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Abstract

Energy materials encompass a wide range of materials crucial for various energy-related pro-

cesses, including energy generation, storage, and transformation. With the world facing an

ever-increasing need for energy resources, the advancement and utilization of energy mate-

rials are paramount for ensuring a sustainable future. Here, we study–catalysts for methane

activation and hydrogen production, and perovskites for solar cells and thermoelectric devices.

Methane is a potent greenhouse gas, making its conversion into valuable products essential.

However, the efficient activation of methane poses a significant challenge due to its strong C-H

bonds (4.5 eV), low polarizability, and negligible electron affinity. To circumvent this chal-

lenge, an appropriate catalyst is required. In view of this, we study the transition metal, Ni4 in

a reactive atmosphere of O2 and CH4 gas. It adsorbs these gases and form intermediate phases

[Ni4Ox(CH4)y]. We examine the thermodynamic stability of these phases at finite tempera-

tures and pressures using ab initio atomistic thermodynamics (aiAT). Additionally, to account

for anharmonicity in the vibrational free energy contribution to the configurational entropy, we

employ thermodynamic integration method. The inclusion of anharmonic effects proves crucial

in detecting the activation of the C-H bond.

After this, we explore the perovskite materials for energy applications. Lead halide per-

ovskites have gained considerable attention due to their unique characteristics in optoelec-

tronics and spintronics. We study inorganic CsPbF3 perovskite in terms of its spintronic

applications. The presence of spin-orbit coupling (SOC) arising from lead (Pb) in the non-

centrosymmetric phase of CsPbF3 indicates the possibility of Rashba-Dresselhaus (RD) split-

ting within this material. We investigate this RD splitting and reversible spin textures in R3c

phase employing the perturbative k.p formalism alongside first-principles calculations. Subse-

quently, we investigate the vacancy-ordered double perovskites (VODPs) and their prospective

applications in optoelectronics and thermoelectrics. These VODPs exhibit bandgaps in the visi-

ble region, making them promising candidates for optoelectronic devices. Notably, they possess
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ultralow thermal conductivity, rendering them appealing for thermoelectric applications. In our

work, we thoroughly investigate the thermoelectric properties of these VODPs. Furthermore,

we enhance the thermoelectric characteristics of the GeTe semiconductor by manipulating its

electronic structure and lattice dynamics through doping.

We employ a robust methodological approach that integrates different levels of theories

combined into one multi-scale simulation to address the various properties of materials. In this

thesis, the state-of-the-art methodologies utilized to obtain the desired objectives are: (i) density

functional theory (DFT) for ground-state properties, (ii) cascade genetic algorithm (cGA) to

determine global minimum structures (ii) ab initio atomistic thermodynamics to predict the

stability, (iii) many-body perturbation theory (GW) for excited-state properties, (iv) climbing

image nudged elastic band (CINEB) method to calculate activation energies, and (v) boltzmann

transport theory to compute thermoelectric properties.



 
 
 
 
 

                                                सार                                                                                                                  

 

ऊजार् सामग्री में ऊजार् उत्पादन, भंडारण और पिरवतर्न सिहत िविभन्न ऊजार्-संबंिधत प्रिक्रयाओ ंके िलए महत्वपूणर् 
सामिग्रयों की एक िवस्तृत श्रृंखला शािमल ह।ै दुिनया को ऊजार् संसाधनों की लगातार बढ़ती आवश्यकता का 
सामना करन ेके साथ, एक स्थायी भिवष्य सुिनिश्चत करन ेके िलए ऊजार् सामिग्रयों की उन्नित और उपयोग 
सवोर्पिर ह।ै यहा,ं हम मीथेन सिक्रयण और हाइड्रोजन उत्पादन के िलए उत्प्रेरक, और सौर कोिशकाओ ंऔर 
थमोर्इलेिक्ट्रक उपकरणों के िलए पेरोव्स्काइट्स का अध्ययन करते हैं। 
 
