, which can be labelled with a band

index n.

Bloch theorem can also be stated in alternative form. All the eigenfunctions Ânk of single-

particle Schrödinger equation with a periodic potential can be specified to have the form of a

plane wave times a function unk with the periodicity of the Bravais lattice [11]:

Ânk (r) = e
ik·r

unk (r) (2.68)

where

unk (r + T) = unk (r) (2.69)

for all T in the Bravais lattice. This allows to restrict the calculations of eigenfunctions to

within one unit cell. The eigenfunctions in other unit cell can be determined using Equation

2.68. It is convenient to normalize the eigenfunctions with respect to single unit cell:

⁄

�c

|Ânk (r)|2dr = 1 (2.70)

Since the functions unk (r) are periodic, they can be expanded in a set of plane waves. There-

fore, Equation 2.68 becomes

Ânk (r) =
ÿ

G
cnk (G) e

i(k+G)·r (2.71)

where cnk (G) are the Fourier coefficients.

The Kohn-Sham equations in the notation of Bloch states can be written as

3
≠1

2Ò2 + Veff (r)
4

Âjk (r) = ‘jkÂjk (r) (2.72)

where

Veff (r) = Vext (r) + VHartree [n (r)] + Vxc [n (r)] (2.73)
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and

n (r) = 2 �c

(2fi)3
ÿ

j

⁄

BZ
|Âjk (r)|2 � (EF ≠ ‘jk) dk (2.74)

Here, to differentiate between electron density and band index, we have used n for electron

density, and j for band index. The factor of two in Equation 2.74 is used to take the electron

spin into account. � is the step function, which has the value one for positive and zero for

negative arguments. EF is the Fermi energy up to which the single-particle states have to be

occupied.

Brillouin zone sampling

On applying Bloch’s theorem, one only needs to know the finite number of eigenstates for wave

vector k within the first Brillouin zone instead of calculating an infinite number of electronic

states extended over the entire space of the solid. Ostensibly, the improvement is looking

minor since very fine sampling of Brillouin zone is needed for the calculations. However,

since the lattice-periodic part unk (r) depends weakly on k, a small finite number of k-points is

sufficient to sample the Brillouin zone [73]. Therefore, the integral over the Brillouin zone can

be replaced by a discrete sum over the chosen k-point mesh of Nkpt k-points:

�c

(2fi)3

⁄

BZ
... � (EF ≠ ‘jk) dk æ 1

Nkpt

ÿ

k
fjk ... (2.75)

where fjk are occupation numbers which are either one or zero. In literature, various meth-

ods have been proposed to construct the k-point meshes [74, 75, 76]. In this thesis work,

Monkhorst-Pack scheme is used to sample the Brillouin zone. The error induced by replac-

ing the integral to a discrete sum over a finite number of k-points can be reduced by using a

dense k-point mesh. For a larger supercell, coarser k-point mesh is needed to get the converged

results, since the Brillouin zone of the supercell is smaller (see Equation 2.66). Moreover,

typically a coarser k-point mesh is required for insulators, whereas a denser k-point mesh is

required for the metallic system in order to get a precise sampling of the Fermi surface.

Fourier representation of the Kohn-Sham equation

The Kohn-Sham equation assume a simple form when the wave function is expanded in plane

waves. On substituting Equation 2.71 into Equation 2.72, and after doing some minor mathe-
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matics, we get the matrix eigenvalue equation [69]:

ÿ

G

31
2 |k + G|2”GÕG + Veff (GÕ ≠ G)

4
c

jk
G = ‘jkc

jk
GÕ (2.76)

Practically, the Fourier expansion of wave function given by Equation 2.71 is truncated by

considering only those plane waves that have a kinetic energy lower than a given cutoff value

Ecut:
1
2 |k + G|2 Æ Ecut (2.77)

Therefore, the convergence of the concerned quantity should be done by increasing the value

of Ecut systematically.

The Fourier representation of electron density is given by

n (G) = 2
Nkpt

ÿ

jk
fjk

ÿ

GÕ

1
c

jk
GÕ≠G

2ú
c

jk
GÕ (2.78)

Since the electron density n Ã |Â|2, it requires Fourier components that extend twice as far in

each direction as those needed for the wave function Â.

The calculation of all Fourier components using Equation 2.78 involves double sum that

scales as N
2
G, where NG is the number of G vectors needed to describe the electron density.

This becomes very expensive for large systems. Moreover, if the Bloch states are known on

a grid of NR points in real space, the electron density can be determined as a square, in NR

operations. The use of fast Fourier transform (FFT) allows the transformation from one space

to the other in N lnN operations, where N = NR = NG [69]. Therefore, it is advantageous to

work with plane waves since the evaluation of the expressions can be speeded up by the use of

FFT.

2.6.2 Pseudopotentials

The solution of the Kohn-Sham equations is computationally challenging, since the wave func-

tions need to be determined for N electrons. Additionally, a large number of plane waves is

required to expand the tightly bound core orbitals and to follow the rapid oscillations of va-

lence electrons wave functions in the core region [77]. The pseudopotential approach allows

the electronic wave functions to be expanded by small number of plane waves basis set.

It is well known that the valence electrons are mainly responsible for the physical and chem-

ical properties of a material in comparison to the core electrons. Therefore, the pseudopotential

approximation exploits this fact by replacing the core electrons and the strong ionic potential
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Figure 2.5: Schematic representation of pseudopotential technique. The all-electron wave func-

tion corresponding to Coulomb potential is shown by red color. The pseudo wave function

corresponding to pseudopotential is shown by blue color.

by a weaker pseudopotential that acts on a set of pseudo wave functions instead of true valence

wave functions. It has schematically illustrated in Figure 2.5. The Pauli exclusion principle

requires the orthogonality between the core wave functions and the valence wave functions,

which is maintained by this rapid oscillations of valence wave functions in the core electrons

region. The pseudopotentials are constructed such that the wave functions of the valence elec-

trons match with those of an all-electron calculation outside the core region defined by a cutoff

radius rc as shown in Figure 2.5 and inside the core region, they are nodeless and smooth.

The pseudopotentials with larger rc are softer, which converge with smaller number of plane

waves basis set. But these soft pseudopotentials are less transferable, i.e., less accurate in re-

producing valence properties in different chemical environments. Another advantage of using

pseudopotentials is the inclusion of relativistic effects while the valence electrons are treated

non-relativistically. In the following sections, we will discuss about the pseudopotentials used
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in DFT.

2.6.3 Norm-conserving pseudopotentials

In 1979, Hamann, Schlüter, and Chiang [69, 78] introduced energy-independent pseudopoten-

tials that satisfy the following four criteria:

1. For a particular atomic configuration, all-electron (AE) and pseudo (PS) valence eigen-

values are equal.

‘
AE
nl = ‘

PS
nl (2.79)

where n and l correspond to the principal quantum number and the angular momentum

quantum number, respectively.

2. Beyond a chosen core radius rc, AE and PS valence wave functions are equal.

Â
AE
nl (r) = Â

PS
nl (r) for r Ø rc (2.80)

3. The integrals of charge densities inside the core region due to the AE and PS wave func-

tions are equal (norm conservation).
⁄ rc

0
|„AE

nl |2r2
dr =

⁄ rc

0
|„PS

nl |2r2
dr (2.81)

where „nl(r) is the radial part of the wave function.

4. The logarithmic derivatives and the first energy derivative of the logarithmic derivatives

of the AE and PS wave functions are equal at rc.
C1

r„
AE
nl (r)

22 d

d‘

d

dr
ln „

AE
nl (r)

D

rc

=
C1

r„
PS
nl (r)

22 d

d‘

d

dr
ln „

PS
nl (r)

D

rc

(2.82)

Items 1 and 2 imply that the norm-conserving pseudopotential is equal to the AE atomic poten-

tial outside the core region of radius rc, since the potential is uniquely determined by the wave

function and the energy ‘, that need not be an eigenenergy. The conservation of the integrated

charge given by Equation 2.81 ensures the correctness of total charge inside the core region

and matching of the normalized PS wave function with the AE wave function outside the core

region defined by rc. This also ensures that the potential is correct outside rc. Point 4 ensures

the transferability of the constructed pseudopotential in different environments. It has been

shown that the point 4 is implied by the point 3 [69, 78].
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To generate a norm-conserving pseudopotential, first the all-electron atomic calculations

are carried out. Subsequently, the core states and valence states are identified. Thereafter, the

pseudopotentials are generated for the valence states and pseudo orbitals are determined. The

next step is the unscreening, in which the sum of Hartree and exchange-correlation potentials

are subtracted from the total potential. The pseudopotential is generally written in terms of

local (l-independent) part and the non-local part. Although the norm conservation condition

needs to be satisfied, there are still many choices to construct this pseudopotential. Typically,

there exist two competing factors:

• Accuracy and transferability results in choice of smaller cutoff radius rc and hard poten-

tials.

• Smoothness results in the choice of larger cutoff radius rc and soft potentials.

2.6.4 Ultrasoft pseudopotentials

The efficacy of norm-conserving pseudopotentials to systems containing highly localized va-

lence orbitals such as 2p and 3d is limited, which is attributed to the difficulty of representing

the pseudo wave function in plane waves basis set. The norm-conserving constraint is relaxed

in ultrasoft pseudopotentials and a smaller number of plane waves are required. The ultrasoft

pseudopotential are fully nonlocal by construction and become local outside the core [79]. The

nonlocal ultrasoft peudopotential depends self-consistently on the charge density, which im-

proves its transferability. The smoothness of pseudo wave function can be optimized as the

norm-conserving condition is lifted. The pseudo wave function is divided into two parts: (i)

Ultrasoft valence wave function, which does not satisfy the norm conservation constraint and

(ii) the core augmentation charge, which is the charge deficit in core region. The plane wave

energy cutoff energy is substantially reduced due to the former feature. However, the latter

feature introduces the additional terms in the Kohn-Sham formalism, which complicate the

picture and more number of operations are needed to be performed per computational cycle.

Despite this increment in the computational efforts, the gain in computational cost by lowering

the plane wave energy cutoff dominates in many cases.
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2.6.5 Projector augmented-wave (PAW) method

In 1994, Blöchl [80] devised the projector augmented-wave (PAW) method, which combined

the ideas of both, the pseudopotential approach and the linearized augmented plane wave

(LAPW) [81, 82] approach. The idea is to map the Kohn-Sham all-electron wave function |„0
sÍ

for state s onto the smooth pseudo wave function |„̃0
sÍ and correction terms, through which the

oscillatory behavior in the core region is restored. The mapping of |„0
sÍ is done by a linear

transformation T̂ :

|„0
sÍ = T̂ |„̃0

sÍ (2.83)

Since |„0
sÍ is oscillatory near the core region and smooth beyond a certain distance, the space

can be divided into two regions according to LAPW method: (i) the augmentation region

around the nuclei �a, where a is an atom index and (ii) an interstitial region �i [83]. The

�a is defined by a cutoff radius r
a
c , such that the overlap of augmentation spheres is avoided.

Since, the pseudo wave function should coincide with the all-electron wave function outside �a,

the linear transformation T̂ should modify |„0
sÍ only in the augmentation region. Therefore, T̂

can be rewritten as

T̂ = 1 +
ÿ

a

T̂
a (2.84)

where atom-centered contribution T̂
a transforms |„0

sÍ within �a enclosing the atom. The trans-

formation operator derived by defining the all-electron partial waves Ï
a
j and pseudo partial

waves Ï̃
a
j inside the augmentation region is given by

T̂ = 1 +
ÿ

a

ÿ

j

1
|Ïa

j Í ≠ |Ï̃a
j Í

2
Èp̃a

j | (2.85)

where |p̃a
j Í are smooth projector functions. Inside the augmentation sphere, the projector func-

tions are orthonormal to the pseudo partial waves. Applying this into the all-electron wave

function equation 2.83, one obtains the following expression

|„0
sÍ = |„̃0

sÍ +
ÿ

a

ÿ

j

1
|Ïa

j Í ≠ |Ï̃a
j Í

2
Èp̃a

j |„̃0
sÍ (2.86)

The following conditions hold inside the augmentation region, i.e., for r œ �a

„
0
s(r) = „

a
s(r)

„̃
0
s(r) = „̃

a
s(r)

(2.87)
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and outside the augmentation region, i.e., for r œ �i

„
0
s(r) = „̃

0
s(r)

„
a
s(r) = „̃

a
s(r)

(2.88)

where „
a
s(r) and „̃

a
s(r) are expanded as follows

„
a
s(r) =

ÿ

j

Ï
a
j (r)Èp̃a

j |„̃0
sÍ

„̃
a
s(r) =

ÿ

j

Ï̃
a
j (r)Èp̃a

j |„̃0
sÍ

(2.89)

The pseudo wave functions are expanded in plane waves basis set, with lower energy cutoff due

to smoothness. The partial waves and the projectors are calculated as radial functions multiplied

with spherical harmonics. The PAW method is computationally efficient in electronic structure

calculations. In this thesis work, the DFT calculations have been carried out using PAW method

as implemented in VASP.

2.7 Force theorem and geometry optimization

The equilibrium configuration in which the atoms are arranged in ground state is determined

by the geometry optimization. An atom undergoing a net force moves in the direction of the

force so that the total energy is minimized. The equilibrium configuration is attained when all

such forces are equal to zero, or practically, when they are within some convergence criterion.

These forces are calculated using force theorem, also known as Hellmann-Feynman theorem

[84]. According to this theorem, the force acting on ion I can be determined by taking the

derivative of the total energy E with respect to its position RI

FI = ≠ ˆE

ˆRI
(2.90)

where

E = È�|H|�Í
È�|�Í (2.91)

Assuming the wave function is normalized, and È�|�Í = 1, we have

FI = ≠È�| ˆH

ˆRI
|�Í ≠ È ˆ�

ˆRI
|H|�Í ≠ È�|H| ˆ�

ˆRI
Í (2.92)

When |�Í is an eigenstate of H , we get

FI = ≠È�| ˆH

ˆRI
|�Í ≠ E

ˆ

ˆRI
È�|�Í (2.93)
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The last term vanishes and we obtain

FI = ≠È�| ˆH

ˆRI
|�Í (2.94)

Since only the external potential due to the nuclei Vext (r) and nuclei-nuclei interaction term

EII depend explicitly on nuclei position, the Equation 2.94 becomes

FI = ≠
⁄

dr n (r) ˆVext (r)
ˆRI

≠ ˆEII

ˆRI
(2.95)

If the basis set is incomplete and depends on the nuclei positions, then it should be taken care

of by adding the extra terms, which are known as the pulay correction terms.

In a periodic system, the shape and volume of the unit cell should also be optimized along

with the atomic positions. This can be done by calculating the stress. If a strain ‘–— defined as

a scaling of space, i.e., r– æ (”–— + ‘–—) r— is applied, then the stress ‡–— can be determined

by taking the derivative of the energy with respect to strain per unit volume [85]

‡–— = ≠ 1
�

ˆE

ˆ‘–—
(2.96)

The ground-state Kohn-Sham orbitals are used for calculating it.

2.8 Ab initio atomistic thermodynamics

DFT provides the ground-state properties by electronic structure calculations at zero tempera-

ture and zero pressure, which lie in the microscopic regime. The potential energy surface (PES)

E({RI}) can be determined using the DFT, where {RI} denotes the atomic configuration. In

ab initio atomistic thermodynamics approach, the effect of finite temperature and pressure are

included by using the DFT PES to calculate suitable thermodynamic potential functions such

as the Gibbs free energy [86]. Therefore, by combining the thermodynamics with DFT cal-

culations, one obtains the macroscopic system properties. This methodology is applicable in

larger systems, which can be divided into smaller subsystems that are in thermal equilibrium

with each other. The subsystems in contact are described by relating their corresponding ther-

modynamic potentials.

2.8.1 Thermodynamic potentials

The thermodynamic state of a system is represented by a thermodynamic potential. Internal

energy U , Helmholtz free energy F = U ≠ TS, enthalpy H = U + pV , and Gibbs free energy
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G = U + pV ≠ TS = H ≠ TS = F + pV are the four thermodynamic potentials. These are

the function of natural variables, viz., temperature (T ), entropy (S), pressure (p) and volume

(V ). At constant T and V , a system minimizes its Helmholtz free energy, whereas at constant

(T, p), it minimizes its Gibbs free energy. Mostly, the chemical reactions are carried out at

constant T and p, making the Gibbs free energy to be the most useful thermodynamic potential

for determining the stable (equilibrium) geometry under the given environmental conditions.

2.8.2 Defect formation energy

The free energy of a system can be changed on creating a defect. Defects can be introduced in-

tentionally or they may be present unintentionally, depending on the environmental conditions.

We analyze the thermodynamic stability of a system containing a defect with respect to pristine

by calculating the defect formation energy as follows [9, 87]

Ef(T, p) = E
q
def ≠ E

q=0
host ±

ÿ

i

niµi(T, pi) + qµe (2.97)

where E
q
def and E

q=0
host are the total energies of the system containing defect and the system

without a defect, respectively. These are determined from the DFT calculations. q is the charge

state. ni is the number of atoms of a species i that have been added or removed from the system.

µi(T, pi) are the corresponding chemical potentials, which are the function of temperature T

and partial pressure pi. µe is the chemical potential of electron, referenced to the valence band

maximum (VBM) of the host. Here, the vibrational free energy contribution is neglected since

it is small (≥ meV) for the defects considered in this thesis work. A schematic illustration of

defect formation energy as a function of chemical potential of electron at a particular (T, p)

with different charge states q is shown in Figure 2.6.

2.8.3 Chemical potentials

The atomic chemical potentials appearing in Equation 2.97, involve the dependence of temper-

ature and partial pressure. These reflect the reservoirs for atoms that are involved in creating the

defect. We can vary the chemical potentials to explore different experimental scenarios. The

chemical potentials can be regarded as variables, subjected to specific bounds. These bounds

are set to avoid the formation of secondary phases.

The chemical potential of oxygen µO(T, pO2) has to be taken into account for an oxygen

vacancy in oxide perovskite. It is determined by the condition of thermodynamic equilibrium
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Figure 2.6: Schematic representation of defect formation energy as a function of chemical po-

tential of electron at a particular (T, p), which can exist in three charge states q = 0, +1, and≠1.

Á(+/0) and Á(0/≠) are the charge-state transition levels, denoting a deep donor level and a deep

acceptor level, respectively. The thick green colored lines indicate the most favorable charge

state for a given value of µe.

with the surrounding gas-phase reservoir, which can be approximately treated as an ideal gas

composed of N indistinguishable O2 molecules. µO(T, pO2) is given by

µO(T, pO2) = 1
2µO2(T, pO2) = 1

2
1
≠kBT ln Q

tot
O2 + pO2V

2
/N (2.98)

where kB is the Boltzmann constant and V denotes the volume. The partition function of an

ideal O2 gas, Q
tot
O2 can be evaluated as follows

Q
tot
O2 = 1

N ! (qO2)N = 1
N !

1
q

trans
q

rot
q

vib
q

electr
q

nucl
2N

(2.99)

Here, qO2 is the partition function of one O2 molecule, which can further be subdivided into dif-

ferent partition functions. The subdivision is based on the assumption that Born-Oppenheimer

approximation holds, and thus, the nuclear and electronic degrees of freedom are decoupled

from the vibrational and rotational degrees of freedom. Further, the vibrational and rotational

motions can also be decoupled since they take place on different time scales. Using Equation

2.99 and 2.98, one obtains

µO(T, pO2) = ≠ 1
2N

5
kBT ln

3 1
N ! (q

trans)N
4

≠ pO2V

6

+ 1
2µ

rot + 1
2µ

vib + 1
2µ

electr + 1
2µ

nucl
(2.100)
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Here, Statistical Mechanics can be applied to determine translational, rotational, vibrational,

electronic and nuclear free energy terms [88]. The individual energy terms are given by

≠ 1
2N

5
kBT ln

3 1
N ! (q

trans)N
4

≠ pO2V

6
= ≠1

2kBT ln
C32fim

h2

43/2 (kBT )5/2

pO2

D

µ
rot ¥ ≠kBT ln

A
8fi

2
IkBT

‡h2

B

µ
vib = E

ZPE + �µ
vib =

Mÿ

i=1

C
~Êi

2 + kBT ln
A

1 ≠ exp
A

≠ ~Êi

kBT

BBD

µ
electr ¥ E

total
O2 ≠ kBT ln M

(2.101)

where m and I are the mass and moment of inertia of the molecule, respectively. ‡ is the sym-

metry number of the molecule, which represents the number of indistinguishable orientation

that the molecule can have (for homonuclear diatomic molecules, ‡ = 2 and for hetronuclear

diatomic molecules, ‡ = 1). Note that µ
rot in Equation 2.101 holds only for linear molecules. In

the case of a complex molecule, the moments of inertia along all the three directions should be

considered. In Equation 2.101, µ
vib is obtained within the harmonic approximation. E

ZPE is the

zero point energy. M is the number of the vibrational modes of the molecule with correspond-

ing frequencies Êi. E
total
O2 is the ground-state energy of the O2 molecule calculated using DFT.

M is the electronic spin degeneracy of the ground state. Since the nuclear state is rarely altered

in chemical processes, q
nucl does not contribute to the thermodynamic changes. Therefore, we

have omitted it here. Now, the chemical potential of oxygen can be written as

µO(T, pO2) = µ
ref
O + �µO(T, pO2) (2.102)

where µ
ref
O = 1

2EO2 + 1
2E

ZPE
O2 acts as a reference chemical potential and �µO(T, pO2) contains

all temperature and pressure dependent free energy contributions

�µO(T, pO2) = 1
2

C

≠kBT ln
C32fim

h2

4 3
2

(kBT )
5
2

D

+ kBT ln pO2 ≠ kBT ln
A

8fi
2
IkBT

h2

B

+ kBT ln
C

1 ≠ exp
A

≠~ÊO

kBT

BD

≠ kBT ln M + kBT ln ‡

D

(2.103)

A consistent choice should be made for chemical potential reference. Also, an appropriate ‘xc

functional should be used for calculating the energies.
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2.9 Many-body perturbation theory (MBPT): The Green’s

function approach

DFT is reliable to determine the ground-state properties of many-electron systems such as lat-

tice parameters, phase transitions, charge density, bulk modulus, just to name a few. In practical

implementation of DFT, the real interacting system is replaced by the non-interacting fictitious

system, both having the same ground-state density. On solving the Kohn-Sham equation for

that system, the single-particle eigenstates and eigenvalues are obtained. However, these eigen-

values cannot be interpreted as excitation energies since the Kohn-Sham eigenstates and eigen-

values are only the mathematical tools and do not contain a physical meaning. The energy of

the highest occupied state is the only exception, which equals the exact ionization energy of the

system [89, 90]. Consequently, the DFT often fails to predict the excited-state properties such

as band gaps and optical absorption, etc. Therefore, one needs to go beyond the DFT to inves-

tigate the many-body physics. These excited-state properties can be determined accurately by

the Green’s function formulation of many-body perturbation theory (MBPT) [53]. It includes

the one-particle Green’s function approach, viz., GW approach to quasiparticles for charged ex-

citations and two-particle Green’s function approach, viz., the Bethe-Salpeter Equation (BSE)

for neutral excitations.

Experimentally, band gaps are measured by the excited-state spectroscopies. Figure 2.7

shows a schematic representation of charged and neutral excitations. In direct photoemission,

when light shines upon the sample, an electron is ejected from it. Consequently, one can de-

termine the ionization potential (IP) by calculating the total energy difference of N and N -1

electrons system. On the other hand, inverse photoemission involves the injection of an electron

to the system and emission of a photon. The total energy difference of N and N+1 electrons

system provides the electron affinity (EA). The direct and inverse photoemission spectroscopies

measure the excitation energy of a single charge particle (viz., electron or hole). Theoretically,

these processes can be probed by the one-particle Green’s function approach, viz., GW approx-

imation. Furthermore, an electron is excited from the valence band to the conduction band on

absorbing a photon in the case of optical absorption. Apparently, this process looks like the

sum of a direct and an inverse photoemission. Instead, the excited electron and the hole are not

free and they cannot be treated separately. These form a bound state, which is known as the

exciton. This electron-hole interaction is well described theoretically by a two-particle Green’s
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Figure 2.7: Schematic representation of excited-state spectroscopies, namely, direct photoemis-

sion, inverse photoemission, and optical absorption. Here, IP and EA represent the ionization

potential and electron affinity, respectively. Also, EN is the total energy of N -electron system.

Moreover, EGW
g = IP ≠ EA is the quasiparticle (QP) band gap and EBSE

g = IP ≠ EA ≠ EB is the

optical band gap, where EB is the exciton binding energy.

function approach, namely, the BSE.

2.9.1 Green’s function

The processes that involve the injection or ejection of electrons can be described by a theoretical

framework, which links the N -particle with the (N±1)-particle systems. This purpose is served

by employing the MBPT. The time-ordered Green’s function G (rt, rÕ
t
Õ) is the central variable

in MBPT. It contains the information of excitation energies as well as the excitation lifetime.

The one-particle Green’s function is defined as follows

G (rt, rÕ
t
Õ) = ≠ iÈ�N

0 |Â̂(rt)Â̂†(rÕ
t
Õ)|�N

0 Í�(t ≠ t
Õ)

+ iÈ�N
0 |Â̂†(rÕ

t
Õ)Â̂(rt)|�N

0 Í�(tÕ ≠ t)
(2.104)

where �(t ≠ t
Õ) is the Heaviside step function given by

�(t ≠ t
Õ) =

Y
__]

__[

1 if t > t
Õ

0 if t < t
Õ

In Equation 2.104, |�N
0 Í is the ground state of N -electron system. Â̂

†(rt) and Â̂(rt) are the

field operators that describe the creation and annihilation of an electron, respectively, at the

position r and time t. In Heisenberg picture, Â̂(rt) = e
iĤt

Â̂(r)e≠iĤt. Physically, the Green’s
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Figure 2.8: Schematic representation of spectral function in the case of non-interacting (elec-

trons) single-particle excitation and interacting single-particle like (QP) excitation.

function for t > t
Õ creates an electron in the system at rÕ and t

Õ and propagates it to r, where it

is annihilated at time t. For t < t
Õ, it describes the propagation of a hole. Therefore, it is also

known as a propagator.

The Lehmann or spectral representation of Green’s function can be determined by taking

the Fourier transform of G from the time to the energy axis and is given by

G(r, rÕ
, Ê) = lim

÷æ0+

ÿ

s

Âs(r)Âú
s(rÕ) ◊

C
�(‘s ≠ EF )

Ê ≠ (‘s ≠ i÷) + �(EF ≠ ‘s)
Ê ≠ (‘s + i÷)

D

(2.105)

where the excitation energies (‘s) are expressed below

‘s =

Y
__]

__[

EN ≠ EN≠1 for ‘s < EF

EN+1 ≠ EN for ‘s Ø EF

and the transition amplitudes (Âs(r)) from the N to the N ± 1-body states are defined as

Âs(r) =

Y
__]

__[

È�N≠1
s |Â̂(r)|�N

0 Í for ‘s < EF

È�N
0 |Â̂(r)|�N+1

s Í for ‘s Ø EF

Here, EF is the Fermi-level or chemical potential. The small imaginary part ÷ is needed for the

convergence of the Fourier transform. In Equation 2.105, Ê denotes an energy (frequency). The

poles of the Green’s function hence provide the many-body excitation energies. The spectral

function, i.e., the density of the excited states is related to the Green’s function as follows

A(r, rÕ
, Ê) = 1

fi
|Im G(r, rÕ

, Ê)|

=
ÿ

s

Âs(r)Âú
s(rÕ)”(Ê ≠ ‘s)

(2.106)
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Figure 2.9: Illustration of a QP formation in the case of photoemission spectroscopy.

In the case of non-interacting electrons, the particle has infinite lifetime. Therefore, the spectral

function contains a set of delta peaks corresponding to each transition (see the non-interacting

particle peak in Figure 2.8). Contrarily, a finite width is observed experimentally at the peak

position, which is attributed to a single-particle like excitation (QP) (see Figure 2.8). It is

ascribed to the merging of several closely spaced delta peaks. Moreover, a broader peak with

smaller intensity can also be seen, which is known as satellite peak. In essence, in addition

to QP peak position, the spectral function contains information about: (i) the lifetime of the

excitation due to electron-electron scattering, which is inversely proportional to the width of

the QP peak, and (ii) the spectral weight associated with the QP. Therefore, the spectral function

can also be expressed as

A ¥ 1
fi

-----
Zs

Ê ≠ (‘s + i�)

----- (2.107)

where Zs is the QP weight and � is the peak width. The QP concept in real-space is depicted

in Figure 2.9. A charge particle “dressed" with the polarization cloud is considered as a QP.

In photoemission spectroscopy, when we let the system evolve after the ejection (creation) of

electron (hole), then the electrons surround the “bare" hole and screen its interaction with the

rest of the system. This gives rise to the self-energy, i.e., the energy felt by the particle due to

its own presence.
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Figure 2.10: Schematic representation of the Dyson’s equation, which relates the non-

interacting (G0) and interacting (G) Green’s functions via the self-energy operator (�). Here,

the black arrow describes the propagation of a non-interacting particle and the red color repre-

sents screening process of different orders.

2.9.2 Dyson’s equation: The self-energy operator �

The computation of the exact one-particle Green’s function is not possible, and therefore a

suitable approximation is needed. The Green’s function is related to � by the Dyson’s equation,

which is expressed below

G(r, rÕ
, Ê) = G0(r, rÕ

, Ê) +
⁄ ⁄

G0(r, rÕÕ
, Ê)�(rÕÕ

, rÕÕÕ
, Ê)G(rÕÕÕ

, rÕ
, Ê)drÕÕ

drÕÕÕ (2.108)

where G0(r, rÕ
, Ê) is the non-interacting Green’s function determined using Equation 2.105

from a mean-field theory, which satisfies the following equation

ĥ0„
0
i (r) = ‘

0
i „

0
i (r) (2.109)

where the single-particle Hamiltonian ĥ0 = ≠1
2Ò2 + Vext(r) +

s n(rÕ)
|r≠rÕ|drÕ. „

0
i (r) and ‘

0
i are the

corresponding eigenstates and eigenvalues, respectively. The non-local self-energy operator �

depends on energy (frequency) and is non-Hermitian. All the many-body exchange and corre-

lation effects are considered in the self-energy term. The Dyson equation can be reformulated

to an effective single-particle equation, which describes the QP behavior

ĥ0(r)Âs(r) +
⁄

�(r, rÕ
, ‘s)Âs(rÕ)drÕ = ‘sÂs(r) (2.110)

The wave functions Âs(r) form a complete set, but are not orthonormal ascribed to the energy-

dependence of the self-energy operator. The Dyson’s equation can also be rewritten in algebraic

form as follows

G = G0 + G0�G0 + G0�G0�G0 + ...

G = G0 + G0�G

(2.111)
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It is illustrated in Figure 2.10. The different terms in Equation 2.111 describe the single, double,

etc., scattering processes with � being the scattering potential. Therefore, the self-energy can

also be defined as the sum of all scattering events. However, it is very difficult to determine the

exact � attributed to multiple scattering processes. Therefore, an appropriate approximation is

needed to evaluate it.

2.9.3 Hedin’s equations and the GW approximation

In 1965 [63], Hedin derived a set of five self-consistent integro-differential equations, relating

the self-energy to the Green’s function and the screened Coulomb interaction (W ), using the

polarizability (P ) and the vertex function (�):

G(1, 2) = G0(1, 2) +
⁄

d(3, 4)G0(1, 3)�(3, 4)G(4, 2)

P (1, 2) = ≠i

⁄
d(3, 4)G(2, 3)G(4, 2+)�(3, 4; 1)

W (1, 2) = v(1, 2) +
⁄

d(3, 4)W (1, 3)P (3, 4)v(4, 2)

�(1, 2) = i

⁄
d(3, 4)G(1, 4)W (1+

, 3)�(4, 2; 3)

�(1, 2; 3) = ”(1, 2)”(1, 3) +
⁄

d(4, 5, 6, 7) ”�(1, 2)
”G(4, 5)G(4, 6)G(7, 5)�(6, 7; 3)

(2.112)

Here, the notation 1 = (r1, t1) is adopted and v is the unscreened (bare) Coulomb interaction.

1+ denotes (r1, t1+÷), where ÷ is a positive infinitesimal. The self-consistent iterative process is

schematically shown in Figure 2.11. The vertex function contains the higher-order correction to

the interaction between QPs. It is the most difficult term to compute as it contains a functional

derivative and depends on three spacetime points. Therefore, to simply these equations, the

vertex function is the usual target for an approximation.

In the GW approximation, the functional derivative of the self-energy with respect to the

Green’s function is neglected, leading to

�(1, 2; 3) = ”(1, 2)”(1, 3)

P (1, 2) = ≠iG(1, 2+)G(2, 1)

�(1, 2) = iG(1, 2)W (1+
, 2)

(2.113)

Hence, the self-energy is a product of the Green’s function and the screened Coulomb interac-

tion in the GW approximation. The GW method is analogous to Hartree-Fock theory, which

uses the bare Coulomb interaction instead of the dynamically screened Coulomb interaction.
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Figure 2.11: Schematic representation of the self-consistent Hedin’s equations.

2.9.4 Practical implementation of the single-shot GW (G0W0)

In G0W0 approach, only one GW iteration is performed. The step by step procedure is given

below

Step 1: Do a DFT calculation and get the Kohn-Sham eigenvalues (‘KS
s ) and eigenstates („KS

s ).

Step 2: Set up the Kohn-Sham Green’s function

G0(r, rÕ
, ‘) = lim

÷æ0+

ÿ

s

„
KS
s (r)„KSú

s (rÕ)
‘ ≠ (‘KS

s + i÷ sgn(EF ≠ ‘KS
s )) (2.114)

Step 3: Construct the polarizability

P (r, rÕ
, ‘) = ≠ i

2fi

⁄
d‘

Õ
G0(r, rÕ

, ‘
Õ ≠ ‘)G0(rÕ

, r, ‘
Õ) (2.115)

Step 4: Calculate the dielectric function

Á(r, rÕ
, ‘) = ”(r ≠ rÕ) ≠

⁄
drÕÕ

v(r ≠ rÕÕ)P (rÕÕ
, rÕ

, ‘) (2.116)

Step 5: Determine the screened Coulomb interaction

W0(r, rÕ
, ‘) =

⁄
drÕÕ

Á
≠1(r, rÕÕ

, ‘)v(rÕÕ ≠ rÕ) (2.117)

Step 6: Determine the self-energy

�(r, rÕ
, Ê) = i

2fi

⁄
dÊ

Õ
e

iÊÕ÷
G0(r, rÕ

, Ê + Ê
Õ)W0(r, rÕ

, Ê
Õ) (2.118)
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Step 7: Solve the QP Equation 2.110

The eigenvalues obtained by solving the QP equation are complex. The real part gives

the QP energy (‘QP
s ), whereas the imaginary part contains the information about the lifetime

(inversely proportional) of the QP. Since the QP equation is similar to the Kohn-Sham equation,

the difference between the self-energy operator and the exchange-correlation potential can be

treated as a perturbation to update the QP energies:

‘
QP
i = ‘

KS
i + ÈÂKS

i |�(‘QP
i ) ≠ Vxc|ÂKS

i Í (2.119)

However, the energy dependence of � is not known. Therefore, the self-energy is linearized by

expanding it in Taylor series around ‘
KS
s , assuming the difference between ‘

KS
s and ‘

QP
s is small:

�(‘QP
s ) ¥ �(‘KS

s ) + (‘QP
s ≠ ‘

KS
s )ˆ�(‘)

ˆ‘

-----
‘=‘KS

s

(2.120)

Now, the QP energies can be determined from the following equation

‘
QP
i = ‘

KS
i + ZiÈÂKS

i |�(‘KS
i ) ≠ Vxc|ÂKS

i Í (2.121)

where the renormalization factor Zi is given by

Zi =
Q

a1 ≠ ÈÂKS
i |ˆ�(‘)

ˆ‘

-----
‘=‘KS

s

|ÂKS
i Í

R

b
≠1

(2.122)

We have to choose the starting point (LDA/PBE/HSE06) carefully, as the QP energies de-

pend on it. In most of the cases, G0W0 yields the band gap in good agreement with exper-

imental measurements [91, 67]. In addition, a self-consistent GW (scGW ) approach can be

implemented in which both the QP energies and the corresponding orbitals are updated self-

consistently [92]. Unfortunately, the scGW method overestimates the band gaps as compared

to experimental values [93]. Imposing self-consistency in the absence of vertex correction de-

teriorates the agreement with experimental results. In our thesis work, we have mostly used the

single-shot GW .

2.9.5 Bethe-Salpeter equation (BSE)

In neutral electron-hole excitations such as optical absorption, the total number of electrons

remains unchanged. These excitations are described by solving the equation of motion for the
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two-particle Green’s function, specifically, the Bethe-Salpeter equation (BSE). The BSE can be

written as [94, 95]

L(1, 2, 1Õ
, 2Õ) = L0(1, 2, 1Õ

, 2Õ)+
⁄

d(3, 4, 5, 6)L0(1, 4, 1Õ
, 3)K(3, 5, 4, 6)L(6, 2, 5, 2Õ) (2.123)

where L(1, 2, 1Õ
, 2Õ) and K(3, 5, 4, 6) represent the electron-hole correlation function and the

electron-hole interaction kernel, respectively. L0(1, 2, 1Õ
, 2Õ) = G(1, 2Õ)G(2, 1Õ) denotes the

free electron-hole pairs without considering the interaction K. L is a function of four time

variables, related to two creation (electron and hole) and two annihilation processes. Here,

we consider simultaneous creation and simultaneous annihilation, resulting in two independent

time variables. Moreover, only the time difference is relevent since time is homogeneous in

the absence of external fields. The time-energy Fourier transform leads to L(1, 2, 1Õ
, 2Õ

, Ê),

where 1, 2, 1Õ
, and 2Õ do not involve the time variable. For further discussion, this energy space

is considered.

Now, L0 can be written as

L0(1, 2, 1Õ
, 2Õ

, Ê) = i
ÿ

v,c

C
Âc(r1)Âú

v(rÕ
1)Âv(r2)Âú

c (rÕ
2)

Ê ≠ (Ec ≠ Ev) ≠ Âv(r1)Âú
c (rÕ

1)Âc(r2)Âú
v(rÕ

2)
Ê + (Ec ≠ Ev)

D

(2.124)

where v and c run over the occupied hole states and unoccupied electron states, respectively.

Note that the imaginary infinitesimals in the denominator should be included, which are not

shown here for sake of easiness.

On including the electron-hole interaction, the correlation function L can be written in a

form similar to Equation 2.124 as follows

L(1, 2, 1Õ
, 2Õ

, Ê) = i
ÿ

S

C
‰S(r1, rÕ

1)‰ú
S(rÕ

2, r2)
Ê ≠ �S

≠ ‰S(r2, rÕ
2)‰ú

S(rÕ
1, r1)

Ê + �S

D

(2.125)

where S represents the correlated electron-hole states with the corresponding excitation ener-

gies �S . In Equation 2.125, ‰S are the electron-hole amplitudes given by

‰S(r, rÕ) = ≠ÈN, 0|Â†(rÕ)Â(r)|N, SÍ (2.126)

where |N, 0Í and |N, SÍ denote N -electron ground state and correlated electron-hole state,

respectively. The electron-hole amplitudes can also be expressed using single-particle wave

functions of the electron and hole states, given by

‰S(r, rÕ) =
occÿ

v

unoccÿ

c

A
S
vcÂc(r)Âú

v(rÕ) + B
S
vcÂv(r)Âú

c (rÕ) (2.127)
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where A
S
vc and B

S
vc are the coupling coefficients. Note that the combinations of two occupied

or two unoccupied states do not appear. Using Equation 2.124, 2.125, and 2.127, the BSE

(Equation 2.123) becomes a generalized eigenvalue problem

(Ec ≠ Ev)AS
vc +

ÿ

vÕ,cÕ
K

AA
vc,vÕcÕ(�S)AS

vÕcÕ +
ÿ

vÕ,cÕ
K

AB
vc,vÕcÕ(�S)BS

vÕcÕ = �SA
S
vc ,

ÿ

vÕ,cÕ
K

BA
vc,vÕcÕ(�S)AS

vÕcÕ + (Ec ≠ Ev)BS
vc +

ÿ

vÕ,cÕ
K

BB
vc,vÕcÕ(�S)BS

vÕcÕ = ≠�SB
S
vc

(2.128)

where

K
AA
vc,vÕcÕ(�S) = i

⁄
d(3, 4, 5, 6)Âv(r4)Âú

c (r3)K(3, 5, 4, 6, �S)Âú
vÕ(r5)ÂcÕ(r6) (2.129)

K
AB
vc,vÕcÕ(�S) = i

⁄
d(3, 4, 5, 6)Âv(r4)Âú

c (r3)K(3, 5, 4, 6, �S)Âú
vÕ(r6)ÂcÕ(r5) (2.130)

and similarly, K
BA and K

BB can be defined.

The energy differences (Ec ≠ Ev) and the interaction matrix elements K
AA and K

BB form

the diagonal block of the block-matrix structure of Equation 2.128. The off-diagonal blocks are

formed by K
AB and K

BA. Generally, the off-diagonal blocks are small and can be neglected.

Therefore, on setting K
AB = K

BA = 0, Equation 2.128 decouples into two equations for

A
S
vc and B

S
vc separately. Both equations results in same excitations (with the only difference of

negative sign in excitation energies for the solutions for B). Therefore, the eigenvalue equation

that yields positive solutions is given by

(Ec ≠ Ev)AS
vc +

ÿ

vÕ,cÕ
K

AA
vc,vÕcÕ(�S)AS

vÕcÕ = �SA
S
vc (2.131)

The correlated electron-hole states can be expanded as

|N, SÍ =
holeÿ

v

elecÿ

c

A
S
vcâ

†
v b̂

†
c|N, 0Í =:

holeÿ

v

elecÿ

c

A
S
vc|vcÍ (2.132)

where â
†
v and b̂

†
c are the creation operators for a hole and an electron, respectively, in the N -

electron ground state |N, 0Í. The expansion of Equation 2.132 is also called as the Tamm-

Dancoff approximation.

The kernel K is determined from the functional derivative

K(3, 4, 5, 6) = ” [VCoul(3)”(3, 4) + �(3, 4)]
”G(6, 5) (2.133)
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we implement GW approximation to determine the self-energy operator �. Assuming that the

derivative of W with respect to G can be neglected, K becomes

K(3, 5, 4, 6) = ≠i”(3, 4)”(5≠
, 6)v(3, 6) + i”(3, 6)”(4, 5)W (3+

, 4)

=: K
x(3, 5, 4, 6) + K

d(3, 5, 4, 6)
(2.134)

The term K
x, resulting from the Coulomb potential is known as the exchange term, whereas

K
d is known as the direct interaction term, ascribed to the screened-exchange self-energy. The

direct interaction term K
d is attractive in nature and responsible for the formation of bound

excitons. The exchange interaction term K
x determines details of the excitation spectrum,

such as the spin-splitted excitations. Note that K
d and K

x contain the screened (W ) and bare

(v) Coulomb interactions, respectively.

The matrix elements of K are expressed as

Èvc|KAA,d(�S)|vÕ
c

ÕÍ =
⁄

drdrÕ
Â

ú
c (r)ÂcÕ(r)Âv(rÕ)Âú

vÕ(rÕ) ◊ i

2fi

⁄
dÊe

≠iÊ0+
W (r, rÕ

, Ê)

◊
C

1
�S ≠ Ê ≠

1
E

QP
cÕ ≠ E

QP
v

2
+ i0+

+ 1
�S + Ê ≠

1
E

QP
c ≠ E

QP
v

2
+ i0+

D

(2.135)

and

Èvc|KAA,x(�S)|vÕ
c

ÕÍ =
⁄

drdrÕ
Â

ú
c (r)Âv(r)v(r, rÕ)ÂcÕ(rÕ)Âú

vÕ(rÕ) (2.136)

K
d requires a frequency integration in addition to the real-space integration. This can be done

by expanding the screened Coulomb interaction in the plasmon-pole model as follows

W (r, rÕ
, Ê) =

ÿ

l

Wl(r, rÕ)Êl

2

3 1
Ê ≠ Êl + i0+ ≠ 1

Ê + Êl ≠ i0+

4
(2.137)

where Êl represents the plasmon frequency and Wl(r, rÕ) denotes the spatial behavior of the

plasmon mode l. On performing the frequency integration, Equation 2.135 becomes

Èvc|KAA,d(�S)|vÕ
c

ÕÍ =
⁄

drdrÕ
Â

ú
c (r)ÂcÕ(r)Âv(rÕ)Âú

vÕ(rÕ)Wl(r, rÕ)

◊ Êl

2

C
1

Êl ≠ (�S ≠ (EQP
cÕ ≠ E

QP
v ))

+ 1
Êl ≠ (�S ≠ (EQP

c ≠ E
QP
v ))

D
(2.138)

Mostly, the transition energies (EQP
c ≠ E

QP
v ) are close to the excitation energies �S in semicon-

ductor crystals and thus, �S ≠ (EQP
c ≠ E

QP
v ) are much smaller than Êl and can be neglected.
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Therefore, Equation 2.138 reduces to

Èvc|KAA,d(�S)|vÕ
c

ÕÍ =
⁄

drdrÕ
Â

ú
c (r)ÂcÕ(r)Âv(rÕ)Âú

vÕ(rÕ)W (r, rÕ
, Ê = 0) (2.139)

Equation 2.139 ignores the dynamical properties of W altogether. In the case of atoms and

molecules, the differences �S ≠ (EQP
c ≠ E

QP
v ) may be larger. In that case, Equation 2.139 no

longer holds, and Equation 2.138 is used to evaluate the electron-hole interaction kernel K.