मीथेन एक शिक्तशाली ग्रीनहाउस गैस ह,ै िजसका मूल्यवान उत्पादों में रूपांतरण आवश्यक ह।ै हालाँिक, मीथेन 
का कुशल सिक्रयण इसके मजबूत सी-एच बांड (4.5 ईवी), कम ध्रुवीकरण और नगण्य इलेक्ट्रॉन बंधुता के 
कारण एक महत्वपूणर् चुनौती पेश करता ह।ै इस चुनौती से िनपटन े के िलए एक उपयुक्त उत्प्रेरक की 
आवश्यकता ह।ै इस ेदेखत ेहुए, हम O2 और CH4 गैस के प्रितिक्रयाशील वातावरण में संक्रमण धात,ु Ni4 का 
अध्ययन करत ेहैं। यह इन गैसों को सोख लेता ह ैऔर मध्यवतीर् चरण [Ni4Ox(CH4)y] बनाता ह।ै हम एब 
इिनिटयो एटिमिस्टक थमोर्डायनािमक्स (एआईएटी) का उपयोग करके सीिमत तापमान और दबाव पर इन 
चरणों की थमोर्डायनािमक िस्थरता की जांच करत ेहैं। इसके अितिरक्त, कॉिन्फ़गरशेन एन्ट्रापी में कंपन मुक्त 
ऊजार् योगदान में असंगतता को ध्यान में रखत ेहुए, हम थमोर्डायनािमक एकीकरण िविध को िनयोिजत करत े
हैं। सी-एच बांड की सिक्रयता का पता लगान ेमें एनामोर्िनक प्रभावों का समावेश महत्वपूणर् सािबत होता ह।ै 
इसके बाद, हम ऊजार् अनुप्रयोगों के िलए पेरोव्स्काइट सामिग्रयों का पता लगात ेहैं। ऑप्टोइलेक्ट्रॉिनक्स और 
िसं्पट्रोिनक्स में अपनी अनूठी िवशेषताओ ंके कारण लेड हलैाइड पेर-ओव्स्काइट्स न ेकाफी ध्यान आकिषर् त 
िकया ह।ै हम इसके िसं्पट्रोिनक अनुप्रयोगों के संदभर् में अकाबर्िनक CsPbF3 पेरोव्स्काइट का अध्ययन करत े
हैं। CsPbF3 के गैर-सेंट्रोिसमेिट्रक चरण में लेड (Pb) से उत्पन्न होन ेवाली िस्पन-ऑिबर् ट युग्मन (SOC) की 
उपिस्थित इस सामग्री के भीतर रशबा-डे्रसलहाउस (RD) के िवभाजन की संभावना को इंिगत करती ह।ै हम 
आर3सी चरण में इस आरडी िवभाजन और प्रितवतीर् िस्पन बनावट की जांच करते हैं, िजसमें पहल-ेिसद्धांतों की 
गणना के साथ-साथ गड़बड़ी केपी औपचािरकता को िनयोिजत िकया जाता ह।ै इसके बाद, हम िरिक्त-आदेिशत 
डबल पेरोव्स्काइट्स (वीओडीपी) और ऑप्टोइलेक्ट्रॉिनक्स और थमोर्इलेिक्ट्रक्स में उनके संभािवत अनुप्रयोगों 
की जांच करत ेहैं। य ेवीओडीपी दृश्य क्षेत्र में बैंडगैप प्रदिशर् त करत ेहैं, िजसस ेवे ऑप्टोइलेक्ट्रॉिनक उपकरणों 
के िलए आशाजनक उम्मीदवार बन जात ेहैं। िवशेष रूप स,े उनमें अल्ट्रालो तापीय चालकता होती ह,ै जो उन्हें 
थमोर्इलेिक्ट्रक अनुप्रयोगों के िलए आकषर्क बनाती ह।ै अपन ेकाम में, हम इन वीओडीपी के थमोर्इलेिक्ट्रक 
गुणों की गहन जांच करत ेहैं। इसके अलावा, हम डोिपंग के माध्यम से इसकी इलेक्ट्रॉिनक संरचना और जाली 
गितशीलता में हरेफेर करके GeTe सेमीकंडक्टर की थमोर्इलेिक्ट्रक िवशेषताओ ंको बढ़ात ेहैं। 
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हम एक मजबूत पद्धितगत दृिष्टकोण अपनात ेहैं जो सामिग्रयों के िविभन्न गुणों को संबोिधत करन ेके िलए 
िविभन्न स्तरों के िसद्धांतों को एक बहु-स्तरीय िसमुलेशन में एकीकृत करता ह।ै इस थीिसस में, वांिछत उदे्दश्यों 
को प्राप्त करन ेके िलए उपयोग की जान ेवाली अत्याधुिनक पद्धितया ंहैं: (i) ग्राउंड-से्टट गुणों के िलए घनत्व 
कायार्त्मक िसद्धांत (डीएफटी), (ii) वैिश्वक न्यूनतम संरचनाओ ंको िनधार्िरत करन ेके िलए कैसे्कड जेनेिटक 
एल्गोिरदम (सीजीए)। (ii) िस्थरता की भिवष्यवाणी करन ेके िलए एबी इिनिटयो परमाण ुथमोर्डायनािमक्स, 
(iii) उत्तेिजत-अवस्था गुणों के िलए कई-शरीर गड़बड़ी िसद्धांत (जीडब्ल्य)ू, (iv) सिक्रयण ऊजार् की गणना 
करन ेके िलए इमेज नज्ड इलािस्टक बैंड (CINEB) पर चढ़न ेकी िविध, और (v) थमोर्इलेिक्ट्रक गुणों की गणना 
करन ेके िलए बोल््टज़मैन पिरवहन िसद्धांत। 
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CHAPTER 1