Since K
d depends on excitation energies �S (Equation 2.138), it poses a challenge to calculate

the electron-hole interaction and solve the BSE self-consistently. It can be done iteratively.

First, we determine the static screened Coulomb interaction W , and K
d is evaluated using

Equation 2.139. Thereafter, BSE is solved to get excitations |SÍ and the first estimate of exci-

tation energies �(0)
S . After that, K

d is determined from Equation 2.135 using the �(0)
S . Further,

the difference of updated K
d and the previous step K

d,0 is treated as a perturbation in first

order, and update the �S . In this way, these steps are repeated to converge the �S .

2.9.6 Optical Spectrum

The macroscopic transverse dielectric function ‘(Ê) of a system describes the interaction of an

external light field with the excitations in the system. The imaginary part (‘2(Ê)) of dielectric

function is given by

‘2(Ê) = 16fie
2

Ê2
ÿ

S

---⁄̨ · È0|v̨|SÍ
---
2

”(Ê ≠ �S) (2.140)

where ⁄̨ = Ą
|Ą| is the polarization vector of the light and v̨ = i/~[H, r̨] is the single-particle

velocity operator. In the absence of electron-hole interaction, the excitations are given by ver-

tical transitions between independent hole and electron states, and Equation 2.140 reduces to

the expression

‘
(0)
2 (Ê) = 16fie

2

Ê2
ÿ

v,c

---⁄̨ · Èv|v̨|cÍ
---
2

”(Ê ≠ (Ec ≠ Ev)) (2.141)

where v and c denote the valence and conduction states, respectively. Since the excitations |SÍ

are the correlated electron-hole states, the optical transition matrix elements can be written as

È0|v̨|SÍ =
holeÿ

v

elecÿ

c

A
s
vcÈv|v̨|cÍ (2.142)

The transition matrix elements Èv|v̨|cÍ should be carefully determined, which account for the

nonlocal pseudopotential and the QP renormalization effects [95].
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2.10 Density functional perturbation theory (DFPT)

In a crystal, the dynamical behavior of its lattice affects various physical properties such as

infrared, Raman, and neutron-diffraction spectra; specific heats, thermal expansion, and heat

conduction; the electron-phonon interaction related phenomena, specifically, the resistivity of

metals, superconductivity, and the temperature dependence of optical spectra [96]. Density

functional perturbation theory (DFPT) is a method that deals with the phonons of the materials

within the linear response framework of DFT.

2.10.1 Lattice dynamics from electronic structure theory

Under the Born–Oppenheimer approximation, the lattice dynamics is described by the eigen-

values E and eigenstates � of the following Schrödinger equation
A

≠
ÿ

I

~2

2M I

ˆ
2

ˆR2
I

+ E(R)
B

�(R) = E�(R) (2.143)

where MI is the mass of the Ith nucleus, RI its coordinate, and R © {RI} the set of all

the nuclear coordinates. Here, E(R) is the ground-state energy of a system of interacting

electrons moving in the field of fixed nuclei, which is also known as the Born–Oppenheimer

energy surface. The equilibrium geometry of the system is attained when the forces acting on

individual nuclei become zero

FI © ≠ˆE(R)
ˆRI

= 0 (2.144)

and the eigenvalues of the Hessian of the Born–Oppenheimer energy determines the vibrational

frequencies Ê

det
-----

1Ô
MIMJ

ˆ
2
E(R)

ˆRIˆRJ
≠ Ê

2
----- = 0 (2.145)

The force can be determined using the Hellmann-Feynman theorem as follows

FI = ≠ˆE(R)
ˆRI

= ≠
K

�(R)
-----
ˆHBO(R)

ˆRI

----- �(R)
L

(2.146)

where �(r; R) is the electronic ground-state wave function of the Born–Oppenheimer Hamil-

tonian, which depends parametrically upon R
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ÿ
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ˆ
2

ˆr2
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2

2
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+ e
2

2
ÿ

I ”=J

ZIZJ

|RI ≠ RJ |

(2.147)
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Here, ZI is the charge of the Ith nucleus. Therefore, FI can be written as

FI = ≠
⁄

dr n(r)ˆVext(r)
ˆRI

≠ ˆEII(R)
ˆRI

(2.148)

where

Vext(r) = ≠
ÿ

i,I

ZIe
2

|RI ≠ ri|
and EII(R) = e

2

2
ÿ

I ”=J

ZIZJ

|RI ≠ RJ | (2.149)

n(r) is the electron charge density of the ground state. The Hessian in Equation 2.145 is

determined by differentiating FI with respect to nuclear coordinates

ˆ
2
E(R)

ˆRIˆRJ
© ≠ ˆFI

ˆRJ
=

⁄
dr ˆn(r)

ˆRJ

ˆVext(r)
ˆRI

+
⁄

dr n(r)ˆ
2
Vext(r)

ˆRIˆRJ
+ ˆ

2
EII(R)

ˆRIˆRJ
(2.150)

It defines the matrix of the interatomic force constants. The Hessian depends upon n(r) and

its first-order variation. Therefore, it is sufficient to consider only the linear response of the

electron system.

2.10.2 Linear response

In DFPT, the Kohn-Sham equation is linearized along with the charge density, Kohn-Sham

eigenstates and the self-consistent field (SCF) potential. The variation of Kohn-Sham orbitals

is determined by the first-order perturbation theory [68]

(HSCF ≠ ‘n)|�ÂnÍ = ≠(�VSCF ≠ �‘n)|ÂnÍ (2.151)

where the unperturbed SCF Hamiltonian is given by

HSCF = ≠ ~2

2m

ˆ
2

ˆr2 + VSCF (r) (2.152)

The SCF potential, VSCF has the following form

VSCF (r) = Vext(r) +
⁄

drÕ n(rÕ)
|r ≠ rÕ| + vxc(r) (2.153)

where vxc(r) © ”E
”n(r) is the exchange-correlation potential. In Equation 2.151, �VSCF is the

first-order correction to the SCF potential, given by the following expression

�VSCF (r) = �Vext(r) +
⁄

drÕ �n(rÕ)
|r ≠ rÕ| + dvxc

dn

-----
n=n(r)

�n(r) (2.154)

and �‘n = ÈÂn|�VSCF |ÂnÍ is the first-order correction to Kohn-Sham eigenstates ‘n. For the

nonmagnetic systems, the linearized charge density, �n(r) is given by

�n(r) = 4
N/2ÿ

n=1
Â

ú
n(r)�Ân(r) (2.155)
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where �(© �⁄) is the finite-difference operator, defined as

�⁄
F =

ÿ

i

ˆF⁄

ˆ⁄i
�⁄i (2.156)

Here, ⁄ is a set of parameters, which is RI for the lattice dynamics. The first-order correction

to the eigenfunctions in Equation 2.151 can be expressed as

�Ân(r) =
ÿ

m”=n

Âm(r)ÈÂm|�VSCF |ÂnÍ
‘n ≠ ‘m

(2.157)

where the summation runs over all the occupied and unoccupied states, except the states for

which the denominator vanishes. Using Equation 2.157 and 2.155, �n(r) can be written as

�n(r) = 4
N/2ÿ

n=1

ÿ

m”=n

Â
ú
n(r)Âm(r)ÈÂm|�VSCF |ÂnÍ

‘n ≠ ‘m
(2.158)

It can be seen from Equation 2.158 that the contributions due to products of occupied states

cancel. Therefore, the label n can be identified as attaching to valence band states v, and the

index m attaches itself only to conduction band states c.

To evaluate �Ân(r), the projection operator Pc is introduced in Equation 2.151, resulting

in the Sternhiemer equation

(HSCF + –Pv ≠ ‘v)|�ÂnÍ = ≠Pc�VSCF |ÂvÍ (2.159)

where Pc = q
c

|ÂcÍÈÂc| = 1 ≠ q
v

|ÂvÍÈÂv|. A multiple of the projector operator Pv is added to

make Equation 2.151 nonsingular. To solve Equation 2.159, only the knowledge of occupied

states is required instead of the full eigenvalue spectrum. Consequently, the computational cost

is of the same order as that required to solve the Kohn-Sham equations.



CHAPTER 3

Role of defects in photocatalytic water splitting:

Monodoped vs codoped SrTiO3

3.1 Introduction

Semiconductor-based photocatalysts have attracted considerable interest because of their po-

tential in harnessing the solar energy for solving the current energy demand of the world and

environmental degradation [97, 98, 99, 100, 101]. The criteria satisfied by a photocatalyst

involve suitable band-edge positions that straddle the reduction and oxidation potential of a de-

sired chemical compound, high separation rate, slow recombination rate, high mobility of pho-

toexcited charge carriers, and longer lifetime [102]. Among various perovskite photocatalysts,

SrTiO3 has emerged as one of the most promising energy materials for photocatalytic water

splitting and pollutant degradation in the past few years because of its exceptional electronic

structure, optical properties, photochemical stability, and low cost [103, 104, 105, 106, 107,

108]. However, one of the major concerns is its large band gap (3.25 eV) due to which it only

responses to ultraviolet (UV) irradiation, which consists only 4% of the solar spectrum [109].

Therefore, it delimits the application of SrTiO3 at a commercial level. Thus, several works

have been endeavored to reduce the band gap of SrTiO3 in order to induce visible light ab-

sorption via doping with metals [110, 111], nonmetals [112, 113] or a combination of several

elements [114, 115, 116, 117, 118].

Earlier, different metal cations, particularly transition metal (TM) dopants, were used to ex-

pand the spectral response [110, 111, 119, 120, 121]. However, merely the band gap reduction

cannot ensure the enhancement in photocatalytic efficiency as it also depends on the location

of the conduction band minimum (CBm) and valence band maximum (VBM). For TM doped

SrTiO3, TM d-states hybridize with those states of the SrTiO3 that contribute to the conduction

61
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band, and thus, the reduction in band gap occurs by shifting of CBm in a downward direction.

However, due to this, the reducing power is deteriorated. Also, in general, doping by 3d ele-

ments leads to localized states in the gap, which are detrimental to the photocatalysis [111, 122].

Therefore, the transition metal alone is not suitable for improvement in photocatalytic activity.

On the other hand, nonmetal doped SrTiO3 is found to narrow the band gap by elevating the

VBM. However, in this case also, localized states appeared deep inside the forbidden region,

which can trap the photoexcited charge carriers and accelerate the electron–hole recombina-

tion. This in turn degrades the photocatalytic efficiency [111, 122]. The codoping with a metal

is one of the pre-eminent solutions to passivate such discrete states of nonmetal dopants in the

forbidden region and form the continuum band [122, 123, 124, 125]. This has motivated us

for codoping. Earlier studies have suggested that codoping of metal in nonmetal-doped SrTiO3

stabilizes the system, i.e., the solubility of nonmetal gets increased [122, 123]. By means of

codoping, band edges can be engineered to comply with the needs; i.e., the spectral response

expands to the visible region while retaining the reduction and oxidation power [126, 127].

In view of this, we have done a careful prescreening of various codopants (only those el-

ements were chosen, which have been used as a monodopant in the literature) by calculating

the band gap using PBE [59] exchange-correlation (‘xc) functional of density functional theory

(DFT) [54, 55] (see Table 3.1). Note that even if PBE is not so good to estimate the band gap,

it is good enough to give us some meaningful trend. We find, in this class of oxide perovskites,

the typical error in PBE band gap with respect to HSE06 [60, 61] is ≥ 1.0-1.5 eV [for exam-

ple, the pristine has the PBE (HSE06) band gap of 1.75 (3.28) eV]. Therefore, keeping this in

mind, we have identified few promising systems (marked as red) and we have chosen N and

Mn codoped system as a test case. The decrement in band gap is suitable for the Mn and N

codoped system, whereas in rest of the cases (not marked as red), the band gap decrement is

either larger or smaller than what is needed for the maximum efficiency in photocatalytic water

splitting (≥ 2 eV [128, 129]). Moreover, one of the important factors for choosing Mn is that

it has d-d transition, and its d-orbitals’ energy facilitates the suitable potentials for water redox

reactions. Note that the individual monodopants (i.e., N and Mn) have already been experimen-

tally synthesized [130, 131, 132, 133, 134]. However, for the codoping of Mn and N in bulk

SrTiO3, any experimental or theoretical reports are obscure.

In this chapter, we have, therefore, studied codoped (N–Mn) SrTiO3 for enhancing the pho-

tocatalytic efficiency under visible light. After examining this test case, we have also studied
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Table 3.1: Band gap of different codopants in SrTiO3 using PBE ‘xc functional

Codoped System Band gap (eV)

CrTiBO 0.57

CrTiCO metallic

CrTiFO 1.13

CrTiNO 0.34

CrTiSO 0.35

FeTiBO 0.17

FeTiCO metallic

FeTiFO 0.30

FeTiNO metallic

FeTiSO metallic

MnTiBO 0.38

MnTiCO 0.13

MnTiFO 1.39

MnTiNO 0.70

MnTiSO 0.89

RhTiBO 0.07

RhTiCO 0.34

RhTiFO 1.03

RhTiNO 1.19

RhTiSO 0.85

LaSrBO 1.41

LaSrCO 0.27

LaSrFO 2.19

LaSrNO 1.42

LaSrSO 1.43

PrSrBO 1.33

PrSrCO 1.65

PrSrFO 2.06

PrSrNO 1.25

PrSrSO 1.47
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other codoped cases, viz., S–Mn, S–Rh, and N–Rh. First, the thermodynamic stability of doped

SrTiO3 has been evaluated using hybrid DFT and ab initio atomistic thermodynamics at realis-

tic conditions (temperature (T ) and partial pressure of oxygen (pO2)) [87]. On doping SrTiO3

with a nonmetal dopant (e.g., N), the possible defects that could occur are NO (N substituted

at the O position), Ni (N as an interstitial making a bond with O), and (N2)O split-interstitial

(one N is at the interstitial position, and another one is substituted by the nearby O, making a

bond with each other) [130, 131, 132]. In the case of metal dopant (e.g., Mn), Mn could be

substituted either at the Ti (MnTi) or Sr (MnSr) site, or it could also be present as an interstitial

(Mni) in SrTiO3 [133, 134]. These defects are not stable in neutral form because of the uncom-

pensated charge. Therefore, we have calculated the stability of charged defects in addition to

neutral defects with charge states q (≠2, ≠1, 0, +1, +2). Note that in order to compensate the

charge, one can adapt either of the approaches: (i) explicit presence of oxygen vacancies for the

neutral dopants [135, 136] or (ii) addition of external charge to the dopant [87, 137, 138]. Both

the approaches yield the same conclusion as they are doing effectively the same charge com-

pensation at the defect site. Moreover, the formation energy plots provide the information of the

most prominent charge defect at different environmental conditions, which removes the ambi-

guity of the preferred defect site in doped SrTiO3. Next, to get the insights on synergistic effect

of codoping, electronic density of states for pristine, monodoped, and codoped SrTiO3 have

been compared. In addition, the optical response using single-shot GW [63, 139] method is

also analyzed. Furthermore, from the perspective of its usage in photocatalytic water splitting,

we have examined the band-edge alignment of (un)doped SrTiO3 w.r.t. water redox potential

levels. Finally, the effective mass of charge carriers has been determined, which reflects the

charge carrier mobility of the system.

3.2 Computational methods

The DFT calculations were performed using the Vienna ab initio simulation package (VASP)

[140, 141]. The projector-augmented wave (PAW) potentials [142] were used to describe the

ion-electron interactions in all the elemental constituents. The total energy calculations were

performed using the hybrid ‘xc functional HSE06 [61]. To introduce defects in SrTiO3, we have

used a 40-atom supercell, which is constructed by a 2 ◊ 2 ◊ 2 repetition of cubic SrTiO3 unit

cell (5 atoms). To ensure the convergence of supercell size, test calculations were performed
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with 90-atom supercell (3◊3◊2 repetition of unit cell of SrTiO3) for the case of NO, so that the

defect is fully localized. The results obtained from 40- and 90-atom supercells were consistent

with each other. Therefore, we performed all the calculations with 40-atom supercell.

We benchmarked the ‘xc functionals, viz., local-density approximation (LDA [58]), semi-

local PBE and a more pronounced non-local hybrid HSE06, to ensure that our results are not

an artifact of chosen treatment for the ‘xc. The LDA and PBE ‘xc functionals underestimate the

band gap, giving a value of 1.37 and 1.75 eV, respectively. Whereas, the hybrid ‘xc functional

HSE06 reproduces the band gap of 3.28 eV by taking the 28% of Hartree-Fock exact exchange

into account, which is in nice match with the experimental value of 3.25 eV [143]. We have

also calculated the defect formation energy for single O-vacancy Ef(⇤)q in our system with

charge states q = 0, +1, +2, ≠1, and ≠2 using LDA, PBE, and HSE06 ‘xc functionals since we

need to find out the stability of the defected systems. The Ef(⇤)q was calculated as follows [87,

137, 138]

Ef(⇤)q = Etot(⇤)q ≠ Etot(SrTiO3) + µO

+ q(µe + VBM + �V )
(3.1)

where Etot(⇤)q is the total energy of supercell containing single O-vacancy with charge state q,

and Etot(SrTiO3) is the total energy of the same supercell without any defect. µO is the chemical

potential of the oxygen atom, which is equal to the energy required to remove an oxygen atom

from the pristine supercell and put it into the oxygen reservoir; µO = 1
2Etot(O2), and Etot(O2)

is the total energy of an isolated O2 molecule. µe is the chemical potential of electron, that

is referenced from VBM of the pristine supercell. �V is the core level alignment between

the pristine and defected supercells. We found from Figure 3.1 that q = +2 and q = ≠2

are the stable charge states near VBM and CBm, respectively, using both LDA and PBE ‘xc

functionals. However, this is not the case with hybrid ‘xc functional HSE06. Using HSE06,

we observed that only q = +2 charge state is stable througout the band gap. It implies that,

results which are obtained from LDA, and PBE are different from that of the HSE06. Since

the deficiency of a single O-vacancy results in two free electrons in the system, it should be

stable after releasing these electrons (i.e., in charge state q = +2). Moreover, as HSE06 ‘xc

functional is more accurate being non-local, containing a fraction of exact exchange, HSE06

‘xc functional is more reliable for our system. Therefore, we did our further calculations with

HSE06 ‘xc functional.

A k-mesh of 4 ◊ 4 ◊ 4 was used, which was generated using Monkhorst-Pack [75] scheme.
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Figure 3.1: The formation energy of a single O-vacancy defect as a function of chemical poten-

tial of electron under O-rich condition using (a) LDA, (b) PBE, and (d) HSE06 ‘xc functionals.

(c) The variation in band gap of pristine supercell as a function of exact exchange fraction (–)

contained in HSE06 ‘xc functional.

The self-consistency loop was converged with a threshold of 0.01 meV energy. The cutoff en-

ergy of 600 eV was used for the plane wave basis set convergence. Note that we performed the

spin-polarized calculations because the doped systems contain unpaired electrons. The quasi-

particle energy calculations were carried out using single-shot G0W0 approximation starting

from the orbitals obtained using HSE06 ‘xc functional. The polarizability calculations were

performed on a grid of 50 frequency points. To make computation feasible, the number of

bands was set to 480, which is around four times the number of occupied bands.

3.3 Results and discussion

3.3.1 Stabilitiy of defects in SrTiO3: Ab initio atomistic thermodynamics

To analyze the thermodynamic stability of the defected configuration w.r.t. pristine SrTiO3, we

have calculated the formation energy by means of ab initio atomistic thermodynamics [87, 137,

144, 145, 146]. For an X-related defect with charge state q, the formation energy (Ef(Xq)) is
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calculated as follows [87, 137, 138]

Ef(Xq) = Etot(Xq) ≠ Etot(pristine0) ≠
ÿ

i

niµi

+ q(µe + VBM + �V )
(3.2)

where, Etot(Xq) and Etot(pristine0) are the total DFT energies with defect (at charge state q) and

pristine neutral, respectively. ni is the number of atoms i added (positive) or removed (negative)

from the system (i = N, S, O, Mn, Rh, Sr, or Ti), and µi is the corresponding chemical potential.

µi is referenced from the total DFT energy (Etot(i)) of species i, i.e., µi = �µi + Etot(i). The

chemical potentials, �µi, have been chosen carefully to reflect the appropriate environmental

growth conditions. µe is the chemical potential of electron varied from the VBM to CBm of the

pristine system, and �V accounts for the core level alignment of the defected system w.r.t. the

pristine neutral system.

The effect of temperature and pressure is explicitly taken into chemical potential term. For

oxygen, the chemical potential �µO as a function of temperature (T ) and the partial pressure

of oxygen (pO2) is calculated using the relation [144]

�µO(T, pO2) = 1
2

C

≠kBT ln
C32fim

h2

4 3
2

(kBT )
5
2

D

+ kBT ln pO2 ≠ kBT ln
A

8fi
2
IAkBT

h2

B

+ kBT ln
C

1 ≠ exp
A

≠h‹OO

kBT

BD

≠kBT ln M + kBT ln ‡]

(3.3)

where m is the mass, IA is the moment of inertia of O2 molecule, ‹OO is the O–O stretching

frequency, M is the spin multiplicity and ‡ is the symmetry number.