Introduction

1.1 Energy

Energy serves as a vital driving force for the overall development of society. Presently, the

world predominantly relies on fossil fuels, such as oil, coal, and natural gas for its energy sup-

ply [1, 2, 3]. The global energy consumption is illustrated in Fig. 1.1. These fossil fuels are

primarily composed of hydrocarbons, which are chemical compounds consisting of carbon and

hydrogen atoms. The energy within these fuels is stored in the C–H bonds. When these com-

pounds undergo combustion in the presence of oxygen, these bonds break, releasing the stored

energy in the form of heat. However, it is important to note that these fossil fuels contribute

significantly to global greenhouse gas emissions, accounting for approximately one-third of

the total. The increasing energy demands, coupled with the depletion of fossil fuel reserves

and their associated greenhouse gas emissions, pose significant challenges. To address these

challenges, a transition towards renewable energy sources is essential.

1.2 Renewable energy sources

Renewable energy is derived from natural sources that renew themselves more quickly than we

use them. For instance, sunlight and wind are examples of such constantly replenishing sources.

These sources of renewable energy are abundant and can be found all around us. Renewable

energy sources have been recognized as a sustainable solution to mitigate the global energy

shortage [4]. The cost-effectiveness, environmental friendliness, and abundant availability of

renewable energy sources make them an attractive alternative for meeting energy demands. The

common renewable energy sources are:

1
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Figure 1.1: Global energy consumption in 2019.

Solar energy

Sunlight is one of the most abundant source of renewable energy received by earth. Solar

technologies convert sunlight by using photovoltaics and solar cells. These cells are made

from semiconductor materials. When sunlight makes contact with the cells, it ejects electrons

from their atomic bonds, enabling these electrons to move through the cell, thereby generating

electricity. Research has indicated that solar energy holds the potential to cater to the world’s

energy demands effectively, as it is a naturally abundant and freely accessible energy source

without associated costs.

Hydropower

Hydropower is a source of renewable energy that harnesses the power of moving water to

generate electricity. It captures the energy of water as it flows from higher to lower elevations.

This energy can be derived from both reservoirs and rivers. Reservoir hydropower plants utilize

stored water in a reservoir, whereas run-of-river hydropower plants make use of the natural flow

of the river. Typically, a hydropower system involves the use of a dam on a river to create a

large water reservoir and the stored water is then released through turbines, resulting in power

generation.
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Bioenergy

Bioenergy is generated from a wide range of organic materials collectively known as biomass.

This includes materials like wood, charcoal, dung, and agricultural crops. Additionally, the

construction and agricultural products industries, generate significant amounts of unused or

residual biomass, which can also be harnessed as a source of bioenergy. The combustion of

biomass does result in greenhouse gas emissions, albeit at lower levels compared to burning

conventional fuels such as coal, oil, or gas.

Geothermal energy

The Earth’s core can attain scorching temperatures of up to 90000 F. This intense heat, known

as geothermal energy, radiates outward from the core, warming the surrounding layers of the

Earth. As a result, underground reservoirs of hot water and steam are formed. These geothermal

reservoirs can be mainly harnessed for the generation of electricity. Remarkably, the potential

for geothermal energy within the uppermost 6 miles of the Earth’s crust is estimated to be

50,000 times the energy contained in all the world’s oil and gas resources combined.

Ocean energy

Ocean energy encompasses various forms of renewable energy derived from the sea, including

thermal energy from temperature differences between surface and deep waters, mechanical en-

ergy from tides, waves, and currents, and kinetic energy from the movement of ocean water.

The primary ocean technologies for harnessing this energy include wave, tidal, and ocean ther-

mal systems. These diverse approaches collectively contribute to the utilization of the ocean’s

vast energy potential.

Wind energy

Wind energy involves using the kinetic energy of moving air to produce mechanical power.

Wind turbines play a pivotal role in the conversion of kinetic energy into mechanical power.

This mechanical energy can serve various purposes, such as grinding grain or pumping water,

and it can also be converted into electricity through the operation of a generator.
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1.3 Energy materials

Energy materials, in a broad sense, are materials that are essential for various forms of energy

production, storage, and conversion. These materials play a vital role in generating and man-

aging energy in different applications. As the world confronts growing energy demands and

environmental challenges, the development and implementation of advanced energy materials

are essential for a sustainable and prosperous future. The different energy materials are shown

in Fig. 1.2.

Figure 1.2: Different energy materials as alternatives to conventional fuels.

In line with this, our study explores the field of catalysis, optoelectronics, and thermoelectricity

as promising avenues to cater to energy needs. Here, we focus on energy materials–catalysts for

methane activation and H2 production, perovskites for solar cells and thermoelectric devices,

and these areas constitute the main topics of our thesis (see Fig. 1.3).

1.3.1 Catalysis

Catalysis is a process that involves the acceleration of a chemical reaction by a catalyst. The

catalyst itself remains unchanged in terms of its chemical composition after the reaction [5].

In other words, it speeds up the reaction without being consumed or permanently altered in

the process. Catalysts work by lowering the activation energy required for a chemical reaction
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Figure 1.3: Energy materials studied in the present work.

to occur. Activation energy is the minimum energy input necessary for reactants to transform

into products. By reducing this energy barrier, a catalyst enables the reaction to proceed more

rapidly and efficiently. Catalysis is essential in various industrial and biological processes,

as it allows for the control and optimization of chemical reactions. Typically, catalysts are

categorized into three primary types:

• Homogeneous catalysts: These catalysts exist within the same phase as the reactants

and products.

• Heterogeneous catalysts: These catalysts operate in a different phase from the reactants.

Generally, catalysts are in solid form while reactants exist in gaseous or liquid states.

• Enzymes and biocatalysts: Enzyme catalysts primarily consist of proteins.

One significant advantage of heterogeneous catalysts lies in their ease of separation from re-

actants and products, allowing for their reuse. Furthermore, these catalysts are resilient even

under extreme operating conditions, making them the preferred choice for large-scale industrial

production. In this thesis, we have studied the heterogeneous catalysis for methane activation

and H2 production.

1.3.2 Solar cells

Solar cells are the devices that convert sunlight into electricity. They are a fundamental com-

ponent of solar panels and are used to harness solar energy for various applications. Solar cells

work based on the principle of the photovoltaic effect, which is the generation of an electric
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current when certain materials are exposed to light. In this thesis, we have investigated per-

ovskites materials regarding solar cell applications owing to their suitable optical band gap,

high absorption coefficient, low trap density, and reasonable manufacturing cost.

1.3.3 Thermoelectricity

Waste heat represents a significant global concern, exerting a profound influence on the Earth’s

climate system. Studies indicate that over half of the energy generated is dissipated as heat,

encompassing a wide spectrum from household to industrial waste heat [6, 7, 8]. Addressing

waste heat and its recovery has become a critical challenge. Thermoelectricity, also known

as the Seebeck effect, is one of the methods, in which electricity is generated when there is a

temperature difference (∆T) between two different materials or junctions. The phenomenon

is illustrated in Fig. 1.4. Thermoelectricity has the advantage of being a solid-state technol-

ogy,suggesting that it has no moving parts and is highly reliable. However, it is currently less

efficient at converting heat to electricity compared to other methods, such as steam turbines.

Continuous research endeavors aim to enhance the effectiveness of thermoelectric materials,

catering to a broad spectrum of practical applications.

Figure 1.4: Seebeck effect.
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1.4 Defects in solids

Point defects are of utmost importance in the field of semiconductors, capable of significantly

altering their electronic and optical properties. Vacancies and interstitials, in particular, are

intrinsic to real crystals, forming part of the normal thermal equilibrium. Often, experimental

identification of these defects and their impact on various properties can be challenging. In such

cases, first-principles-based theoretical investigations prove invaluable, offering a complement

to experiments and serving as a predictive tool.

Even at low concentrations, defects can exert a profound influence on critical physical and

chemical properties of materials, particularly those governing matter transport and its associ-

ated characteristics. Additionally, they play a pivotal role in influencing thermal conductivity

through phonon scattering, electronic conduction as acceptors or donors, and optical proper-

ties by introducing electronic states with optical transitions. Point defects are instrumental

in tailoring the properties of semiconductors, making them suitable for electronic, thermo-

electric and optoelectronic devices. Therefore, understanding the impact of point defects on

electronic and optical properties holds great significance. This methodology is widely adopted

by research groups globally, and numerous textbooks and overviews on this pivotal subject are

available [9, 10, 11]. In the following section, we delve into a thermodynamic formalism for

point defect formation and explore the fundamental principles governing doping and alloying.