Under equilibrium growth conditions, the chemical potentials are related to the enthalpy of

formation of SrTiO3 (�Hf(SrTiO3)) by

�µSr + �µTi + 3�µO = �Hf(SrTiO3) (3.4)

To ensure the suppression of secondary phases, constraints are imposed on the different chem-
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Table 3.2: The chemical potentials at different environmental conditions

Growth Conditions �µO �µN �µTi �µSr �µMn �µRh �µS

O-poor (Ti-rich) ≠4.55 ≠1.48 0.00 ≠3.98 0.00 0.00 ≠2.10

O-intermediate ≠1.58 ≠1.48 ≠5.95 ≠6.96 ≠2.44 0.00 0.00

O-rich (Ti-poor) 0.00 ≠1.48 ≠9.11 ≠8.54 ≠5.61 ≠2.21 0.00

ical potentials as given below

�µTi + 2�µO Æ �Hf(TiO2) (3.5a)

�µMn + 2�µO Æ �Hf(MnO2) (3.5b)

�µTi + 2�µS Æ �Hf(TiS2) (3.5c)

2�µRh + 3�µO Æ �Hf(Rh2O3) (3.5d)

�µX Æ 0; (X = Ti, Sr, Mn, Rh, O, S, N) (3.5e)

We can see that the chemical potentials could be determined by imposing bounds on the for-

mation of the precursors (TiO2, MnO2, TiS2, and Rh2O3) or the secondary phases and are

inter-related. We have calculated the formation energy in three regimes, viz. O-rich (�µO = 0

eV), O-intermediate (�µO = ≠1.58 eV) and O-poor (�µO = ≠4.55 eV) conditions. The �µX

for different growth conditions are given in Table 3.2. O-rich and O-poor conditions are the

extreme growth conditions, which show the abundance and scarcity of O-content. For O-rich

and O-poor conditions, �µO is determined by the bound of Equation 3.5e, and bound on the

formation of TiO2 (Equation 3.5a), respectively. O-intermediate condition (�µO = ≠1.58 eV)

reflects the experimentally relevant condition (T = 1373 K, pO2 = 1 atm [147]) at which gen-

erally the growth of the system takes place. For O-intermediate condition, �µO is calculated

using Equation 3.3. We have fixed the �µN = ≠1.48 eV, which is obtained at experimental

growth condition. Under O-rich and O-intermediate conditions, �µTi and �µMn are limited by

the formation of TiO2 and MnO2, respectively. Under O-poor (Ti-rich) condition, �µTi and

�µMn are limited by the formation of metallic phase of Ti and Mn, respectively. The �µRh is

determined using the bound of Equation 3.5d and 3.5e. Moreover, �µS is calculated by the

bound of Equation 3.5c and 3.5e. By knowing the stability of different dopants under certain

conditions, one could deliberately dope the SrTiO3 in accordance with the need.
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Figure 3.2: Ball and stick model of the optimized structures of (a) NO, (b) Ni, (c) (N2)O, (d)

MnSr, (e) MnTi, (f) Mni (g) MnSrNO, (h) MnTiNO, and (i) pristine SrTiO3.

3.3.1.1 N-related defects

The optimized structures of all the (N,Mn) doped and pristine SrTiO3 supercells are shown in

Figure 3.2. SrTiO3 has a cubic structure with space group Pm3̄m at room temperature (see

Figure 3.2i). On doping N in pristine, N-related defects, viz. NO, Ni, and (N2)O, could form.

NO shows negligible distortion, whereas Ni and (N2)O show more distortion in the lattice (see

Figure 3.2a, 3.2b, and 3.2c). We can sum up about the stability of all the three configurations

of N-related defects at different environmental conditions by observing the 3D phase diagram

as shown in Figure 3.3a. Here, on the x-axis, �µO is varied from O-poor to O-rich conditions

in accordance with T and pO2 . On the y-axis, we have scanned the entire forbidden region by

means of µe, which is referenced from the VBM of pristine SrTiO3. On the z-axis, we have

shown the most stable phases having a minimum formation energy at a given environmental

condition using the colored surfaces. The charge states +1 and ≠1 are energetically stable

in the case of NO near the VBM and CBm, respectively. Ni is energetically stable in charge

states +1, 0, and ≠1. The positive charge states are more favorable for smaller value of µe,

i.e., near the VBM (p-type), whereas negative charge states are stable near the CBm (n-type)
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for a larger value of µe. Since O-poor and O-rich conditions also correspond to lesser and

more content of O, respectively; therefore NO is more difficult/easier to form in O-rich/O-poor

conditions. NO is stable with the charge state ≠1 near CBm, as it has one electron less than

the O atom. The thermodynamic transition level (+/≠) lies in between the VBM and CBm,

indicating that NO acts as both a deep donor/acceptor depending on the nature of doping (i.e.,

p-type or n-type). From Figure 3.3a, we can easily see that NO is the predominant defect

in N-doped SrTiO3 for a wide range of environmental conditions including the experimental

Figure 3.3: 2D projection of the 3D phase diagram that manifests the stable phases of (a) N-

related, (b) Mn-related and (d) (N–Mn)-related charged defects having minimum formation

energy as a function of µe and �µO. Here, on the x-axis, �µO is varied according to T and pO2 ,

and on the y-axis, µe is varied from the VBM to CBm of the pristine SrTiO3. Colored regions

show the most stable phases having a minimum formation energy at a given environmental

condition. Top axes are showing the pressure (pO2) range at two temperatures: T =300 K and

1373 K. (c) Ball and stick model of the optimized structure of MnSrNO defect configuration.
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Figure 3.4: Formation energy of N-related defects in SrTiO3 as a function of chemical potential

of electron at (a) O-poor, (b) O-intermediate, and (c) O-rich conditions. Only those charge

states of a particular defect are shown, which have lowest formation energies.

growth condition (T = 1373 K, pO2 = 1 atm [147]), whereas Ni is only favorable in O-rich

condition. These results are in accordance with the 2D phase diagrams (see Figure 3.4). The

formation energy of all the N-related defect configurations is large in O-rich and O-intermediate

conditions, which implies that N is less soluble in SrTiO3 (see Figure 3.4b and 3.4c).

3.3.1.2 Mn-related defects

On doping Mn in SrTiO3, the structures that could form are MnSr, MnTi, and Mni (see Figure

3.2d, 3.2e, and 3.2f). In the case of MnSr, only neutral defect is stable, which signifies that

Mn exists in the Mn2+ oxidation state when substituted at the Sr (Sr2+ oxidation state) site

in SrTiO3 (see Figure 3.3b). MnTi is stable in the ≠1 charge state, indicating that in addition

to Mn4+ oxidation state, Mn3+ oxidation state could also exist, though unlikely, when Mn is

substituted at the Ti (Ti4+ oxidation state) site. Mni with a +2 charge state is stable in p-type

SrTiO3 under O-poor condition, while MnTi with a -1 charge state is stable in n-type SrTiO3

under O-rich condition, as shown in the 3D phase diagram (see Figure 3.3b). Neutral MnSr is the

prominent defect under all the three environmental conditions. The formation energy for Mn-

doped SrTiO3 in all oxygen environmental conditions is small, particularly in O-intermediate

condition (see Figure 3.5), which implies that it is easier to dope Mn in SrTiO3.

3.3.1.3 Codoped SrTiO3

From the above analysis, we conclude that in the case of monodoped SrTiO3, substitutional

doping is the most stable for a wider region of the environmental conditions, including the
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Figure 3.5: Formation energy of Mn-related defects in SrTiO3 as a function of chemical poten-

tial of electron at (a) O-poor, (b) O-intermediate, and (c) O-rich conditions.

experimental growth conditions. Therefore, we have considered only the substitutional position

for codoping of Mn (Mn at Sr or Ti site) and N (N at O sites) in SrTiO3 (see Figure 3.2g and

3.2h). The formation energy of MnSrNO (Ef(MnSrNq
O)) is calculated as follows

Ef(MnSrNq
O) = Etot(MnSrNq

O) ≠ Etot(SrTiO0
3) + µO ≠ µN

+ µSr ≠ µMn + q(µe + VBM + �V )
(3.6)

where Etot(MnSrNq
O) and Etot(SrTiO0

3) are the DFT energies of the codoped system (Mn at Sr

and N at O) with charge q and the pristine neutral SrTiO3, respectively. µO and µN are the

chemical potentials of the oxygen and nitrogen atom, referenced from the total DFT energy

with the addition of zero-point energy of O2 and N2 molecules, respectively, i.e., µO = �µO +
1
2

1
Etot(O2) + h‹OO

2

2
and µN = �µN + 1

2

1
Etot(N2) + h‹NN

2

2
. In the latter terms, ‹OO and ‹NN

are the O–O and N–N stretching frequencies, respectively. The chemical potentials �µX are

chosen carefully (as discussed above). Figure 3.3d shows the 3D phase diagram for the stability

of (N–Mn) codoped systems. MnSrNO is the predominant defect in all the environmental growth

conditions and is stable in +2, +1, and neutral charge states. This will act as a donor in p-

type SrTiO3. Whereas, MnTiNO is stable only for a smaller region in extreme O-rich/Ti-poor

condition with charge states ≠1 and ≠2 near CBm (n-type); i.e., it will act as an acceptor (see

Figure 3.3d). The results are in accordance with the 2D phase diagrams (see Figure 3.6). To

further confirm that the formation of the defect pair (N–Mn) in SrTiO3 is stable, the binding

energy (Eb) of the defect pair (N–Mn) in SrTiO3 has also been checked [124, 148]. Note that

we have taken the difference between total DFT energies (of codoped and pristine SrTiO3) and

total DFT energies (of respective monodoped SrTiO3), which is opposite to the convention that
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Figure 3.6: Formation energy of (N–Mn)-related defects as a function of chemical potential of

electron at (a) O-poor, (b) O-intermediate and (c) O-rich conditions.

has been considered in Refs [124, 148]. Therefore, the pair that has negative binding energy

is stable. A more negative value of Eb indicates that the defect pair is more stable when both

the dopants are present in the sample. Eb values for MnSrNO and MnTiNO pairs are ≠1.46 and

≠0.33 eV, respectively. These values indicate that defect pairs are more stable than the isolated

impurities in SrTiO3 supercell. Also, MnSrNO is a more stable configuration than MnTiNO since

MnSrNO has higher (more negative) binding energy than MnTiNO. In the (N–Mn) codoped

system, Mn acts as a donor, whereas N acts as an acceptor. The charge transfer takes place

from donor to acceptor, and strong Coulomb interaction arises between a positively charged

donor and negatively charged acceptor. Hence, the defect pair is stable. The extra stability in

MnSrNO is due to the shift of Mn away from the Sr center toward N as shown in Figure 3.3c

and making strong bonds with its neighbor atoms.

After studying the test case of N–Mn, we have studied the thermodynamic stability of other

codoped cases, specifically, S–Mn, S–Rh, and N–Rh. Under all the three conditions (namely,

O-rich, O-intermediate, and O-poor), formation energy of MnTiSO depends only on the charge

states q. Therefore, it remains same for all the three conditions (see Figure 3.7). Whereas,

formation energy of MnSrSO depends linearly on �µO in addition to charge states q. Therefore,

Ef(MnSrSq
O) shifts by a constant amount for a particular growth condition. It is most negative in

O-poor condition (see Figure 3.7c). This implies that formation of MnSrSO in SrTiO3 is easier

in O-poor condition. Moreover, from Figure 3.7a-c, we can see that MnTiSO is stable only in O-

rich condition near the CBm (n-type) with charge state ≠1, whereas the positive charge states

are stable for MnSrSO codoped SrTiO3. In the case of MnSrSO, +2 charge state is stable near

the VBM and thereafter, in between +1 charge state is the most stable. This indicates that the
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Figure 3.7: Formation energy of (S–Mn)-related defect in SrTiO3 at (a) O-rich, (b) O-

intermediate, and (c) O-poor conditions.

Figure 3.8: 3D phase diagram that shows the most stable phases of (a) S–Mn, (b) S–Rh, and

(c) N–Rh codoped SrTiO3 having minimum formation energy as a function of �µO and µe.

defect will act as a donor. Near the CBm, ≠2 charge state of MnSrSO is the most stable. This

whole result of 2D formation energy plots at different growth conditions can be summarized by

a 3D phase diagram that show only the most stable phases having minimum formation energy

(see Figure 3.8a). From Figure 3.8a, we can easily see that MnSrSO is stable in +2, +1 and ≠2

charge states in all the conditions, which is also confirmed from Figure 3.7. Whereas, MnTiSO

is only stable in ≠1 charge state at O-rich condition near the CBm, which can also be seen

from Figure 3.7a. As these transition metals have partially filled d-orbitals, these could accept

electrons from the host as well as donate electrons to the host. The Sr site is more favorable

than the Ti site for substitution in SrTiO3 (see Figure 3.8a-c and 3.3d). The Ti site could

be substituted in O-rich (Ti-poor) condition near the CBm (in n-type host). Mostly, RhSrSO,

RhSrNO, MnSrSO, and MnSrNO codopants act as donor as they are stable in +2 and +1 charge

states for a wide range of µe or in neutral charge state. However, when metal is substituted
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at the Ti position, the defect configuration will act as an acceptor. Furthermore, RhTiNO, and

MnTiNO codoped SrTiO3 will get stabilized after accepting an extra electron in comparison to

RhTiSO, and MnTiSO since N has one electron less than O, and thus, N could accept an extra

electron in comparison to S (S and O have the same valence electron configuration).

3.3.2 Electronic structure analysis

To get more insights about the effect of dopants in SrTiO3, we have calculated atom-projected

partial density of states (pDOS). The pDOS plots for pristine and monodoped (N/Mn) SrTiO3

are shown in Figure 3.9a-d. In pristine SrTiO3, the O 2p orbitals contribute to the VBM, and

Ti 3d orbitals contribute to the CBm with a wide band gap of 3.28 eV. The pDOS of pristine

SrTiO3 is symmetric w.r.t. spin alignments (i.e. spin up or down), whereas in the case of NO,

the pDOS is asymmetrical due to a devoid of an electron in comparison to pristine SrTiO3 (see

Figure 3.9a and 3.9b). In the latter case, some occupied states are appeared above the pristine

VBM and some unoccupied discrete states can also be seen deep inside the forbidden region

(since the N 2p orbitals have higher energy than the O 2p orbitals) (see Figure 3.9b). This leads

to a reduction in the band gap. However, these midgap states increase the recombination rate

and decrease the charge mobility which lead to degradation in the photocatalytic activity.

We have considered two sites for the substitution of Mn, viz., Sr and Ti sites. In the case

of monodoping of Mn at Sr site, the band gap (3.25 eV) is not getting reduced and thus cannot

induce visible light absorption (see Figure 3.9c). The occupied and unoccupied states of Mn

orbitals appeared deep inside the valence and conduction band, respectively, indicating that

MnSr is very stable. However, in the case of Ti site substitution, we get interesting features in

the pDOS (see Figure 3.9d). The localized states bring down the CBm. Hence, the band gap is

reduced to 2.57 eV, resulting in the visible light absorption. However, due to a shift of the CBm

in downward direction, its reduction power is degraded. Therefore, it cannot be a potential

candidate for H2 production from water splitting.

In the case of codoping (N–Mn), the substitution of Mn at both sites, Sr and Ti in addition

to NO, helps to passivate the localized mid gap states (introduced by N substitution) and form

continuum states as shown in Figure 3.9e and 3.9f. The passivation of states is concomitant with

the hybridization of O and N orbitals, and Mn and O orbitals in the MnSrNO defect configuration

as shown in Figure 3.9e (near the VBM). However, in the case of MnTiNO, Mn states arise only

near the CBm as shown in Figure 3.9f. The recombination of photogenerated charge carriers
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Figure 3.9: Electronic density of states for the supercell of (a) pristine SrTiO3, (b) NO, (c) MnSr,

(d) MnTi, (e) MnSrNO, and (f) MnTiNO defect configurations.
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is suppressed, and the diffusion and mobility are increased owing to the passivation of discrete

localized states. The band gaps of MnSrNO and MnTiNO are 2.34 and 1.94 eV, respectively,

which are the desirable ones for visible light absorption. In the case of MnTiNO, CBm is shifted

downward by a large amount and hence adversely affects the reduction power for hydrogen

generation. However, in the case of MnSrNO, this downward shift is very small. Consequently,

the codoping of Mn at the Sr site and N at the O site is favorable for overall photocatalytic water

splitting. Also, from Figure 3.3c, we can see a relatively large distortion in case of MnSrNO

codoping, which builds up the internal field, that is helpful for photogenerated charge carrier

separation and thus enhances the photocatalytic efficiency. Therefore, MnSrNO codoping in

SrTiO3 is a promising candidate to enhance the photocatalytic efficiency and generate hydrogen

from water splitting.

In the case of SO, the band gap is reduced having the value of 2.59 eV and hence responses

to the visible light irradiation (see Figure 3.10a). For RhTi, the unoccupied states of Rh orbitals

appear at the VBM, and the difference between the highest occupied and lowest unoccupied

state is 0.23 eV (see Figure 3.10b). Thus, it is not a promising candidate for enhanced photocat-

alytic activity. A lowering of the CBm in the case of RhSr is occured due to the presence of Rh

localized states contribution at the CBm and therefore, it doesn’t have enough reduction power

to produce hydrogen via water splitting (see Figure 3.10c). In RhTiSO and RhSrSO codoped

SrTiO3, the deep trap states arise in the forbidden region, which increase the non-radiative

recombination of photogenerated charge carriers and thus degrade the photocatalytic activity

(see Figure 3.10d and 3.10e). Since there is a occurrence of trap states in RhTiNO and MnSrSO

codoped SrTiO3, it will result in poor photocatalytic activity (see Figure 3.10f and 3.10g). The

Rh and N orbitals elevate the VBm of RhSrNO codoped SrTiO3, which results in a band gap of

2.69 eV (see Figure 3.10h). The band gap is reduced to 1.95 eV in the case of MnTiSO. The

VBM elevation is concomitant with a occurrence of S orbitals at the VBM and Mn orbitals at

the CBm (see Figure 3.10i). The shifts in the CBm and VBM are such that the band edges

straddle the redox potential levels of water and the defect states are shallow, which serve the

purpose of efficient photocatalyst.

3.3.3 Optical properties

The optical spectra have been determined by calculating the frequency dependent complex

dielectric function "(Ê) = Re (") + Im (") using HSE06 ‘xc functional. The real [Re (")] and
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Figure 3.10: Atom-projected partial density of states of (a) SO, (b) RhTi, (c) RhSr, (d) RhTiSO,

(e) RhSrSO, (f) RhTiNO, (g) MnSrSO, (h) RhSrNO, and (i) MnTiSO codoped SrTiO3.

imaginary [Im (")] parts are associated with the electronic polarizability and optical absorption

of the material, respectively. The sum of all possible transitions from the occupied to the

unoccupied states gives the direct interband transition, which is reflected in the imaginary part

of the dielectric function. For codoped SrTiO3, the spatially average imaginary and real parts of

the dielectric function are shown in Figure 3.11(a) and 3.11(b), respectively (the corresponding

results for monodoped SrTiO3 are shown in Figure 3.11(c) and 3.11(d)). The static real part of

the dielectric function for pristine SrTiO3 is estimated as 4.7 (experimental value is 5.27 [149])

and its value is increased with codopants [see Figure 3.11(b)]. The first absorption peak is

observed at 4.08 eV for pristine SrTiO3 as shown in Figure 3.11(a) (experimental value is
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Figure 3.11: Spatially average (a) imaginary [Im (")] and (b) real [Re (")] part of the dielec-

tric function for codoped SrTiO3 obtained using HSE06 ‘xc functional. Spatially average (c)

imaginary [Im (")] and (d) real [Re (")] part of the dielectric function for monodoped SrTiO3.

4.7 eV [149]). The peaks are shifted to visible region for the monodoped and codoped cases

(except for MnSr, which does not reduce the band gap). Note that the optical properties in the

high energy range are controlled by the electronic transitions between O 2p states and Ti 3d

states. Therefore, the spectra of all the configurations are nearly identical in high energy range.

However, the optical properties in low energy range (less than 3 eV) are different; these are

affected by the transitions involving the impurity states. The observed visible light absorption

could be ascribed to the presence of the dopant states (as shown in pDOS near Fermi-level),

which reduce the electron transition gap for optical absorption. This leads to a new absorption

edge in the visible light region.

We have also calculated the dielectric function of (N,Mn) doped cases using G0W0@HSE06

for comparison, as shown in Figure 3.12. The static (Ê = 0) real part of "(Ê) for pristine SrTiO3

is found to be 3.46, which is underestimated in comparison to the value obtained using HSE06
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Figure 3.12: Spatially average (a) real ("1) and (b) imaginary ("2) part of the dielectric function

obtained by G0W0@HSE06 for the pristine, (N/Mn) monodoped and (N–Mn) codoped SrTiO3.

‘xc functional. On doping, its value is increased (see Figure 3.12a). We have found the first

optical peak at 4.2 eV for pristine SrTiO3 (see Figure 3.12b), which is larger in comparison to

the HSE06 value). Therefore, the optical properties obtained from HSE06 ‘xc functional are in

good agreement with the experimental values.

3.3.4 Band-edge alignment

Note that only a reduction in band gap can not ensure the hydrogen generation via photocat-

alytic water splitting. The band edges (VBM and CBm) should have appropriate position. For

water splitting, the CBm must lie above the water reduction potential level (H+/H2), and the

VBM must be positioned below the water oxidation potential level (O2/H2O). The methodol-

ogy we have adopted to align the band edges could be found in Ref. [126, 150]. First, we have

aligned the band edges of pristine SrTiO3 w.r.t. water redox potential levels. The CBm lies 0.8

eV above the water reduction potential (H+/H2) and the VBM lies 1.25 eV below water oxida-

tion potential [151]. Thereafter, we align the band edges of doped SrTiO3 by observing the shift

in energy of the VBM and CBm w.r.t. undoped SrTiO3. From Figure 3.13, we have found that

in the case of NO, the VBM is shifted upwards, and the CBm is not disturbed. However, some

deep localized states are present in the forbidden region, which degrade the photocatalytic effi-

ciency. These deep states increase the non-radiative recombination and decrease the mobility of
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Figure 3.13: Band-edge alignment of pristine, monodoped, and codoped SrTiO3 w.r.t. water

redox potential levels (H+/H2, O2/H2O). The solid and dashed red lines in forbidden region rep-

resent the highest occupied and lowest unoccupied defect states, respectively. The highlighted

ellipses indicate the most potent candidates for photocatalytic water splitting.

photogenerated charge carriers. Hence, NO is not the promising one for water splitting. Like-

wise, for Rh dopant (in monodoping as well as in codoping), there is occurrence of trap states.

These states degrade the photocatalytic efficiency. Therefore, monodoping and codopoing of

Rh with a nonmetal could reduce the band gap, but cannot result in an efficient photocatalyst.

The monodoped SO could enhance the photocatalytic efficiency and split water as their band

edges straddle the redox potential of water (see Figure 3.13). However, the band gap (2.59) is

slightly higher than the desirable band gap (≥ 2 eV [128, 129]), and thus, its efficiency will be

smaller. Similarly, in the case of MnTi, the band gap is 2.57 eV, and due to shift of its CBm

toward the Fermi level, its reduction power will be degraded. On the other hand, for MnSr, the

band gap is not reduced and thus, it cannot induce the visible light response.

The Rh doping does not aid in enhancing the photocatalytic activity ascribed to the for-

mation of recombination centers except for RhSrNO. In RhSrNO, defect configuration enhances

the photocatalytic efficiency, however its band gap (2.69 eV) is little bit larger in comparison

to the maximum efficient photocatalyst (≥ 2 eV). In MnSrSO, since the occupied deep states

lie below the CBm, this configuration is not a desirable photocatalyst. The reduction in band
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gap for MnTiNO is concomitant with the lowering of CBm, which deteriorates its reduction

power. The MnSrNO, and MnTiSO codoped SrTiO3 configurations are the potential candidates

for overall photocatalytic water splitting (i.e., for hydrogen evolution reaction (HER) as well

as oxygen evolution reaction (OER)) attributable to their desirable band gap (≥ 2 eV) with

congenial band-edge positions (see Figure 3.13).

3.3.5 Band structure and effective mass of pristine, MnSrNO, and MnTiSO

codoped SrTiO3

We have also determined the effective mass of charge carriers for the pristine, MnSrNO, and

MnTiSO codoped SrTiO3 using the HSE06 ‘xc functional (see Table 3.3) to see the effect on

mobility. The effective mass (mú) is obtained from the curvature of band edges by calculating

the inverse of the second derivative of band energy w.r.t. k (wave vector) at the band edges as

follows
1

mú = 1
~2

d
2
E

dk2 , (3.7)

where ~ is the reduced Planck constant. The effective masses for the pristine system (except

for heavy-hole) are validated by previous studies [150, 152, 153].

Note that we have used a supercell so that the periodic images of the defects do not interact

and the defects get localized in the system. However, as the size of the supercell increases,

the bands in the first (primitive) Brillouin zone of primitive/conventional cell get folded, and

the supercell Brillouin zone shrinks. Consequently, the energy levels in the band structure

become very dense, and thus, for a large supercell, we do not get much information from

a band structure. Therefore, unfolding of the band structure is used in general to get a real

picture of the band structure (for details, see Ref. [154, 155]). Despite the use of a supercell

Table 3.3: Effective masses (in terms of free-electron mass me) at the band edge for pris-

tine, MnSrNO, and MnTiSO codoped SrTiO3. The masses mhe, mle, mhh, and mlh correspond to

heavy-electron, light-electron, heavy-hole, and light-hole bands, respectively.

Configuration mhe mle mhh mlh

pristine 5.18 0.38 ≠10.36 ≠0.74

MnSrNO 3.04 ≠ ≠ ≠1.53

MnTiSO ≠ 0.25 ≠ ≠0.66
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Figure 3.14: Band structure calculated using the HSE06 ‘xc functional of (a) pristine SrTiO3,

(b) MnSrNO, and (c) MnTiSO codoped SrTiO3.

(which is not too big in our case), we can see from Figure 3.14 that the density of the bands

near the VBM and CBm is not very high. Also, there is no overlap of bands at the VBM and

CBm in codoped SrTiO3. Therefore, band folding does not create much of a problem for these

cases, and in principle, we can get the correct result for the effective masses.

From Figure 3.14a, we can see that the pristine has 3-fold degeneracy at the CBm (at the

� k-point). This degeneracy is lifted as one moves away from the � k-point in the direction of

X, M, or, R k-point. The effective mass of electron/hole due to a heavy-, light-electron/hole

and spin split-off band is obtained along the �-X high symmetry path for pristine SrTiO3. The

effective mass of the electron/hole corresponding to spin split-off band is found to be same as

that for the light-electron/hole band. After the validation for the pristine system, we have calcu-

lated the effective mass for codoped systems. In contrast to pristine SrTiO3, codoped systems

have non-degenerate bands (highest occupied and lowest unoccupied) [see Figure 3.14]. Note

that here, we have shown the total bands containing both the spin up and spin down contribu-

tion. The CBm for MnSrNO lies at the [0.2 0.2 0.2] k-point and the VBM lies at the R k-point

(see Figure 3.14b). The effective mass of the electron is 3.04me and 5.09me along the CBm-X

and CBm-� directions, respectively. Moreover, the effective mass of the hole is ≠1.53me and

≠2.58me along the R-X and R-� directions, respectively. These different values along different

directions indicate the anisotropic nature of the effective mass. For MnTiSO codoped SrTiO3,

the effective mass of both the charge carriers (calculated along the �-X direction) is decreased.

It is also clear from the large curvature of the bands around the CBm and VBM in comparison

to pristine SrTiO3 [see Figure 3.14c]. For larger effective mass, the mobility will be smaller and

the recombination rate will also be greater. Therefore, from Table 3.2, we can see that in the
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case of MnTiSO codoped SrTiO3, the mobility of charge carriers will be large, and for MnSrNO

codoped SrTiO3, the effective mass values are comparable with pristine SrTiO3, and thus the

mobility will not be affected much. This is because the mobility depends on both the effective

mass and scattering (relaxation) time. The carrier mobility (µ) is defined as follows

µ = q·

mú (3.8)

where q is the elementary charge, and · is the relaxation time (average scattering time). On

doping, the scattering rate is expected to get decreased as the degeneracy will be lifted. As

a consequence of this, despite a small increment in effective mass, the mobility will not be

affected considerably, especially here due to low doping concentration [156]. These effective

mass studies should assist future experimental as well as theoretical investigations to tailor the

transport properties of the systems.

3.4 Conclusions

In summary, we have systematically studied the thermodynamic stability of different types of

dopants and codopants in SrTiO3 using hybrid DFT and ab initio atomistic thermodynamics.

Our results indicate that the most stable codopants (codoping of metal at the Sr site and non-

metal at the O site) mostly act as donors. We have found that the codoping expands the spectral

response and induces visible light absorption. However, the recombination centers are occurred

in Rh-related defect configurations attributable to Rh localized orbitals in the forbidden region,

and moreover, there is a large shift in the CBm or VBM. This will lead to degradation in pho-

tocatalytic efficiency. The mobility of the charge carriers is maximum in the MnTiSO, and in

MnSrNO, it is not affected much. Our results reveal that MnTiSO and MnSrNO codoped SrTiO3

are the most favorable candidates for enhancing photocatalytic overall water splitting owing to

the passivation of the trap states and congenial band-edge positions with desirable visible light

absorption.



CHAPTER 4

Unraveling the role of oxygen vacancy in CaTiO3 for

photocatalytic applications

4.1 Introduction

The utilization of natural sunlight is one of the most promising strategies for controlling our

carbon-based energy consumption and emissions [157]. Hydrogen (H2) has been recognized

as a green energy source as it is an emission-free fuel with a high energy capacity of 143

MJ kg≠1 [158]. Currently, H2 is the feedstock of several industrial reactions and is mainly

prepared by the steam reforming process, which liberates a huge amount of CO2 in the at-

mosphere contributing significantly to the greenhouse effect [159]. N2 gas is abundant in the

Earth’s atmosphere [160] and ammonia (NH3) is an important nitrogenous compound, which is

recognized as a potential hydrogen carrier due to its high hydrogen content and is the backbone

of the fertilizer industry. NH3 is generally produced by the well-known Haber–Bosch process

in which H2 and N2 react under high temperature and pressure conditions (400–500 °C and

15–30 MPa), which consumes about 1–2% of the global annual energy [161]. To curb the in-

creasing dependence on non-renewable energy sources, it is a global demand to come up with

sustainable green energy solutions. In this regard, semiconductor photocatalysis has emerged

as a fascinating and feasible approach, by which H2 and NH3 can be generated from abun-

dant water and N2 gas in the presence of natural sunlight and suitable photocatalytic materials.

However, both of these processes are not realized on a large scale yet due to the low efficiency

of photocatalytic materials reported so far [162].

Researchers have devoted substantial efforts after the dawn of the photocatalysis era [163]

in 1972 and employed several strategies like band gap engineering, suppression of photogener-

ated charge recombination, defect engineering, etc. to address the main bottlenecks (low light
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absorption and charge recombination) of photocatalytic processes [164, 165, 166, 167, 168].

Among these, defect engineering is an attractive strategy wherein the catalytically active sites

can be planted on the surface of materials, which can boost the rate of the reactions and improve

the light absorption and photogenerated charge transfer properties [169, 170]. For example,

oxygen vacancies have been engineered on TiO2 [171, 172], ZnO [173], BiOX (X = Cl, Br)

[174, 175], SrTiO3 [176], CaTiO3 [177], etc., and found to be beneficial for different photo-

catalytic reactions by improving the light absorption and separation of photogenerated charge

carriers. It has been reported that the oxygen vacancies can undergo self-healing and helps in

the adsorption and dissociation of water molecules during photocatalysis [171, 177]. Oxygen

vacancies can also activate the N2 molecules (bond dissociation energy = 945.33 kJ mol≠1) by

chemically adsorbing them on the engineered catalyst surface and facilitate NH3 formation by

their photocatalytic reduction [178, 179]. Therefore, engineering a semiconductor catalyst with

controlled oxygen vacancy concentration is of great importance and interest in photocatalysis

applications.

In this context, alkaline-earth titanates (ATiO3) are good candidates for exploring the ef-

fects of oxygen vacancies on photocatalytic H2 evolution and N2 fixation reactions owing

to their highly negative conduction band potential, wide band gap and excellent thermal and

chemical stability [180, 181]. It has been reported that an optimal amount of oxygen vacan-

cies can enhance the photocatalytic H2 evolution performance of CaTiO3 and SrTiO3 materials

[176, 177, 108, 182]. For example, Cai et al. have utilized H2 annealing treatment to engineer

oxygen vacancies on CaTiO3 nanosheets, which showed enhanced photocatalytic H2 evolution

in comparison to the pristine CaTiO3 nanosheets [177]. In another study, Tan et al. have re-

ported the synthesis of oxygen vacancy engineered SrTiO3 by using NaBH4 as a reducing agent

in an Ar atmosphere and utilized the obtained catalysts for photocatalytic H2 evolution [108].

In our work, we have revealed the actual oxygen vacancy sites (either in the CaO plane or in

the TiO2 plane of CaTiO3), which contribute toward the enhanced photocatalytic performance

for H2 evolution. In addition, the photocatalytic N2 fixation ability of pristine and defective

CaTiO3 has been examined for the first time in this work to the best of our knowledge.

In this chapter, we have performed a systematic density functional theory (DFT) [54, 55]

study using hybrid exchange-correlation (‘xc) functional HSE06 [61] to understand the role of

oxygen vacancy in CaTiO3 for H2 evolution and N2 fixation reactions. First, we have deter-

mined the atom-projected partial density of states (pDOS) to know the nature of defect states
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in a single O-vacant defective CaTiO3. Thereafter, we have aligned the band edges to know

whether the CBm and VBM straddle the reduction and oxidation potentials of water for pho-

tocatalytic water splitting. Finally, we have determined the Gibbs free energy of formation for

hydrogenation of N2 to comment upon the preferred site for the oxygen vacancy. We anticipate

that this work could provide critical insights and directions to experimetalists for the synthesis

of upcoming efficient catalytic materials for different applications.

4.2 Computational methods

The spin polarized DFT calculations were performed by Vienna ab initio simulation pack-

age (VASP) [140, 141]. The electron-ion interactions were considered by using projector-

augmented wave (PAW) pseudopotentials [142] for each species (viz., Ca, Ti, O, N and H). All

the structures were optimized (only atomic positions, not the lattice parameters) using PBE [59]

‘xc functional. The geometries were optimized until the Hellmann-Feynman forces acting on

atoms are smaller than 0.001 eV/Å. The self-consistency loop was converged with an energy

threshold of 0.01 meV. The single-point energy calculations were carried out using HSE06 ‘xc

functional with exact Fock exchange parameter of 18% (Note that the default 25% exact Fock

exchange parameter overestimated the band gap. It yields a band gap of 3.95 eV). Note that

it is already well known that in oxides the HSE06 ‘xc functional is absolutely indispensable,

whereas usual local/semi-local functionals yield wrong results. The 2 ◊ 2 ◊ 1 supercell (80-

atom) was used to carry out the calculations, so that the defects get fully localized into the

system. A k-mesh of 4 ◊ 4 ◊ 6 generated using Monkhorst-Pack [75] scheme was used for

Brillouin zone sampling while optimization. A k-mesh of 2 ◊ 2 ◊ 3 was used for single-point

energy calculations. An energy cutoff of 500 eV was used for plane-wave basis set expansion.

Further, for N2 fixation, the CaTiO3 (001) surfaces with CaO- and TiO2-termination were

modeled as (2◊2) supercell with a periodic 4-layer wherein the lower two layers were fixed and

the upper two layers were relaxed. A vacuum thickness of 15 Å was used in order to eliminate

the interaction between the periodic slabs. A k-mesh of 2 ◊ 2 ◊ 1 was used for single-point

energy calculations of the surfaces. The Gibbs free energy of formation (�G) for H adsorption

is calculated as follows

�G = Esurf+H ≠ Esurf ≠ 1
2EH2 + �EZPE ≠ T�S (4.1)

where Esurf+H, and Esurf are the total energies of surface with and without H adsorbates, respec-
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tively. EH2 is the total energy of H2 molecule. �EZPE is the difference in zero point energy

between the adsorbed and the gas phase, T is the temperature and �S is the change in entropy.

The vibrational energies of the species determine the �EZPE and �S (see Ref. [183]). For

creating a single O-vacancy at CaO- and TiO2-terminated surfaces, we have scanned different

positions and found out the minimum energy configuration. Subsequently, the N2 has been

adsorbed at the defected site. Further, the hydrogenation is taken into account for N2 fixation.

4.3 Results and discussion

4.3.1 Electronic structure of (un)defective CaTiO3

The DFT calculations have been performed to understand the role of defect states in the photo-

catalytic H2 evolution performance of CaTiO3. The pDOS of pristine and defective (with single

O-vacancy) CaTiO3 have been plotted to get insights into the O-vacancy defect. In the pristine

CaTiO3, the O 2p orbitals contribute to the VBM and Ti 3d orbitals contribute to the CBm as

shown in Figure 4.1a and have a wide band gap of 3.51 eV. The states are symmetric with re-

spect to the spin alignments (i.e., spin up or down) due to the absence of any unpaired electron.

The Fermi level (fixed at 0 eV) is near the VBM, which implies that the pristine CaTiO3 is of

p-type nature intrinsically. The O1 site is in the CaO plane and the O2 site is in the TiO2 plane

of CaTiO3. The pDOS of single O-vacancy at the O1 site is shown in Figure 4.1b. The local-

ized states are formed near the CBm and the Fermi level gets shifted to the CBm. It becomes

n-type upon creation of the O-vacancy. These states become asymmetric due to the unpaired

electrons in the system. These states act as donor states and the system will become stable after

releasing two electrons. Therefore, due to the O-vacancy, these extra electrons in the system

help in the reduction of water to produce hydrogen. However, these localized states will also

act as recombination centers, which is detrimental to the photocatalytic efficiency. In contrast,

the vacancy at the O2 site leads to delocalized states at the CBm, which is shown in Figure

4.1c. Herein, for single O-vacancy, two inequivalent sites are considered (marked as O1 and

O2) as shown in Figure 4.1d. Hence, the O-vacancy in the TiO2 plane of CaTiO3 ameliorates

the efficiency of hydrogen production.
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Figure 4.1: Atom-projected partial density of states (pDOS) of (a) pristine, (b) defective

CaTiO3 (O-vacancy at the O1 site, i.e., in the CaO plane), (c) defective CaTiO3 (O-vacancy at

the O2 site, i.e., in the TiO2 plane), (d) crystal structure of orthorhombic (space group Pbnm)

CaTiO3.

4.3.2 H2 evolution in (un)defective CaTiO3 from photocatalytic water split-

ting

To verify whether the CaTiO3 with oxygen vacancies can reduce water to produce hydrogen, the

band-edge alignment of the pristine and the defective CaTiO3 has been performed (see Figure

4.2a). To reduce water, the CBm must lie above the water reduction potential. In addition, for

overall water splitting, the VBM must also be positioned below the water oxidation potential to

oxidize the water and produce oxygen. To align the band edges of defective CaTiO3, first, the
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Figure 4.2: (a) Band-edge alignment of pristine and defective CaTiO3 (bulk) and (b) the Gibbs

free energy of formation (�G) for N2 fixation over the (001) surface of pristine and defec-

tive CaTiO3 (here, VO represents single O-vacancy at the surface). Here, the second step of

hydrogenation to form N2Hú
2 is not considered over the pristine surface, as the first step of

hydrogenation to form N2Hú is endothermic.

band edges of pristine CaTiO3 are aligned with respect to water redox potentials. The CBm of

CaTiO3 lies 0.8 eV above the water reduction potential (H+/H2) [184]. The VBM is positioned

1.48 eV below the water oxidation potential (O2/H2O), as the band gap of pristine CaTiO3

is 3.51 eV. Furthermore, the band edges of defective CaTiO3 (having a single O-vacancy at

the O1 and O2 sites) are aligned by observing the shifts of the VBM and CBm with respect

to pristine CaTiO3. The shifts in the VBM and CBm are small in both the cases. However,

the localized deep donor defect states appear in the case of an O-vacancy at the O1 site (i.e.,

in the CaO plane). Therefore, the aforementioned configuration is not suitable for enhancing

the efficiency of water splitting, as these states increase the non-radiative recombination rate.

Moreover, these defect states hinder the water reduction to H2. In the case of a vacancy at

the O2 site, the defect states are shallower, and a continuum of bands is formed at the CBm.

Therefore, this configuration will be more suitable for H2 evolution.

4.3.3 N2 fixation in (un)defective CaTiO3

To investigate the N2 fixation with pristine and defective CaTiO3 using DFT, the Gibbs free

energy of formation (�G) has been determined. The sequential hydrogenation of the adsorbed
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N2 molecules on the catalyst surface is the key process involved in photocatalytic N2 fixation

and the first hydrogenation step to form N2Hú is the primary step in the whole N2 fixation pro-

cess [185]. The CaTiO3 (001) surfaces with CaO- and TiO2-termination have been modeled

to determine the �G values (see computational methods). The �G values for the first hydro-

genation step to form N2Hú are found to be 2.65 and 0.22 eV on CaO- and TiO2-terminated

surfaces of pristine CaTiO3, respectively (see Figure 4.2b), which are endothermic in nature.

On the other hand, a more facile hydrogenation of N2 is observed on the CaTiO3 surface with

O-vacancies as per the obtained �G values. The �G values for the first step of N2 fixation

over single O-vacant CaO- and TiO2-terminated surfaces are found to be ≠0.45 and ≠0.42 eV,

respectively, as shown in Figure 4.2b. For further hydrogenation to form N2Hú
2 at O-vacant

CaO- and TiO2-terminated surfaces, the �G values are ≠0.47 and ≠1.09 eV, respectively (see

Figure 4.2b). It is important to note that the second step of hydrogenation to form N2Hú
2 is

not considered over the pristine surface, as the first step of hydrogenation to form N2Hú is en-

dothermic. Overall, the obtained �G values suggest that the defective TiO2-terminated surface

is the most favorable for N2 fixation. Moreover, the N2 bond length is increased by 0.1 Å on

adsorption at the O-vacant defective site in comparison to the pristine surface, which leads to

the weakening of the N2 bond and activation of N2 molecule for further photocatalytic reaction.

Hence, the O-vacancy defects in CaTiO3 increase the efficiency of photocatalytic N2 fixation.

4.4 Conclusions

In summary, we have done a systematic study of pristine and defective CaTiO3 for H2 evolution

and N2 fixation reactions using hybrid DFT. We have found that a single oxygen vacancy in

the CaO plane creates the localized states near the CBm, whereas the delocalized states are

appeared at the CBm in the case of a single oxygen vacancy in the TiO2 plane of CaTiO3.

Furthermore, an oxygen vacancy in the CaO plane results in deterioration of the reduction

power for H2 evolution. On the other hand, in the case of an oxygen vacancy in the TiO2 plane,

the photocatalytic efficiency for water splitting is ameliorated owing to the shallow defect states

and the availability of electrons in the CBm. Moreover, the defective CaTiO3 having a single

oxygen vacancy in the TiO2 plane is the most promising candidate for the N2 fixation reaction

attributed to the smaller energy barriers for hydrogenation steps. Based on the obtained results,

it can be inferred that oxygen vacancy engineering in the ABO3 perovskites could lead to
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the design and development of efficient photocatalytic materials for both H2 evolution and N2

fixation reactions.



CHAPTER 5

Sublattice mixing in Cs2AgInCl6 for enhanced optical

properties from first-principles

5.1 Introduction

Lead halide perovskites APbX3 (A = CH3NH3
+, HC(NH2)2

+, Cs+, and X = Cl≠, Br≠, I≠) have

created a huge sensation in the field of optoelectronics, particularly in photovoltaics owing to

their suitable optical band gap, long carrier diffusion length, high carrier mobility and low

manufacturing cost [27, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199].

Moreover, the band gap is tunable with high defect tolerance [190, 191]. These materials

find applications in various optoelectronic devices, namely, solar cells [186, 192, 193], light

emitting diodes [194, 195], lasers [196, 197] and photodetectors [198, 199]. In spite of their

great potential in vast number of applications, there are two major challenges: (i) instabil-

ity against exposure to humidity, heat or light and (ii) toxicity of Pb. To tackle these issues,

many works have been endeavored to find the alternative stable and environmentally sustain-

able metal halide perovskites with fascinating optoelectronic properties akin to lead halide

perovskites [200, 201, 202, 203, 204, 205, 206, 207, 208].

One of the approaches for removing Pb-toxicity is to replace Pb2+ with some other divalent

metal. However, this replacement results in either indirect or large band gap materials with

degraded optoelectronic properties [204, 205, 206]. Substitutions of group 14 divalent cations,

viz., Sn2+ and Ge2+, have also been synthesized by researchers, but these are not stable at ambi-

ent conditions due to the easy oxidation to tetravalent Sn4+ and Ge4+, respectively [207, 208].