1.5 Thermodynamics of point defects

Thermodynamically, point defects are an inherent feature of crystals in thermal equilibrium. To

illustrate this concept, we can take the example of a vacancy defect in a monoatomic Bravais

lattice. A vacancy represents a point defect where an ion is absent from its regular lattice site.

The equilibrium concentration of vacancies, denoted as n, can be determined by minimizing

the relevant thermodynamic potential, which, in this case, is the Gibbs free energy G under

constant pressure p conditions [12].

G = U − TS + pV (1.1)

Here, U denotes the internal energy of the crystal, T is the temperature, V corresponds to

the volume, and S represents the entropy. To derive the relationship between G and n, let us

consider a crystal with a total of (N+n) ion sites, where n represents the number of vacancies.
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The volume V (n) can be approximated as approximately equal to (N + n)v0, where v0 is the

volume per ion in the perfect crystal. The configurational entropy Sconfig, resulting from the

presence of a fixed number of vacancies, is given by:

Sconfig = kB ln
(N + n)!
N !n! (1.2)

where kB is the Boltzmann constant. The Gibbs free energy is given as

G(n) = F0(n)− TSconfig(n) + p(N + n)v0 (1.3)

where F0(n) = U − TS is the Helmholtz free energy of the imperfect crystal consisting of n

vacant sites. Utilizing Stirling’s formula (for large N, lnN ! ≈ N(lnN − 1)) and considering

n << N , we get
∂G

∂n
= ∂F0

∂n
+ pv0 − kBT ln

N

n
(1.4)

For small n,
∂F0

∂n
≈ ∂F0

∂n

∣∣∣∣∣
n=0

= E (1.5)

where E stands as the defect formation energy and remains independent of n. Consequently,

the number of vacancies that minimizes G can be expressed as:

n = Ne−(E+pv0)/kBT (1.6)

At atmospheric pressures, the contribution of pv0 is insignificantly small compared to E, and

hence,

n = Ne−E/kBT (1.7)

Equation 1.7 suggests that point defects with lower formation energy tend to exist in higher

concentrations, particularly at T > 0.

Point defects can arise through various mechanisms, such as thermal processes (associated

with thermodynamic equilibrium growth), chemical reactions involving impurities, and expo-

sure to radiation or mechanical damage. Hume-Rothery [13] proposed a set of empirical criteria

for significant impurity solubility. One of these criteria stipulates that the atomic diameters of

the impurity species and the host atom should not differ by more than 14%. Beyond this thresh-

old, excessive lattice distortion occurs, limiting solubility. Other requirements include a small

electronegativity difference between the host and guest atoms and structural similarity between

the host and guest atom crystal structures.
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1.6 Problems and challenges

Exploring the defect physics of semiconductors is essential for achieving optimal performance

in practical applications. The initial step in this endeavor involves assessing the thermodynamic

stability under realistic experimental conditions, considering factors like temperature, pressure,

and Fermi level. However, even this initial phase is characterized by complexity. It’s notewor-

thy that the free energy of formation of an isolated defect can undergo significant reduction,

often by several eVs, in the presence of charge carriers within the material. The process of

disentangling the relative stabilities of various types of materials is a challenging task. Sub-

sequent to this, a detailed investigation of the electronic structure, optical properties, and the

positions of band edges in the material, tailored for specific applications, becomes imperative.

In this pursuit, numerous unknown parameters come into play, including the selection of an

appropriate exchange-correlation functional within density functional theory (DFT) [14, 15],

considerations regarding thermodynamic stability, the presence of trap states within the forbid-

den region, optimization of optical absorption, and identifying favorable positions of the VBM

(valence band maximum) and CBm (conduction band minimum). Addressing these aspects

meticulously is crucial for identifying a material that suits the intended purpose. It’s worth not-

ing that, to date, a comprehensive study encompassing all these facets, supported by a robust

methodology, has been missing.

Figure 1.5: Challenges encountered in calculating the different properties of materials.
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In the realm of theoretical calculations, the determination of a material’s ground-state prop-

erties is efficiently carried out through DFT [16]. However, the precision of computational out-

comes is frequently limited by the approximations made in exchange-correlation functionals.

Another significant challenge, especially in defect calculations, pertains to achieving conver-

gence in the supercell size for an isolated defect. While systematic improvements can be made

until convergence is achieved, constraints imposed by computational resources place severe

limitations on the extent to which such convergence can be realized.

To compute the formation energy of a defect, the supercell approach is employed. Within

this method, a single defect is encompassed within a larger cell, which is periodically repli-

cated. Given that realistic defect concentrations are typically lower than the defect concentra-

tion within a cell, interactions between the defect and its periodic images are misleading and

necessitate correction [17]. Consequently, the supercell size must be substantial enough to con-

fine the defect within the system. Additionally, an efficient k-point sampling of the Brillouin

zone is vital for achieving convergence in the relevant physical quantity.

Local or semi-local exchange-correlation functionals employed within DFT, such as LDA

and PBE, tend to significantly underestimate the band gap of materials.As a result, computa-

tions of formation energies and charge transition levels for defects in semiconductors using

LDA or GGA often yield inaccurate results. Furthermore, these approaches fall short in cap-

turing charge localization stemming from narrow bands or local distortions in the vicinity of

defects, primarily due to the electron’s self-interaction error. This challenge can be mitigated

by adopting hybrid functionals like HSE06, which yield improved defect energetics. However,

it is essential to strike a balance by incorporating an appropriate amount of exact exchange mix-

ing to accurately replicate the experimental band gap [18]. Fig. 1.5 illustrates a schematic of

the computational obstacles that may arise when designing a material for diverse applications,

such as photovoltaics, catalysis and thermoelectricity.

To delve into the properties of excited states, it becomes imperative to extend beyond DFT.

Accurate determination of these properties is achieved through quasiparticle calculations rooted

in Green’s function methods under the Many-Body Perturbation Theory (MBPT) framework.

Notably, this involves utilizing the GW approximation [19] and the Bethe-Salpeter equation

(BSE) approach [20, 21]. Practically, these calculations are contingent on the DFT orbitals.

Therefore, a crucial step involves comparing the theoretical results with experimental data to

gauge the reliability of the computational approach. In general, the single-shot GW (G0W0)
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method provides accurate predictions of band gaps. However, it’s important to acknowledge

that GW and BSE calculations pose significant computational challenges due to their high cost

and demanding memory requirements. In the scope of this thesis work, we have judiciously

addressed these parameters to conduct our calculations.

1.7 A short overview of the thesis

• Chapter 2: In this chapter, we discuss the theoretical framework that underpins our research.

A concise exploration of the first-principles-based DFT is provided. It is a crucial tool

for unraveling the structural and electronic characteristics of materials. Additionally, we

touch upon ab initio atomistic thermodynamics, a pivotal aspect in studying the ther-

modynamic stability of the materials. Subsequently, we discuss the cGA and CINEB

approach to find the global minimum structures and activation energies of reactions, re-

spectively. Our discussion extends to the MBPT approaches, with a specific focus on the

GW approximation. These methodologies are instrumental in comprehending the optical

properties of different materials.

• Chapter 3: In this chapter, we explore the catalytic conversion of methane (greenhouse gas)

into syngas, which can be further used in producing valuable products such as methanol,

liquid hydrocarbons and ammonia. However, methane is extremely inert since C-H bonds

in it possess high bond strength (4.5 eV), low polarizability and negligible electron affin-

ity. As a result, the efficient activation of methane has been a major challenge. To circum-

vent this problem, a suitable catalyst is required. For this, we have considered a proto-

typical model system of nickel (Ni4, which has already been experimentally synthesized

and has high selectivity) in a reactive atmosphere of O2 and CH4 gas molecules under

realistic conditions. Typically, in the presence of a reactive atmosphere, clusters adsorb

surrounding gas molecules and form intermediate phases [Ni4Ox(CH4)y] at thermody-

namic equilibrium. The latter generally proves to be an active material for applications

in the field of heterogeneous catalysis. We have investigated the role of environment [i.e.,

temperature (T ), partial pressure of oxygen (pO2) and partial pressure of methane (pCH4)]

to understand the thermodynamic stability of these Ni4Ox(CH4)y (0 ≤ x ≤ 8, 0 ≤ y ≤

3) clusters. Moreover, to incorporate the anharmonicity in the vibrational free energy

contribution to the configurational entropy, we have evaluated the excess free energy of
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Figure 1.6: Overview of the thesis.

the clusters numerically by thermodynamic integration method with ab initio molecular

dynamics (aiMD) simulation inputs. While finding the accurate thermodynamic stabil-

ity, we have seen that the inclusion of anharmonicity introduces new stable phases that

are entirely ignored by DFT and DFT+Fharmonicvibs . This has a significant impact on de-

tecting the activation of the C-H bond, where the harmonic IR is unable to capture the

correct vibrational modes. Additionally, using DFT calculations, we conduct a study on

the decomposition of SO3 in the Iodine-Sulfur (I-S) cycle for hydrogen production.