Another promising approach is to substitute a monovalent M(I) and a trivalent M(III) metal

alternatively in place of two divalent Pb, which forms the double perovskite A2M(I)M(III)X6.

Many high-throughput calculations have been performed on double perovskites for a variety
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of potential applications [209, 210, 211]. Recently, lead-free metal halide double perovskites

have been synthesized, which are stable and environmentally benign, viz., Cs2AgBiX6 (X =

Cl≠, Br≠, I≠) and Cs2AgInCl6 [42, 47, 212, 213, 43, 214, 215]. Cs2AgBiX6 perovskites pos-

sess indirect band gap, which results in weaker absorption and high non-radiative recombi-

nation loss [42, 47, 212]. In contrast, Cs2AgInCl6 has direct band gap and long carrier life-

times. However, its wide band gap (3.3 eV) does not show an optical response in the visible

region [43, 214]. Alloying with suitable elements could be the best solution to reduce its band

gap and expand the spectral response in the visible light region. In recent studies, Cs2AgInCl6

has been doped to tune its optical properties [215, 216, 217, 218, 219].

In this chapter, we have done the sublattice mixing by partial substitution of several met-

als M(I), M(II), M(III) and halogen X at Ag/In and Cl site, respectively, to reduce the band

gap of Cs2AgInCl6, thereby, enhancing its optical properties. The charge neutrality condition

has been maintained by forming substitutional defects. We have performed hierarchical cal-

culations using first-principles-based approaches, viz., density functional theory (DFT) with

semi-local exchange-correlation (‘xc) functional (PBE [59]), hybrid DFT with HSE06 [60, 61]

and single-shot GW [63, 139] (G0W0) under the many-body perturbation theory (MBPT). First,

the structural stability analysis has been done by examining the Goldschmidt tolerance factor

and octahedral factor. Since structural stability is not the sufficient condition to confirm the for-

mation of perovskites, the decomposition energy [220] has been calculated, which reflects the

thermodynamic stability of the materials. We have taken the difference between total energy of

the configurations and their components (binary/ternary, in which they can decompose), which

is opposite in convention to what has been considered in Ref. [220] Therefore, the configura-

tions that have negative decomposition energy are stable. Furthermore, to get better insights,

we have investigated the reduction in band gap via atom-projected partial density of states

(pDOS). Finally, by calculating the frequency dependent complex dielectric function, we have

determined the optical properties of the materials that can be applied in the field of optoelec-

tronics.

5.2 Computational methods

The DFT calculations were performed using the Vienna ab initio simulation package (VASP) [140].

The ion-electron interactions in all the elemental constituents were described using projector-
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augmented wave (PAW) potentials [142]. All the structures were optimized using generalized

gradient approximation (PBE ‘xc functional) until the forces were smaller than 0.001 eV/Å.

Here, the PBE ‘xc functional is used because the HSE06 ‘xc functional is extremely slow for

relaxing the structure. In the case of double perovskite Cs2AgInCl6, the lattice constant is over-

estimated by 1.56% using PBE ‘xc functional (and by 1.22% using HSE06 ‘xc functional) in

comparison to experimental value obtained by Volonakis et al. [43] Whereas, the PBEsol ‘xc

functional underestimates the lattice constant by 1%. The electronic self-consistency loop con-

vergence was set to 0.01 meV, and the kinetic energy cutoff used was 500 eV for plane wave

basis set convergence. A k-mesh of 4 ◊ 4 ◊ 4 was used for Brillouin zone integration, which

was generated using Monkhorst-Pack [75] scheme. Advanced hybrid ‘xc functional HSE06 was

used for the better estimation of band gap as well as thermodynamic stability. Furthermore, we

checked the role of van der Waals (vdW) forces and configurational entropy, while analyzing

the stability of compounds. The latter has lesser effect on the stability. The consideration of

vibrational energy contributes to second decimal place of the decomposition energy. It may

change the number by very small amount, but neither changes the stability nor the hierarchy of

stability of the compounds. On the other hand, the van der Waals forces (two-body Tkatchenko-

Scheffler [221]) contribute to first decimal place of the decomposition energy. Most of the com-

pounds’ stability has not been affected. However, in very few cases, it has minutely changed

the stability of the compounds, that have decomposition energy value close to zero. In the case

of determination of the optical properties, single-shot GW (G0W0) calculations were performed

on top of the orbitals obtained from HSE06 ‘xc functional [G0W0@HSE06]. The polarizability

calculations were performed on a grid of 50 frequency points. The number of bands was set

to ≥ 4 times the number of occupied bands (for band gap convergence see Table 5.1). With

increasing number of unoccupied bands, the band gap gets converged. Moreover, the negligible

Table 5.1: Band gap evolution with respect to the number of bands using G0W0@PBE of

Cs2AgInCl6

Number of bands Band gap (eV)

240 3.71

480 2.95

640 2.77

800 2.65
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Figure 5.1: (a) Structure of Cs2AgInCl6, and (b) Partial substitution with metals M(I), M(II),

M(III) and with halogen X at Ag/In and Cl sites, respectively.

effect of spin-orbit coupling (SOC) has been discussed.

5.3 Results and discussion

5.3.1 Stability of defected systems

5.3.1.1 Structural stability

The double perovskite Cs2AgInCl6 has a cubic structure with space group Fm3̄m. The cor-

responding sublattice is composed of alternate octahedra of InCl6 and AgCl6, as shown in

Figure 5.1a. On partial substitution of different elements as shown in Figure 5.1b (metals

and/or halogens), the distortion is negligible. We have not observed any octahedral tilting, as

the structures remain cubic on mixing the ions. The difference of Goldschmidt tolerance factor

in comparison to pristine is only 0.03, which do not likely induce the tilting. The only thing

that has minutely changed is the bond length B-X/BÕ-X (≥0.1 Å). This is confirmed by plot-

ting the radial distribution function of the octahedral units of pristine and alloyed system. We

have shown here for a test case, viz., Cs2Cu0.25Ag0.75InCl6, in which the octahedral unit just

stretches inwards on substituting 25% Cu at Ag site (see Figure 5.2). Similar is the case with

other dopants as well, where the change in the bond length of octahedra is ≥ ±0.1 Å. Hence,

the distortion is negligible.

Also, it should be noted that these structures are considerable at room temperatures. This

can be understood by the fact that, the synthesis of halide perovskites is often performed near



Chapter 5. Sublattice mixing in Cs2AgInCl6 for enhanced optical properties from
first-principles 97

Figure 5.2: Radial distribution function of (a) AgCl6 octahedral unit of Cs2AgInCl6, and (b)

CuCl6 octahedral unit of Cs2Cu0.25Ag0.75InCl6.

Figure 5.3: Change in band gap on increasing the concentration of impurity atoms.

room temperature, where the 0 K enthalpy of solid-state compounds is a good approximation

to predict the thermodynamic stability. Hence, thermodynamic stability along with negligible

octahedral distortion indicates the stable cubic structure at room temperature as well.

Here, we have started with 32 primary set of combinations of metals M(I), M(II), M(III)

and halogen X at Ag/In and Cl sites, respectively, where concentration of each set is varied to

build a database of nearly 140 combinations. However, note that here, we have presented the

results of 25% substitution for metals and 4% substitution for halogen atoms. This is because

we have seen and thoroughly checked that, with the increase in concentration of the external

element, if the band gap is increased (or decreased), the same trend is followed with further

increase in concentration. Two such test cases are shown in Figure 5.3. We have also reported

this, to be the case in our previous experimental finding [222]. Moreover, some combina-
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tions beyond 25% substitution are not considered in the following cases: (i) toxic elements

[viz., Tl(III), Cd(II), and Pb(II)], (ii) elements that lead to instability on 25% substitution [viz.,

Co(II), Cu(II), and Ni(II)], and (iii) elements that result in larger indirect band gap (with re-

spect to pristine Cs2AgInCl6) on 25% substitution [viz., Ac(III), Ba(II), Ge(II), and Sn(II)].

The structural stability of all the configurations has been determined by calculating two geo-

metrical parameters, viz., the Goldschmidt tolerance factor (t) and the octahedral factor (µ).

For single perovskite ABX3, t = (rA + rX)/
Ô

2(rB + rX) and µ = rB/rX, where rA, rB, and rX

are the ionic radii of cation A, B, and anion X, respectively. In the case of double perovskites,

rB is the average of the ionic radii at B sites. For stable perovskites, the ranges of t and µ are

0.8 Æ t Æ 1.0 and µ > 0.41 [223]. The Shannon ionic radii [224] have been considered to

evaluate t and µ. For the configurations we have considered, t lies between 0.85 and 0.91, and

µ has the value between 0.50 and 0.59 (see Table 5.2). Therefore, these probable structures are

stable.

5.3.1.2 Thermodynamic stability

In order to determine the thermodynamic stability, we have computed the decomposition energy

(�HD) using PBE and HSE06 ‘xc functionals. We have substituted the external elements in

Cs8Ag4In4Cl24 supercell framework to model a solid solution.1 In order to model the defected

system, we have used an iterative procedure as shown in Refs. [225, 226]. The �HD for the

decomposition of Cs8Ag4In4Cl24 into binary compounds is calculated as follows:

�HD(Cs8Ag4In4Cl24) = E(Cs8Ag4In4Cl24) ≠ 8E(CsCl)

≠ 4E(AgCl) ≠ 4E(InCl3)
(5.1)

where E(Cs8Ag4In4Cl24), E(CsCl), E(AgCl), and E(InCl3) are the DFT energies of the respec-

tive compounds. The configurations having negative value of the �HD are stable. The entropy

of mixing is not considered here as it will not change the overall trend, i.e., the relative sta-

bility will remain same [227, 9, 228]. Figure 5.4a and 5.4b show the decomposition energy

for the decomposition of Cs2AgInCl6 and other mixed sublattices into binary compounds us-

ing PBE and HSE06 ‘xc functionals, respectively (decomposition reactions are shown below).

Only those elements, which lead to decrement in band gap using PBE ‘xc functional, are further
1As most of the sites in double perovskite are equivalent under same symmetry point, the energy difference

in case of different sites (i.e., non-equivalent cells with same stoichiometry) is very small. Thus, even if we take

thermodynamic average considering alloying, the results do not change.
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Table 5.2: Tolerance factor, octahedral factor, band gap, and decomposition energy (for decom-

position into binary compounds) using PBE and HSE06 ‘xc functionals of different configura-

tions

Configuration Tolerance

factor

(t)

Octahedral

factor (µ)

Band

gap

(PBE)

(eV)

�HD

(binary

decom-

position)

(PBE)

(eV/atom)

Band

gap

HSE06

(eV)

�HD

(binary

decom-

position)

(HSE06)

(eV/atom)
Cs2AgInCl6 0.88 0.54 0.95 -0.233 2.31 -0.248
Cs2Cu0.25Ag0.75InCl6 0.90 0.51 0.04 -0.224 1.51 -0.237
Cs2Au0.25Ag0.75InCl6 0.87 0.55 0.32 -0.212 1.54 -0.228
Cs2Na0.25Ag0.75InCl6 0.89 0.53 1.22 -0.232 - -
Cs2K0.25Ag0.75InCl6 0.87 0.55 1.37 -0.216 - -
Cs2Rb0.25Ag0.75InCl6 0.87 0.56 1.43 -0.200 - -
Cs2AgAl0.25In0.75Cl6 0.89 0.52 1.03 -0.196 - -
Cs2AgGa0.25In0.75Cl6 0.89 0.53 0.87 -0.192 2.23 -0.202
Cs2AgTl0.25In0.75Cl6 0.88 0.54 0.37 -0.218 - -
Cs2AgCo0.25In0.75Cl6 0.89 0.52 0.73 -0.217 2.09 -0.230
Cs2AgRh0.25In0.75Cl6 0.89 0.53 0.91 -0.195 2.53 -0.204
Cs2AgIr0.25In0.75Cl6 0.89 0.53 0.43 -0.191 2.08 -0.202
Cs2AgSc0.25In0.75Cl6 0.89 0.53 1.37 -0.200 - -
Cs2AgY0.25In0.75Cl6 0.88 0.54 1.54 -0.194 - -
Cs2AgLa0.25In0.75Cl6 0.87 0.55 1.89 -0.178 - -
Cs2AgAc0.25In0.75Cl6 0.87 0.56 1.78 -0.161 - -
Cs2AgCr0.25In0.75Cl6 0.89 0.53 1.06 -0.197 - -
Cs2AgSb0.25In0.75Cl6 0.89 0.54 1.72 -0.197 - -
Cs2AgBi0.25In0.75Cl6 0.87 0.55 1.96 -0.200 - -
Cs2Ca0.50Ag0.75In0.75Cl6 0.88 0.54 1.89 -0.177 - -
Cs2Sr0.50Ag0.75In0.75Cl6 0.87 0.57 2.11 -0.148 - -
Cs2Ba0.50Ag0.75In0.75Cl6 0.85 0.59 2.29 -0.096 - -
Cs2Zn0.50Ag0.75In0.75Cl6 0.90 0.51 0.61 -0.176 1.87 -0.186
Cs2Cd0.50Ag0.75In0.75Cl6 0.89 0.54 0.64 -0.180 - -
Cs2Ge0.50Ag0.75In0.75Cl6 0.90 0.50 1.43 -0.196 - -
Cs2Sn0.50Ag0.75In0.75Cl6 0.87 0.57 1.18 -0.176 - -
Cs2Pb0.50Ag0.75In0.75Cl6 0.87 0.57 1.72 -0.160 - -
Cs2Mn0.50Ag0.75In0.75Cl6 0.90 0.52 0.31 -0.187 1.77 -0.194
Cs2Co0.50Ag0.75In0.75Cl6 0.90 0.51 metallic -0.166 0.95 -0.140
Cs2Ni0.50Ag0.75In0.75Cl6 0.91 0.50 metallic -0.160 1.98 -0.168
Cs2Cu0.50Ag0.75In0.75Cl6 0.90 0.50 metallic -0.172 1.89 -0.140
Cs2AgInBr0.04Cl5.96 0.88 0.54 0.80 -0.226 2.10 -0.242
Cs2AgInI0.04Cl5.96 0.88 0.54 0.64 -0.206 1.85 -0.224
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Figure 5.4: Decomposition energy (�HD) for the decomposition of pristine and other configu-

rations into binary compounds, and band gap using the ‘xc functionals (a) PBE and (b) HSE06.

(c) Decomposition energy (�HD) for decomposition into ternary compounds using HSE06 ‘xc

functional.
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considered with HSE06 ‘xc functional.

Reactions for the decomposition of pristine and alloyed Cs2AgInCl6 into binary/ternary

compounds:

(1) Cs2AgInCl6

Cs8Ag4In4Cl24 8 CsCl + 4 AgCl + 4 InCl3

Cs8Ag4In4Cl24 2 CsAgCl2 + 2 Cs3In2Cl9 + 2 AgCl

(2) Cs2Cu0.25Ag0.75InCl6

Cs8Cu1Ag3In4Cl24 8 CsCl + 3 AgCl + CuCl + 4 InCl3

Cs8Cu1Ag3In4Cl24
1
2 CsCu2Cl3 + 2 Cs3In2Cl9 + 3 AgCl + 3

2 CsCl

(3) Cs2Au0.25Ag0.75InCl6

Cs8Au1Ag3In4Cl24 8 CsCl + 3 AgCl + AuCl + 4 InCl3

(4) Cs2Na0.25Ag0.75InCl6

Cs8Na1Ag3In4Cl24 8 CsCl + 3 AgCl + NaCl + 4 InCl3

(5) Cs2K0.25Ag0.75InCl6

Cs8K1Ag3In4Cl24 8 CsCl + 3 AgCl + KCl + 4 InCl3

(6) Cs2Rb0.25Ag0.75InCl6

Cs8Rb1Ag3In4Cl24 8 CsCl + 3 AgCl + RbCl + 4 InCl3

(7) Cs2AgAl0.25In0.75Cl6

Cs8Ag4Al1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + AlCl3

(8) Cs2AgGa0.25In0.75Cl6

Cs8Ag4Ga1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + GaCl3

Cs8Ag4Ga1In3Cl24 CsGaCl4 + 3
2 Cs3In2Cl9 + 4 AgCl + 5

2 CsCl

(9) Cs2AgTl0.25In0.75Cl6

Cs8Ag4Tl1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + TlCl3

(10) Cs2AgCo0.25In0.75Cl6

Cs8Ag4Co1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + CoCl3

(11) Cs2AgRh0.25In0.75Cl6

Cs8Ag4Rh1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + RhCl3

(12) Cs2AgIr0.25In0.75Cl6

Cs8Ag4Ir1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + IrCl3

(13) Cs2AgSc0.25In0.75Cl6

Cs8Ag4Sc1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + ScCl3
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(14) Cs2AgY0.25In0.75Cl6

Cs8Ag4Y1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + YCl3

(15) Cs2AgLa0.25In0.75Cl6

Cs8Ag4La1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + LaCl3

(16) Cs2AgAc0.25In0.75Cl6

Cs8Ag4Ac1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + AcCl3

(17) Cs2AgCr0.25In0.75Cl6

Cs8Ag4Cr1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + CrCl3

(18) Cs2AgSb0.25In0.75Cl6

Cs8Ag4Sb1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + SbCl3

(19) Cs2AgBi0.25In0.75Cl6

Cs8Ag4Bi1In3Cl24 8 CsCl + 4 AgCl + 3 InCl3 + BiCl3

(20) Cs2Ca0.50Ag0.75In0.75Cl6

Cs8Ca2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 CaCl2

(21) Cs2Sr0.50Ag0.75In0.75Cl6

Cs8Sr2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 SrCl2

(22) Cs2Ba0.50Ag0.75In0.75Cl6

Cs8Ba2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 BaCl2

(23) Cs2Zn0.50Ag0.75In0.75Cl6

Cs8Zn2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 ZnCl2

Cs8Zn2Ag3In3Cl24 2 Cs2ZnCl4 + 1
2 Cs3In2Cl9 + 3 AgCl + 5

2 CsCl + 2 InCl3

(24) Cs2Cd0.50Ag0.75In0.75Cl6

Cs8Cd2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 CdCl2

(25) Cs2Ge0.50Ag0.75In0.75Cl6

Cs8Ge2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 GeCl2

(26) Cs2Sn0.50Ag0.75In0.75Cl6

Cs8Sn2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 SnCl2

(27) Cs2Pb0.50Ag0.75In0.75Cl6

Cs8Pb2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 PbCl2

(28) Cs2Mn0.50Ag0.75In0.75Cl6

Cs8Mn2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 MnCl2

Cs8Mn2Ag3In3Cl24 2 CsMnCl3 + 3
2 Cs3In2Cl9 + 3 AgCl + 3

2 CsCl
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(29) Cs2Co0.50Ag0.75In0.75Cl6

Cs8Co2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 CoCl2

Cs8Co2Ag3In3Cl24 2 CsCoCl3 + 3
2 Cs3In2Cl9 + 3 AgCl + 3

2 CsCl

(30) Cs2Ni0.50Ag0.75In0.75Cl6

Cs8Ni2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 NiCl2

Cs8Ni2Ag3In3Cl24 2 CsNiCl3 + 3
2 Cs3In2Cl9 + 3 AgCl + 3

2 CsCl

(31) Cs2Cu0.50Ag0.75In0.75Cl6

Cs8Cu2Ag3In3Cl24 8 CsCl + 3 AgCl + 3 InCl3 + 2 CuCl2

Cs8Cu2Ag3In3Cl24 2 CsCuCl3 + 3
2 Cs3In2Cl9 + 3 AgCl + 3

2 CsCl

(32) Cs2AgInBr0.04Cl5.96

Cs8Ag4In4Br1Cl23 8 CsCl + 3 AgCl + AgBr + 4 InCl3

(33) Cs2AgInI0.04Cl5.96

Cs8Ag4In4I1Cl23 8 CsCl + 3 AgCl + AgI + 4 InCl3

The quaternary compounds can be decomposed into ternary compounds. Therefore, we

have also considered those pathways for the materials [see decomposition reactions that are

more probable (as per the smaller value of decomposition energy)], which have the favor-

able band gap. The decomposition energy for the decomposition of Cs2AgInCl6 and other

mixed sublattices into ternary compounds is shown in Figure 5.4c. For the decomposition of

Cs8Ag4In4Cl24 into ternary compounds, the �HD is determined as follows:

�HD(Cs8Ag4In4Cl24) = E(Cs8Ag4In4Cl24) ≠ 2E(CsAgCl2)

≠ 2E(Cs3In2Cl9) ≠ 2E(AgCl)
(5.2)

The �HD has the value of ≠2.48 eV/f.u. and ≠0.10 eV/f.u. for the decomposition of Cs8Ag4In4Cl24

into binary and ternary compounds, respectively. These negative values confirm that the per-

ovskite Cs8Ag4In4Cl24 is stable. We have found that all the selected elements for sublattice

mixing are stable with respect to the decomposition into binary compounds (see Table 5.2).

However, for ternary decomposition pathway, Co(II), Ni(II), and Cu(II) are not stable (see Fig-

ure 5.4c, where shaded region indicates the stable compounds, i.e., �HD < 0). This may be

attributed to the smaller size of these cations that are unable to accommodate two octahedra

with Cl6, and the lowest octahedral factor of Ni(II) and Cu(II) (see Table 5.2). Also, Cu(I) and

Ga(III) are less stable than pristine (see Figure 5.4c). Moreover, we have noticed that Cu(I)

is not stable at all (as positive value of �HD = 0.32 eV/f.u. (see Table 5.3)) when it has fully
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Table 5.3: Decomposition energy (for the decomposition into ternary compounds) of

Cs2CuxAg1≠xInCl6

Compounds
�HD (eV/f.u.)

PBE HSE06

Cs2AgInCl6 ≠0.098 ≠0.103

Cs2Cu0.25Ag0.75InCl6 ≠0.070 ≠0.039

Cs2Cu0.50Ag0.50InCl6 0.058 0.122

Cs2Cu0.75Ag0.25InCl6 0.190 0.354

Cs2CuInCl6 0.322 0.472

replaced the Ag, i.e., for 100% substitution, which is in agreement with previous studies [220].

It is only stable for 25% substitution. Therefore, it is concluded that, if the difference between

sizes of the substitutional cation/anion and pristine’s cation/anion is large, then that configura-

tion would become unstable on increment in concentration.

5.3.2 Electronic structure analysis

A screening of various atoms for sublattice mixing has been done by calculating the band

gap first using generalized gradient approximation (PBE) and, subsequently, with inclusion of

SOC. The respective band gaps as obtained for pristine Cs2AgInCl6 are 0.95 eV and 0.93 eV,

implying insignificant SOC effect on its electronic properties. Also, as per existing literature,

SOC has negligible effect in Ag/In- [229, 210] and Au- [230, 231] based double perovskite. We

have checked the SOC effects for Au-based system. On substituting 25% Au, only the band

gap is changed by 0.1 eV. The nature of the band gap still remains direct at �-point. There is

no splitting at band edges, i.e., at conduction band minimum (CBm) or valence band maximum

(VBM) (see Figure 5.5). The bands remain degenerate at the VBM and CBm. Only the VBM

level is lifted by 0.1 eV. Hence, SOC has negligible effect in the case of Au-based system. This

corroborates with the fact that it does not contain any heavy element like Pb or Bi, where some

significant effect of SOC is expected in the electronic properties of such materials. Therefore,

we have ignored the effect of SOC in our further calculations. However, the band gap is highly

underestimated by PBE ‘xc functional due to the well-known self-interaction error. Therefore,

we have further performed the calculations using hybrid ‘xc functional HSE06 for those mixed
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Figure 5.5: Bandstructure of Cs2Au0.25Ag0.75InCl6 (a) without SOC, and (b) with SOC using

HSE06 ‘xc functional.

sublattices, where in comparison to pristine, the band gap was reduced (see Figure 5.4a, 5.4b,

and Table 5.2). The calculated value of band gap for Cs2AgInCl6 is 2.31 eV using default exact

Fock exchange of 25%, which is in good agreement with previously reported theoretical value,

but still underestimated in comparison to the experimental value (3.3 eV) [43]. We have also

validated that the band gap becomes 3.19 eV on increasing the exact Fock exchange parameter

to 40%. Despite the proximity of this value to that of experiments, it can be drastically changed

for the systems having defects (substitution of different elements), and determining it accurately

is not possible without the experimental inputs. In view of this, we have used the default 25%

exact Fock exchange parameter for our study, assuming this will give atleast the correct trends.

In the case of Cu(I) and Au(I) substitutional alloying at Ag site, the band gap is reduced by

≥ 0.8 eV, having a value of 1.51 and 1.54 eV, respectively. On the other hand, in the case of

substitution of M(III) at In site, it does not have much effect on reduction in band gap. Only

Co(III) and Ir(III) substitutional alloying are able to reduce the band gap from 2.31 to 2.08 eV,

whereas the rest are either increasing it or have no effect on the band gap. In the case of M(II)

substitutional alloying, one at Ag and other one at In site, only Zn(II) and Mn(II) are able to

reduce the band gap effectively, having a band gap value of 1.87 and 1.77 eV, respectively. In

the case of halogen substitution, viz., Br and I, it helps to reduce the band gap to 2.10 and 1.85

eV, respectively (see Table 5.2). In the aforementioned cases, while reducing the band gap,

the direct gap nature remains intact, except for Co(III) substitution. We have also calculated

the band gap using G0W0@HSE06, which is overestimated and nearer to the experimental
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value. In the case of pristine Cs2AgInCl6, the band gap is 3.77 eV. The comparison of band gap

computed using PBE, HSE06, and G0W0@HSE06 can be seen from Table 5.4.

Table 5.4: Band gap (in eV) using PBE, HSE06, and G0W0@HSE06 for different configura-

tions

Configuration PBE HSE06 G0W0@HSE06

Cs2AgInCl6 0.95 2.31 3.77

Cs2Cu0.25Ag0.75InCl6 0.04 1.51 2.69

Cs2Au0.25Ag0.75InCl6 0.32 1.54 2.79

Cs2AgGa0.25In0.75Cl6 0.87 2.23 3.68

Cs2AgCo0.25In0.75Cl6 0.73 2.09 3.15

Cs2AgIr0.25In0.75Cl6 0.43 2.08 3.32

Cs2Zn0.50Ag0.75In0.75Cl6 0.61 1.87 3.32

Cs2Mn0.50Ag0.75In0.75Cl6 0.31 1.77 3.34

Cs2AgInBr0.04Cl5.96 0.80 2.10 3.53

Cs2AgInI0.04Cl5.96 0.64 1.85 3.21

The reduction in band gap can be explained by observing the atom-projected pDOS (see

Figure 5.6). In the pristine Cs2AgInCl6, the Cl p-orbitals and Ag d-orbitals contribute to the

VBM, whereas the In and Ag s-orbitals contribute to the CBm (see Figure 5.6a). In the case

of substitutional alloying of Cu(I) and Au(I), their d-orbitals are at higher energy level than

the d-orbitals of Ag, thereby, reducing the band gap by elevating the VBM (see Figure 5.6c

and 5.6d). However, in the case of the M(III) substitution at In site, generally, the states lie

inside the valence band (VB) or the conduction band (CB), and thus, do not reduce the band

gap effectively. From Figure 5.6b, we can see that the Ga(III) is reducing the band gap by a

negligible amount (as the states contributed by the Ga are lying inside VB and CB). Whereas,

the Co(III) and Ir(III) substitution at In site show a finite decrease in the band gap. This is due

to the Co d-orbitals and Ir d-orbitals contribution at CBm and VBM, respectively (see Figure

5.7a and 5.7b). In the case of M(II), there is a little contribution from d- and s-orbitals of

M(II) at VBM and CBm, respectively, and therefore, reducing the band gap by introducing

the shallow states (see Figure 5.6e and 5.6(f)). Moreover, the Mn states are asymmetric (with

respect to spin states), which indicates that Zn(II) will be more stable than Mn(II). This can

also be seen from the more negative value of �HD for Zn(II) in comparison to Mn(II). The
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Figure 5.6: Atom-projected pDOS using HSE06 ‘xc functional of (a) pristine

Cs2AgInCl6, (b) Cs2AgGa0.25In0.75Cl6, (c) Cs2Cu0.25Ag0.75InCl6, (d) Cs2Au0.25Ag0.75InCl6,

(e) Cs2Zn0.50Ag0.75In0.75Cl6, (f) Cs2Mn0.50Ag0.75In0.75Cl6, (g) Cs2AgInBr0.04Cl5.96, and (h)

Cs2AgInI0.04Cl5.96.
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Figure 5.7: Atom-projected pDOS using HSE06 ‘xc functional of (a) Cs2AgCo0.25In0.75Cl6 and

(b) Cs2AgIr0.25In0.75Cl6.

band gap reduction on substituting Br/I at Cl site is occurred by elevating the VBM, which is

due to Br/I p-orbitals contribution at VBM (see Figure 5.6g and 5.6h). The reduction in band

gap on mixing the halides is in line with the previous studies [47, 43]. In all these cases, the

defect levels are shallow, which is a desirable property for optoelectronic devices. Shallow

defect states ensure that the recombination of photogenerated charge carriers is not prominent

and thus, the decrement in charge carrier mobility and diffusion will be insignificant.

5.3.3 Optical properties

Figure 5.8: Spatially average (a) imaginary [Im (")] and (b) real [Re (")] part of the dielectric

function obtained by HSE06 for the pristine, and alloyed Cs2AgInCl6.
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Figure 5.9: Spatially average (a) imaginary [Im (")] and (b) real [Re (")] part of the dielectric

function, (c) absorption coefficient and (d) band gap obtained by G0W0@HSE06 for the pristine

Cs2AgInCl6 and other mixed sublattices.

To obtain the optical properties, which are crucial for the perovskite to be used in optoelec-

tronic devices, we have calculated the frequency dependent complex dielectric function "(Ê) =

Re ("(Ê)) + Im ("(Ê)) using G0W0@HSE06 [the results obtained by HSE06 ‘xc functional are

shown in Figure 5.8 for comparison]. Figure 5.9a and 5.9b show the imaginary [Im (")] and

real [Re (")] part of the dielectric function, respectively. The real static part (at Ê = 0) of the

dielectric function is a direct measure of refractive index. Higher the refractive index, better

will be the probability to absorb light. On alloying, the refractive index is increased in most

of the cases (range: 1.98 ≠ 2.15), and thus, the optical properties are enhanced. The static Re

(") is 2.05 for pristine Cs2AgInCl6, and the value has increased on alloying (see Figure 5.9b,

Figure 5.10b and Table 5.5). The imaginary part reflects the transitions from occupied to unoc-
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Figure 5.10: Spatially average (a) imaginary [Im (")] and (b) real [Re (")] part of the

dielectric function obtained by G0W0@HSE06 for the pristine, Cs2AgCo0.25In0.75Cl6, and

Cs2AgIr0.25In0.75Cl6.

cupied bands. The absorption edge is red shifted and hence, the visible light response has been

achieved upon alloying (see Figure 5.9a). The absorption spectra have also been obtained that

corroborates with the red shift observed (see Figure 5.9c). The absorption coefficient –(Ê) is

related to the dielectric function as follows:

–(Ê) =
Ô

2 Ê

c

3Ò
Re("(Ê))2 + Im("(Ê))2 ≠ Re("(Ê))

4 1
2

(5.3)

This visible response is attributed to the reduction in band gap as shown in Figure 5.9d. The op-

tical parameters viz. refractive index (÷), extinction coefficient (Ÿ), reflectivity (R), absorption

coefficient (–), optical conductivity (‡), and energy loss spectrum (L), are related to dielectric

function (") as follows:

÷ = 1Ô
2

5Ò
Re(")2 + Im(")2 + Re(")

6 1
2

(5.4)

Ÿ = 1Ô
2

5Ò
Re(")2 + Im(")2 ≠ Re(")

6 1
2

(5.5)

R = [÷ ≠ 1]2 + Ÿ
2

[÷ + 1]2 + Ÿ2
(5.6)

– = 2ÊŸ

c
(5.7)
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Table 5.5: The high frequency ‘ion-clamped’ dielectric constant ("Œ) using G0W0@HSE06

Configurations "Œ

pristine 2.05

Cs2AgGa0.25In0.75Cl6 2.04

Cs2AgCo0.25In0.75Cl6 2.15

Cs2AgIr0.25In0.75Cl6 2.09

Cs2Cu0.25Ag0.75InCl6 2.07

Cs2Au0.25Ag0.75InCl6 2.10

Cs2Zn0.50Ag0.75In0.75Cl6 2.04

Cs2Mn0.50Ag0.75In0.75Cl6 1.98

Cs2AgInBr0.04Cl5.96 2.06

Cs2AgInI0.04Cl5.96 2.09

‡ = –÷c

4fi
(5.8)

L = Im(")
Re(")2 + Im(")2 (5.9)

From Figure 5.11a, we observe that the static value of refractive index increases on alloying,

which is in direct relation with the real part of dielectric tensor. The increment in high frequency

dielectric constant (real part of dielectric tensor) indicates more effective screening of electron-

hole interactions without phonon contribution in comparison to pristine. This increment is due

to reduction in band gap on alloying in comparison to pristine Cs2AgInCl6. The value of re-

fractive index increases and has a maximum peak at first transition energy (for transition of an

electron from VB to CB). The maxima are shifted to lower values of energies, indicating the

transition will occur at lower energies. There is an abnormal behavior in the case of Co(III)

substitutional alloying, which is due to the indirect nature of the band gap. In this case, there

will be large phonon scattering. Figure 5.11b shows the extinction coefficient variation with

photon energy. It is a measure of absorption in materials. The smaller values of extinction

coefficient indicate weaker absorption in the mixed sublattices at lower energies. Further, the

values of reflectivity in these materials are smaller, that suggest their usage in transparent coat-



5.4. Conclusions 112

Figure 5.11: Optical properties of (un)mixed Cs2AgInCl6: (a) refractive index (÷), (b) extinc-

tion coefficient (Ÿ), (c) reflectivity (R), (d) absorption coefficient (–), (e) optical conductivity

(‡), and (f) energy loss spectrum (L) using G0W0@HSE06.

ings (see Figure 5.11c). The peaks of the absorption coefficient and optical conductivity lie at

the same values as that of the imaginary part of dielectric tensor (see Figure 5.11d and 5.11e).

The absorption coefficient lies at lower energies in comparison to pristine, which implies that

alloyed systems can absorb visible light of the solar spectrum. It is of the order ≥ 104 cm≠1

in lower energy region for the mixed sublattices. The optical conductivity behaves similar to

the absorption coefficient. Figure 5.11f shows the loss spectrum function, which indicates the

behavior of fast moving electrons, i.e., lose energy while passing through the material. The

sharp peak in loss spectrum indicates the abrupt decrement in reflectivity spectrum for these

materials.

5.4 Conclusions

In conclusion, we have investigated the role of metals M(I), M(II), M(III) and halogen X in

Cs2AgInCl6 with mixed sublattices for inducing the visible light response by tuning its elec-
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tronic properties, using state-of-the-art DFT and beyond DFT methods. We have found that

the Goldschmidt tolerance factor and octahedral factor lie in the suitable range to form stable

perovskite structure. The decomposition energy of all the mixed sublattices is negative with re-

spect to the binary decomposition, indicating the alloyed systems will not decompose into their

binary precursors and thus, are thermodynamically stable. However, Co(II), Ni(II), and Cu(II)

are thermodynamically unstable and could decompose into ternary compounds. We have ob-

served that SOC effect is negligible in the double perovskite Cs2AgInCl6 as it does not contain

any heavy element like Lead (Pb) and Bismuth (Bi). Many partially substituted configurations

help to tune the band gap, thereby increasing the absorption. We have inferred that the sub-

lattices with Cu(I) and Au(I) at the Ag site, Ir(III) at the In site, Zn(II) at the Ag and In site

simultaneously, Mn(II) at the Ag and In site simultaneously, and Br and I substitutions at the

Cl site have tuned the band gap in the visible region. Hence, these can be considered as the

most promising candidates for various optoelectronic devices, viz., tandem solar cells, LEDs,

photodetectors, and photocatalysts.



CHAPTER 6

Optoelectronic properties of chalcogenide perovskites

by many-body perturbation theory

6.1 Introduction

Inorganic-organic (IO) hybrid halide perovskites have emerged as an efficient compound semi-

conductor alternative to conventional materials used in photovoltaics [27, 186, 15, 28, 232].

The power conversion efficiency (PCE) of a solar cell based on IO hybrid perovskites has in-

creased from 3.8% to 25.5% in the past decade [27, 28]. Nevertheless, the concerns regarding

the long term stability and toxicity of lead restrict the commercialization of these perovskites

[233, 225]. In pursuit of alternative materials having similar kind of optoelectronic proper-

ties, chalcogenide perovskites have been investigated in past few years. Sun et al. [234] first

theoretically reported the optoelectronic properties of chalcogenide perovskites, which can be

utilized in solar cells. Subsequently, other theoretical studies have also characterized different

chalcogenide perovskites for a high solar cell efficiency and photoelectrochemical water split-

ting [235, 236, 237, 238, 239]. Many chalcogenide perovskites such as AZrS3 (A = Ca, Sr,

Ba), have been synthesized experimentally as well [235, 2, 3, 50, 49, 240, 241, 242], which are

stable and consist of earth-abundant non-toxic elements. These chalcogenide perovskites have

a high optical absorption, optimal photoluminescence, and good charge carrier mobility, which

suggest the possibility of their usage in various optoelectronic devices [232, 49, 243, 244].

Zr-based chalcogenide perovskites contain the d-orbital character, wherein the 4d states are

less localized than 3d states, resulting in a large absorption coefficient and a small effective

mass of the charge carriers in these compounds [234]. Therefore, many experimental and

theoretical studies have been performed on Zr-based chalcogenide perovskites (AZrS3, where

A is alkaline earth metal).

114
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Note that the charge separation in a solar cell gets hugely influenced by the formation of

excitons. Therefore, the operation mechanism of a solar cell highly depends on it, as these

excitons thermally dissociate into free electrons and holes, giving rise to the required free-

charge transport. However, currently, because of the huge computational cost, any detailed

study with adequate accuracy of the excitonic properties is not very well-known. Therefore,

it is of profound interest to employ advanced theoretical methodologies for an accurate under-

standing of the excitonic properties that will sufficiently correlate with the experimental studies

to disentangle the scientific insights of excitons. Despite several theoretical studies on the

chalcogenide perovskites, investigations of the optical properties using the excited-state meth-

ods remain unexplored. In view of this, presumably for the first time, we have reported the

excitonic properties of the chalcogenide perovskites.

In this chapter, we did a systematic study of electronic and optical properties of chalco-

genide perovskites AZrS3 (A = Ca, Sr, Ba) using ground- and excited-state methods. First, we

have employed density functional theory (DFT) [54, 55] with a semi-local exchange-correlation

(‘xc) functional PBE [59] to optimize the crystal structures. To study the electronic structure,

we calculated atom-projected electronic partial density of states (pDOS) using hybrid ‘xc func-

tional HSE06 [61]. Subsequently, we determined the optical properties using an excited-state

method, specifically, many-body perturbation theory (MBPT). The Bethe-Salpeter equation

(BSE) [65, 66] was solved to get the electronic contribution to a dielectric function on top of

a single-shot G0W0@PBE [63, 139]. Further, to investigate the ionic contribution to dielectric

function, density functional perturbation theory (DFPT) was used. Finally, using the quasi-

particle (QP) band gap and optical properties, the maximum theoretical photoconversion effi-

ciency has been determined by a calculation of the spectroscopic limited maximum efficiency

(SLME) [245] metric.

6.2 Computational methods

The DFT [54, 55] calculations were performed as implemented in the Vienna ab initio simula-

tion package (VASP) [140, 141]. The ion-electron interactions in all the elemental constituents

were described using projector-augmented wave (PAW) pseudopotentials [141, 142]. The PAW

pseudopotentials with the valence states 3s23p64s2, 4s24p65s2, 5s25p66s2, 4s24p65s24d2, and

3s23p4 were considered for Ca, Sr, Ba, Zr, and S, respectively. All the structures were opti-
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Table 6.1: Band gap (in eV) of CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3 using the PBE ‘xc

functional

Configurations Without SOC With SOC

CaZrS3 1.24 1.22

–≠SrZrS3 0.60 0.59

—≠SrZrS3 1.22 1.19

BaZrS3 1.06 1.01

mized using a generalized gradient approximation, namely, the PBE [59] ‘xc functional, until

the forces were smaller than 0.001 eV/Å. The electronic self-consistency loop convergence was

set to 0.001 meV, and the kinetic energy cutoff was set to 500 eV for the plane wave basis set

expansion. A k-mesh of 7◊7◊5 was used for Brillouin zone integration, which was generated

using the Monkhorst–Pack [75] scheme. The effective mass was calculated by SUMO [246]

using a parabolic fitting of the band edges. The advanced hybrid ‘xc functional HSE06 [61]

was used for a better estimation of the band gap. Note that spin–orbit coupling (SOC) has

not been taken into account because it negligibly affects the electronic structure of considered

chalcogenide perovskites. The band gap is changed by a small amount (on the second dec-

imal place), which can be seen from Table 6.1. Also, the band gap remains direct at the

same high-symmetry k-point � on including the SOC. In order to determine optical proper-

ties, Bethe-Salpeter equation (BSE) [65, 66] was solved on top of single-shot GW [63, 139]

(G0W0) calculations. The initial step for the G0W0 calculation was performed by the PBE ‘xc

functional. The polarizability calculations were carried out on a grid of 50 frequency points.

Table 6.2: Band gap (in eV) of CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3 using G0W0@PBE

with different number of bands

Total number of bands CaZrS3 –≠SrZrS3 —≠SrZrS3 BaZrS3

320 2.39 1.63 2.42 2.20

480 2.32 1.60 2.35 2.12

640 2.29 1.60 2.32 2.10

720 2.29 1.60 2.32 2.10

800 2.30 1.61 2.32 2.09
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The number of unoccupied bands was set to 8 times the number of occupied orbitals (for the

convergence of empty states, see Table 6.2). The number of occupied bands is 80, whereas the

number of unoccupied bands is set to be 640. A �-centered 3 ◊ 3 ◊ 2 k-mesh was used, for

BSE calculations. To construct the electron–hole kernel for BSE calculations, 24 occupied and

24 unoccupied states were used. The convergence for the same was determined by calculating

the imaginary part of the electronic dielectric function, which is shown in Figure 6.1. To check

Figure 6.1: Imaginary part of the electronic dielectric function with light polarization perpen-

dicular to c-axis ("xx) for BaZrS3 with different number of valence (NO) and conduction bands

(NV) used in electron-hole interaction kernel.

the convergence with respect to the Brillouin zone sampling, model-BSE (mBSE) [247] was

done. In mBSE, the dielectric function is replaced by a model local function given below:

"≠1
G,G(q) = 1 ≠ (1 ≠ "≠1

Œ )exp
A

≠ |q + G|2

4⁄2

B

(6.1)

where "Œ is the static ion-clamped dielectric function in high frequency limit calculated using

G0W0@PBE. ⁄ is the screening length parameter, determined by fitting the "≠1 at small wave

vectors (q) with respect to |q + G| and G is the reciprocal lattice vector. We found that there is

a negligible shift of the lower energy peak on increasing the k-mesh (see Figure 6.2). Further,

we saw that the chalcogenide perovskites are optically active along all the three directions,

signifying a minute anisotropy of dielectric function in chalcogenide perovskites (see Figure

6.3). The ionic contribution to the dielectric function was calculated using DFPT with a 7◊7◊5

k-mesh generated using a Monkhorst–Pack scheme.



6.3. Results and discussion 118

Figure 6.2: (a) Model fitting for model-BSE (mBSE). (b) Spatially average imaginary [Im (")]

part of the dielectric function for BaZrS3 with different k-mesh using mBSE. Imaginary part

using GW-BSE is shown for reference by orange color. Calculated values of inverse of the

static ion-clamped dielectric function "≠1
Œ = 0.117 and the screening length parameter ⁄ = 1.20

are used in mBSE.

Figure 6.3: Imaginary part of electronic dielectric function for BaZrS3 with light polarization

along all three lattice vectors. For other chalcogenide perovskites as well, the minute anisotropy

in dielectric function is existed.

6.3 Results and discussion

6.3.1 Electronic structure

Here, we considered the distorted orthorhombic phase of chalcogenide perovskites AZrS3 (A =

Ca, Sr, Ba) having the space group Pnma [2] (see Figure 6.4a). In addition, we considered the
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needle-like phase of SrZrS3 (see Figure 6.4b), since the same has been found in two crystallized

phases (–≠phase, which is needle-like and —-phase, which is a distorted-perovskite phase) [3].