• Chapter 4: This chapter offers a comprehensive investigation of ferroelectric CsPbF3 per-

ovskite, with a particular emphasis on Rashba-Dresselhaus (RD) splitting. Our approach

utilizes first-principles calculations, viz., DFT with semilocal and hybrid functionals

(HSE06), in combination with SOC and many-body perturbation theory (G0W0). In

order to gain a deeper understanding of the observed spin splitting, we analyze spin tex-

tures using the k.p model Hamiltonian. Our findings reveal the absence of an out-of-plane

spin component, signifying the dominance of Rashba splitting over Dresselhaus splitting.
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Notably, we observe that the strength of Rashba spin splitting can be significantly tuned

with the application of uniaxial strain (±5%). Furthermore, the reversible spin textures

in CsPbF3 perovskite suggest promising implications for perovskite-based spintronic ap-

plications.

• Chapter 5: This chapter presents a systematic study of vacancy-ordered double perovskites

(VODPs) as potential optoelectronic and thermoelectric materials, utilizing DFT and

Boltzmann transport theory. The lack of polyhedral connectivity in VODPs introduces

additional degrees of freedom, resulting in lattice anharmonicity. This anharmonic lat-

tice dynamics leads to a strong electron-phonon coupling, which can be accurately de-

scribed by the Fröhlich mesoscopic model. We investigate the lattice anharmonicity fur-

ther through ab initio molecular dynamics and the electron localization function. Among

the materials studied, Cs2PtI6 exhibits the highest degree of anharmonicity, followed by

Cs2PdI6, Cs2TeI6, and Cs2SnI6. Additionally, the computed average thermoelectric fig-

ure of merit (zT ) for Cs2PtI6, Cs2PdI6, Cs2TeI6, and Cs2SnI6 is 0.88, 0.85, 0.95, and

0.78, respectively, underscoring their potential in renewable energy applications.

• Chapter 6: This chapter outlines an approach to enhance the thermoelectric characteristics

of GeTe-based materials via simultaneous Ti and Bi codoping (Ge1.01−x−yTixBiyTe) at

cation sites, combined with Ge self-doping. This strategy involves a comprehensive op-

timization of both electronic properties, achieved through crystal field engineering and

precise Fermi level adjustment, and thermal properties, obtained via point-defect scat-

tering. Pristine GeTe exhibits a high carrier concentration (n) owing to intrinsic Ge va-

cancies, resulting in a low Seebeck coefficient (α) and elevated thermal conductivity (κ).

Additionally, the phonon dispersion calculations indicate a decrease in group velocity

within Ti-Bi co-doped GeTe, further supporting the observed κph reduction. Through a

combination of Ge vacancy optimization and crystal field engineering, an improved α is

achieved by introducing excess Ge and Ti doping. This enhancement is further refined by

manipulating the band structure through Bi doping. The resultant synergy of improved α

and optimized Fermi level leads to an increased power factor in Ti-Bi codoped Ge1.01Te.

The experimental findings are corroborated by theoretical computations of band structure

and thermoelectric parameters using DFT and Boltztrap calculations.

• Chapter 7: In this chapter, we present an enhanced energy conversion efficiency (η)
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achieved through a two-step optimization of TE properties in Mn–Sb co-doped GeTe,

involving the manipulation of electronic structure and lattice dynamics. The introduction

of Mn and Sb via co-doping effectively improves the TE properties of GeTe, as evidenced

by both experimental results and first-principles-based theoretical calculations. DFT cal-

culations reveal that Mn–Sb co-doping leads to improved band convergence and optimal

Fermi level positioning. This, in turn, contributes to the enhancement of the Seebeck

coefficient (α). The synergistic effects of the optimized α and σ result in a notable in-

crease in the power factor (α2σ) for the Mn–Sb co-doped GeTe system. The combined

improvement in α and reduction in κph leads to an impressive maximum figure-of-merit

(zT ) of 1.67 at 773 K.

• Chapter 8: This chapter concludes the research conducted in this thesis and provides a

concise overview of potential future projects.



CHAPTER 2

Theoretical methodology

2.1 Computer simulation

Computer simulation involves running programs on a network of interconnected computers to

model real-world processes through an abstract representation. It plays a crucial role in scien-

tific research and innovation, serving to support, validate, or rule out theoretical and experimen-

tal hypotheses. Mathematical modeling combined with computer simulations finds applications

in a wide range of fields like physics, chemistry, biology, climatology, as well as human-related

systems including medical science, economics, social science, security, and engineering. Sim-

ulations are particularly valuable when tackling systems too complex for analytical solutions.

Therefore, “computer simulation” has become the third essential component of scientific in-

quiry, alongside theory and experimentation. Simulations serve as valuable tools for investi-

gating experiments that may not always be feasible in a laboratory due to resource limitations.