The lattice parameters of the optimized structures calculated using PBE ‘xc functional are given

in Table 6.3. These are in close agreement with previous experimental results [2, 3].

Figure 6.4: Schematic crystal structure of orthorhombic (a) AZrS3 (A = Ca, Sr, Ba) in distorted

phase and (b) –≠SrZrS3 in needle-like phase. Electronic pDOS of (c) CaZrS3, (d) —≠SrZrS3,

(e) –≠SrZrS3, and (f) BaZrS3 using HSE06 ‘xc functional.

We calculated the electronic pDOS of the aforementioned configurations using the HSE06

‘xc functional as shown in Figure 6.4c-f. The valence band maximum (VBM) is mostly con-

tributed by S 3p orbitals, whereas the conduction band minimum (CBm) is mainly from Zr 4d

orbitals. The rest of the orbitals have a small contribution at VBM and CBm. The peaks in

pDOS are narrow and sharper at the VBM (see Figure 6.4c-f) in comparison to CBm, which in-

dicates that the electronic nonradiative lifetime will be longer than that of the holes nonradiative

lifetime. This is because narrow peaks in the pDOS signify a large number of carrier relaxation

path, and hence, shorter carrier lifetimes [248, 249]. Further, with the change in the A-cation

species, there is a shift in the CBm, which has altered the band gap. Moreover, in case of a

distorted-perovskite phase, as we go down the group from Ca to Ba, the bands become more
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Table 6.3: Calculated lattice parameters of AZrS3 (A = Ca, Sr, Ba) perovskites. The experimen-

tal values are provided in brackets. For distorted perovskites, specifically, CaZrS3, —≠SrZrS3,

and BaZrS3, the experimental values are from Ref [2]. For –≠SrZrS3, the experimental values

are from Ref [3]

Configurations a (Å) b (Å) c (Å)

CaZrS3 6.56 (6.54) 7.06 (7.03) 9.63 (9.59)

–≠SrZrS3 3.84 (3.83) 8.63 (8.53) 13.99 (13.92)

—≠SrZrS3 6.78 (6.74) 7.16 (7.11) 9.82 (9.77)

BaZrS3 7.03 (7.03) 7.16 (7.06) 10.01 (9.98)

dispersive at the CBm (see Figure 6.5). Hence, the effective mass of the electron decreases (see

Table 6.4). Contrastingly, the effective mass of hole is not affected much. We find –≠SrZrS3 to

have the smallest electron and hole effective masses. Therefore, these perovskites are expected

to have a better charge carrier transport as indicated by the smaller values of effective masses.

Figure 6.5: Electronic band structure of (a) CaZrS3, (b) –≠SrZrS3, (c) —≠SrZrS3, and (d)

BaZrS3 using PBE ‘xc functional.
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Table 6.4: Effective mass of electron, hole, and reduced mass (in terms of free-electron mass

me) of chalcogenide perovskites along a �≠Z high-symmetry path

Configurations mú
e mú

h µ

CaZrS3 0.503 0.588 0.271

–≠SrZrS3 0.323 0.545 0.203

—≠SrZrS3 0.440 0.580 0.250

BaZrS3 0.411 0.587 0.242

6.3.2 Optical properties

All the considered chalcogenide perovskites exhibit a direct band gap at � high-symmetry point,

which is the desired property for an effective absorption. The band gaps are underestimated by

a semi-local ‘xc functional PBE (see Table 6.5), which is due to the well-known self-interaction

error. The hybrid ‘xc functional HSE06 corrects the band gaps that are well in agreement

with the experimental values (see Table 6.5). Therefore, the electronic structure can be well-

described by the HSE06 functional. However, the latter is less accurate in predicting the optical

features of the systems [250]. Therefore, the MBPT-based GW-BSE method has been used to

compute the optical response, which explicitly considers the electron-hole interaction [251].

Since the single-shot GW (G0W0) calculation depends on its starting point, we validated it by

calculating the optical response of BaZrS3, that is, the imaginary part of the complex dielectric

function (see Figure 6.6). The first peak represents the optical transition corresponding to the

band gap. The peak position, which is underestimated by PBE (1.06 eV), is improved by

G0W0 on top of both the PBE and HSE06, which are at 2.10 and 2.32 eV, respectively (see

Figure 6.6). However, still there is quite some overestimation with respect to the experimental

Table 6.5: Band gap (in eV) of chalcogenide perovskites

Configurations PBE HSE06 G0W0@PBE Experimental

CaZrS3 1.24 2.04 2.29 1.90 [50]

–≠SrZrS3 0.60 1.40 1.60 1.52 [49]

—≠SrZrS3 1.22 2.05 2.32 2.05 [49]

BaZrS3 1.06 1.87 2.10 1.83 [49]
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Figure 6.6: Imaginary [Im (")] part of the dielectric function for BaZrS3 with light polariza-

tion perpendicular to c-axis ("xx), obtained using different level of theories. specifically, PBE,

HSE06, G0W0@PBE, G0W0@HSE06, BSE@G0W0@PBE, and BSE@G0W0@HSE06. First

peak corresponds to the band gap of BaZrS3.

band gap [49]. It may appear that this disagreement between experiment and theory is ascribed

because G0W0 is not converged yet; that is, single-shot GW is not sufficient and needs to be

iterated further to reproduce the experimental value. In view of this, next we performed a self-

consistent GW (scGW) by taking CaZrS3 as our prototypical model system. In the considered

scGW calculations, the energies are updated in both G and W [252]. We observed an increment

in the band gap by 0.4 eV in comparison to the G0W0 to the third iteration. As observed

from the optical spectra (see Figure 6.7), the onset in case of scGW is shifted by 0.4 eV in

comparison to G0W0. Since the value of the band gap as obtained by the G0W0 is closer

to the experimental value and the computational cost of scGW is very high (≥ 3 times the

G0W0), we did not consider scGW for further calculations. We rather conclude that the QP

gap computed using G0W0 is overestimated in comparison to the experimental band gap, since

it does not take into account the exciton binding energy. Therefore, this gap is attempted to

correct by solving the BSE. For BaZrS3, the peak positions obtained using BSE@G0W0@PBE

and BSE@G0W0@HSE06 are at 1.88 and 2.02 eV, respectively (see Figure 6.6). The former

is in close agreement with the experimental band gap, whereas the latter is overestimated.

Hence, the PBE is more accurate than the HSE06 as a starting point for calculating the optical

properties using the MBPT approach. The QP gaps of AZrS3 (A = Ca, Sr, Ba) calculated using
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Figure 6.7: Optical spectra of CaZrS3 calculated using single-shot GW (G0W0) and self-

consistent GW (scGW) on top of PBE orbitals.

G0W0@PBE are provided in Table 6.5.

Figure 6.8 shows the imaginary part of the dielectric function [Im (")] and oscillator strength

calculated using BSE@G0W0@PBE. In the same figure, Im (") calculated using G0W0@PBE

is also shown. The exciton binding energy (EB) can be computed from this figure, as the

EB is the difference between QP band gap (G0W0@PBE peak position) and optical band gap

(BSE@G0W0@PBE peak position). Hence, from Figure 6.8, the EB of the first bright exciton

for CaZrS3, –≠SrZrS3, —≠SrZrS3 and BaZrS3 are 0.23, 0.54, 0.25, and 0.21 eV, respectively.

As per the BSE eigenvalue analysis, we found that a dark exciton (optically inactive) also exists

in case of BaZrS3 below the bright exciton. Moreover, several dark excitons exist in the case of

–≠SrZrS3. The EB for the lowest energetic dark exciton is 1.53 and 0.22 eV for –≠SrZrS3 and

BaZrS3, respectively. Furthermore, the oscillator strength for all the considered perovskites is

mainly distributed within the spectral window of 2–4 eV and matches well with the excitonic

peak positions (see Figure 6.8). It signifies the high radiative recombination between electron

and hole in the considered energy range. Moreover, using the exciton binding energy, dielectric

function, and reduced mass, several excitonic parameters can be determined [253] such as

exciton temperature (Texc) and radius (rexc) given in Table 6.6. The exciton temperature is

determined as follows

Texc = EB

kB
(6.2)

where EB is the exciton binding energy and kB is the Boltzmann constant. The exciton radius
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Figure 6.8: Spatially averaged imaginary [Im (")] part of the dielectric function for (a)

CaZrS3, (b) –≠SrZrS3, (c) —≠SrZrS3, and (d) BaZrS3 obtained using G0W0@PBE and

BSE@G0W0@PBE. Peaks with turquoise color represent the oscillator strength.

is calculated as follows:

rexc = m0
µ
"eff n2rRy (6.3)

where m0 is the free electron mass, µ is the reduced mass, "eff is the static effective dielectric

constant (here, the electronic dielectric constant has been taken since the ionic contribution to

dielectric screening is negligible), n is the exciton energy level (n = 1 provides the smallest

exciton radius) and rRy (0.0529 nm) is the Bohr radius. The exciton lifetime (· ) is inversely

proportional to the probability of a wave function for electron–hole pair at zero seperation

(|„n(0)|2). The value of |„n(0)|2 is determined as follows

|„n(0)|2 = 1
fi(rexc)3n3 (6.4)

Therefore, the · values for the considered perovskites are in the order –-SrZrS3 > BaZrS3 >

CaZrS3 > —-SrZrS3.
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Table 6.6: Excitonic parameters for chalcogenide perovskites

Excitonic parameters CaZrS3 –-SrZrS3 —-SrZrS3 BaZrS3

EB (eV) 0.23 0.54 0.25 0.21

Texc (K) 2669 6267 2901 2437

rexc (nm) 0.79 0.93 0.73 0.92

|„n(0)|2(1027m≠3) 0.65 0.40 0.82 0.41

The high EB in comparison to halide perovskite [254] can be understood from the ionic

contribution to dielectric screening. It has been recently shown that if the EB calculated using

a vertical transition is much greater than the energy of the longitudinal optical phonon mode

(ÊLO), then the ionic contribution to the dielectric screening is negligible and hence, does not

alter the EB [255]. In the case of chalcogenide perovskites, EB ∫ ~ÊLO, which can be seen from

the ionic contribution to the dielectric function (see Figure 6.9). Therefore, the lowering of EB

by the ionic screening can be excluded. Further, by employing the Wannier-Mott approach as

well, we calculated the EB. According to this model, the EB is related to reduced mass of the

charge carriers (µ) and effective dielectric constant (Áeff ) as follows

EB = µ

Á
2
eff

RŒ (6.5)

where, RŒ is the Rydberg constant. Here, the Áeff lies between the static value of dielec-

tric constants as contributed by electrons and ions. The static electronic and ionic dielectric

constants provide the upper and lower bounds to the exciton binding energy. For CaZrS3,

–≠SrZrS3, —≠SrZrS3 and BaZrS3, the static electronic dielectric constants are 4.06, 3.55, 3.44

and 4.19, respectively, which are calculated using the BSE. The respective static ionic dielec-

tric constants are 57.07, 20.86, 74.51, and 99.74 calculated using DFPT (see Figure 6.9). For

Table 6.7: Upper and lower bounds on exciton binding energy EB for chalcogenide perovskites

Configurations Upper bound (eV) Lower bound (meV)

CaZrS3 0.22 1.13

–≠SrZrS3 0.22 6.35

—≠SrZrS3 0.29 0.61

BaZrS3 0.19 0.33
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Figure 6.9: Ionic contribution to the dielectric function for (a) CaZrS3, (b) –≠SrZrS3, (c)

—≠SrZrS3, and (d) BaZrS3 obtained using DFPT.

BaZrS3, the calculated value of the static ionic dielectric constant is in close agreement with

that of previous experimental results [256]. From the reduced mass (provided in Table 6.4), and

the static dielectric constants, we determined the upper and lower bounds of EB using Equa-

tion 6.5, which are listed in Table 6.7 (also shown in Figure 6.10). The upper bounds are in

good agreement with the EB calculated by taking the difference of GW and BSE peak posi-

tions, except for –≠SrZrS3. Thus, the electronic contribution is more prominent than the ionic

contribution in dielectric screening for chalcogenide perovskites.

6.3.3 Polaronic effects

Further, we determined the electron–phonon coupling using the Fröhlich model [257, 258]. In

this model, the electron moving through the lattice interacts with the polar optical phonons via
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Figure 6.10: Exciton binding energy (EB) of (a) CaZrS3, (b) –≠SrZrS3, (c) —≠SrZrS3, and

(d) BaZrS3, as a function of dielectric constant. The intersection of the curve with vertical

dashed line defines the upper bound obtained using the static electronic dielectric constant (at

high frequency) and horizontal dashed line defines the lower bound obtained by the static ionic

dielectric constant (at low frequency).

Fröhlich parameter –, given by

– =
3 1
"Œ

≠ 1
"static

4 Û
RŒ

chÊLO

Û
mú

me
(6.6)

where "Œ and "static are the static electronic and ionic dielectric constants, respectively. h is

Planck’s constant and c is the speed of light. The characteristic frequency ÊLO is determined

from the multiple phonon branches using athermal ‘B’ scheme of Hellwarth et al. [259] The

calculated values of – are provided in Table 6.8. From these, the reduction in the QP gap

attributed to polaron formation can be determined using the following relation for lowering of

QP energy of the electron and hole [255, 260]:

Ep = (≠– ≠ 0.0123–
2)~ÊLO (6.7)

where, Ep is the polaron energy. For CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3, the QP gap

is lowered by 0.24, 0.25, 0.27, and 0.21 eV, respectively. On comparing these values with EB,
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Table 6.8: Electron-phonon coupling parameters for chalcogenide perovskites

Configurations ÊLO (cm≠1) –e –h

CaZrS3 142.03 4.51 8.29

–≠SrZrS3 152.74 3.56 8.49

—≠SrZrS3 117.86 5.61 11.1

BaZrS3 107.51 4.68 9.53

Table 6.9: Polaron mobilities (µ) of CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3 at T = 300 K

Configurations µe (cm2/Vs) µh (cm2/Vs)

CaZrS3 8.16 5.96

–≠SrZrS3 18.77 6.81

—≠SrZrS3 6.84 3.76

BaZrS3 11.35 5.58

we infer that, except for –≠SrZrS3 and BaZrS3, the charge-separated polaronic state is more

stable than the bound exciton. For BaZrS3, both states are comparable, whereas excitonic state

is more stable in –≠SrZrS3. Furthermore, at temperature T , the Hellwarth polaron mobil-

ity can be determined from the static dielectric constants, effective mass, and optical phonon

frequency [258]. The computed polaron mobilities are given in Table 6.9.

6.3.4 Theoretical efficiency

We observed that the AZrS3 (A = Ca, Sr, Ba) perovskites exhibit a large absorption coefficient

and direct band gap in the visible region. These two make them interesting materials for pho-

tovoltaic applications. Therefore, we calculated the spectroscopic limited maximum efficiency

(SLME) [245, 261], which has been proved to be a good metric to determine the maximum effi-

ciency that an absorber material can reach in a single-junction solar cell. SLME is an improved

version of Shockley and Queisser (SQ) efficiency [262], as it takes into account the nature of

the band gap, the shape of the absorption spectra and the material-dependent nonradiative re-

combination losses, in addition to the band gap. The standard solar spectrum, material’s band

gap and the absorption coefficient are given as inputs for the SLME calculation. Figure 6.11

shows the calculated SLME of AZrS3 (A = Ca, Sr, Ba). Except for –≠SrZrS3, the SLME
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Figure 6.11: Spectroscopic limited maximum efficiency of AZrS3 (A = Ca, Sr, and Ba).

becomes constant for a layer thickness greater than 1 µm. –≠SrZrS3 requires a thicker absorp-

tion layer (≥10 µm) for the maximum efficiency. This is because the absorption onset in the

case of –≠SrZrS3 is at a larger value than the band gap. SLME values at 1 µm absorber layer

thickness are 21.33%, 25.45%, 21.19%, and 25.02% for CaZrS3, –≠SrZrS3, —≠SrZrS3 and

BaZrS3, respectively (see Figure 6.11). The theoretically predicted SLME of BaZrS3 (25.02%)

is in good agreement with previously reported theoretical efficiency (≥25% at 1 µm thickness)

[235]. These values of SLME are encouraging for their photovoltaic applications.

6.4 Conclusions

In conclusion, we have determined the electronic and optical properties of chalcogenide per-

ovskites AZrS3 (A = Ca, Sr, Ba) by state-of-the-art ground- and excited-state methods. The

effective mass of the electron has been observed as decreasing down the group from Ca to

Sr for distorted-perovskite phase, thereby enhancing the charge carrier transport. Further, the

carrier nonradiative lifetime is found to be shorter for holes in comparison to the electrons.

The optical band gap is well-reproduced by solving the Bethe-Salpeter equation (BSE). The

exciton binding energies for CaZrS3, –≠SrZrS3, —≠SrZrS3, and BaZrS3 are computed as 0.23,

0.54, 0.25, and 0.21 eV, respectively. In addition, by calculating the electron–phonon coupling

parameters, we have observed that the charge-separated polaronic state is more stable than the

bound exciton for CaZrS3 and —≠SrZrS3. We also report a negligible ionic contribution to the

effective dielectric screening that determines the exciton binding energy. Finally, the calculated
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spectroscopic limited maximum efficiency (SLME) suggests their usage in photovoltaics.



CHAPTER 7

Epilogue and outlook

Perovskites (ABX3 compound, where A and B are cations and X is an anion) are a versatile

family of materials exhibiting a vast range of properties, including the photovoltaic effect, pho-

tocatalytic effect, ferroelectricity, piezoelectricity, and superconductivity. These functionalities

are mainly controlled by the BX6 octahedra. Therefore, by substituting different cations at the

B-site or anions at the X-site, electronic and optical properties of these materials can be tuned.

Moreover, the A-site substitution can fine-tune the aforementioned properties. This tunable

option opens up the ability to control the stability, band gap, exciton binding energy, mobility,

and defect tolerance, which is crucial for the efficient photovoltaic devices and photocatalysts.

Oxide perovskites such as SrTiO3 and CaTiO3 are fascinating materials for photocatalysis

because of their high thermal stability, excellent resistance to photocorrosion, appropriate band-

edge positions for reduction and oxidation of a desired compound, non-toxicity, and low cost.

However, their typical wide band gap (>3 eV) impede the photocatalytic performance. The

intrinsic and extrinsic point defects can make them visible light responsive materials. These

defects not only reduce the band gap but also ameliorate the photocatalytic efficiency by sup-

pressing the recombination of photogenerated charges. In this thesis work, we have explored

the role of point defects in SrTiO3 and CaTiO3 to enhance their optical absorption and photocat-

alytic performance using state-of-the-art first-principles density functional approach. The band

gap of SrTiO3 is tailored by incorporating the foreign impurities in its crystal lattice. Firstly,

the stability of different doped SrTiO3 is determined as a function of temperature, pressure and

Fermi energy using hybrid density functional theory (DFT) in combination with ab initio atom-

istic thermodynamics. This is done by calculating and comparing the defect formation energy

of different configurations. The substitution of nonmetal at the O-site and metal at the Sr-site

is found to be the most stable for most of the environmental growth conditions. Subsequently,

the electronic structure is investigated to probe the defect states. In the case of monodoping,
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generally, either deep defect states are appeared or the band edge is altered by a large amount,

whereas shallow levels are found in the case of codoping. Furthermore, the optical properties

are determined using hybrid DFT and GW approach. The light absorption is enhanced in most

of the cases via band tailing or shift in the absorption peak. The usage of various defect con-

figurations in photocatalytic water splitting is further determined by band-edge alignment and

mobility calculations. By comparing various factors, it is found that MnSrNO (codoping of Mn

at the Sr-site and N at the O-site in SrTiO3) and MnTiSO are the most potential candidates for

photocatalytic water splitting among various defect configurations.

Oxygen vacancies in oxide perovskites can enhance the photocatalytic performance for H2

evolution and N2 fixation reactions. We have evaluated the same in CaTiO3 using hybrid DFT.

In the case of O-vacancy in the CaO plane, mid gap defect states are found that can degrade

the photocatalytic efficiency by increasing the non-radiative recombination rate, whereas in

the case of O-vacancy in the TiO2 plane, delocalized states are formed near the conduction

band minimum. Furthermore, for hydrogenation of N2, the Gibbs free energy of formation

is calculated. Our results suggest that the O-vacancy present in the TiO2 plane is favorable

for both H2 evolution as well as for N2 fixation reaction as compared to pristine CaTiO3 and

O-vacancy in the CaO plane. These defect studies will act as a guide in the smart design of

three-dimensional photocatalysts.

Lead-free halide double perovskites and chalcogenide perovskites have emerged as alter-

native materials to lead halide perovskites for photovoltaic applications. In replacing Pb with

non-toxic elements, the band gap is altered in general, which is not suitable for photovoltaic

applications. For instance, halide double perovskite Cs2AgInCl6 is non-toxic and stable, but

its direct band gap (3.3 eV) is large. We have tuned the band gap of Cs2AgInCl6 by sublattice

mixing for enhancing its light absorption. Since the quaternary compounds can decompose

into binary or ternary compounds, firstly, the structural and thermodynamic stability of various

alloyed double perovskites is determined. Subsequently, their electronic structure and optical

properties are determined using hybrid DFT and GW approach, respectively. The enhanced

optical absorption is shown by various sublattice mixing.

Chalcogenide perovskites exhibit suitable band gap, high absorption coefficient, and high

charge carrier mobility, which make them applicable in optoelectronic devices. However, an

in-depth study of their excited-state properties such as exciton binding energy, and polaronic

effect was absent. Here, we have studied these properties in chalcogenide perovskites AZrS3 (A
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= Ca, Sr, Ba) using many-body perturbation theory approaches (viz., GW approximation and

Bethe-Salpeter equation (BSE)). To capture the ionic contribution to dielectric function, density

functional perturbation theory is used. Our results show that the exciton binding energy of

AZrS3 chalcogenide perovskites is ≥ 220 meV. Also, we find strong electron-phonon coupling

in these perovskites such that the charged-separated polaronic state is more stable than the

bound exciton. These properties along with environmentally benign nature and good stability

suggest their use in various optoelectronic devices.

Overall, perovskites offer a rich plethora of future opportunities for materials development

that will enable photocatalytic and photovoltaic devices that are more efficient with improved

stability, but particular attention is needed to pay on the defects present in the materials devel-

oped. The role of various parameters and theoretical foundation discussed in this thesis work

can guide these future endeavor to discover and develop perovskites and perovskite-inspired

materials for photocatalytic and photovoltaic applications.
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