Consequently, computer simulations play a crucial role as a bridge between theoretical and ex-

perimental aspects of research. Furthermore, modern computer simulations have advanced to

the extent that they can shed light on the contributions of even minor components that impact

the entire system. This has given rise to the interdisciplinary field of “Computational Materials

Science,” which involves the exploration of novel materials, the study of material behaviors

and underlying mechanisms, and the quest for efficient theories or methodologies pertaining to

materials.

Today’s advancements in computer architecture have expanded the horizons of problem-

solving across various length and time scales. Multi-scale computer simulation encompasses

a range of length scales, from the atomic nucleus to electronic structures, atomistic and

nanoscale, mesoscale, and onward to micro/macro-scale. It also spans diverse time scales,

from picoseconds to months and years. In physics, multi-scale computer simulations enable the

15
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study of material properties and their responses to different environmental conditions. These

simulations rely on several levels of methodology, illustrated in Fig. 2.1. The distinct levels are

as follows: (i) atomistic methods, which include Electronic Structure calculations, Molecular

Dynamics, and Monte Carlo simulations, (ii) mesoscale methods, such as Dislocation Dynam-

ics and Phase Field modeling, and (iii) continuum methods, like Finite Element and Finite

Difference approaches. The results obtained at one level inform and enhance the understanding

of phenomena at other levels, while preserving the relevant physical principles. Multi-scale

modeling is especially valuable in computational materials engineering as it allows predictions

of material properties and system behavior based on atomic structure and elementary process

information. Computational techniques are employed to determine ground-state and excited-

state properties, including geometries, ground-state energies, charge densities, band gaps, op-

tical and vibrational spectra, and more. The selection of a modeling approach depends upon

the particular phenomena and properties under investigation, enabling a customized strategy

for addressing various research inquiries.

Figure 2.1: Multi-scale simulation in different length and time scales.
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In this thesis, we employ first-principles electronic structure calculations to design materi-

als for energy applications in catalysis, optoelectronics and thermoelectricity. The framework

of our thesis is outlined as follows: We begin with a brief explanation of the fundamental

concept behind first-principles calculations, elucidating how the properties of condensed mat-

ter systems can be unveiled through a quantum mechanical approach by solving the many-

electron Schrödinger equation. After that, we discuss the foundations of density functional

theory (DFT), which serves as a practical method for dealing quantum systems with many

electrons. Additionally, we categorize the exchange-correlation functionals, which encompass

various approximations. To find the global minimum structures, we employ cascade Genetic

Algorithm (cGA). Further, we determine the transition states and activation barriers of reac-

tions using climbing image nudged elastic band (CINEB) method. Finally, to investigate the

excited-state properties of the systems, we introduce Green’s function methods, specifically,

the GW approximation.

2.2 First-principles calculation

A “first-principles calculation” refers to a calculation based on established scientific principles,

following the fundamental laws of physics without reliance on empirical laws or parameter

fitting. This approach is primarily rooted in the principles of quantum mechanics and offers a

comprehensive understanding of the electronic, optical, and magnetic properties of materials

and molecules. Our environment consists of condensed matter, which comprises stable sys-

tems of atoms and molecules, primarily in solid or liquid phases. The fundamental building

blocks of condensed matter are atoms, composed of a positively charged nucleus surrounded

by negatively charged electron clouds. Consequently, the interactions between atoms, includ-

ing covalent, ionic, chemical, and molecular bonding, can be traced back to the interactions of

their constituents-specifically, electrons and nuclei. These foundational interactions underpin

the physics of condensed matter systems. Accurately modeling these basic interactions presents

a considerable challenge. Achieving precise modeling of these interactions is crucial because

it should naturally yield complex physical phenomena arising from these interactions in our

calculations. The principles governing the interactions between electrons and nuclei in con-

densed matter are relatively straightforward. The dynamics of these particles are governed by

the mathematical framework of basic quantum mechanics, mainly the Schrödinger equation.
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Solving this equation allows for the determination of properties related to condensed matter.

However, the numerical formulation of this equation poses significant challenges, mainly due

to the size and complexity of the problem. While we have a complete understanding of the fun-

damental laws essential for the mathematical treatment of a significant portion of physics and

chemistry, the resulting equations are highly intricate and challenging to solve. Therefore, on-

going research in this field focuses on the development of efficient and accurate computational

techniques to address many-body problems.

2.3 Many-body problem

Many-body physics is instrumental in understanding the collective behavior of many interact-

ing quantum particles. The behavior of a system is governed by the fundamental equation of

quantum mechanics, the Schrödinger equation. Solving the Schrödinger equation yields the

many-body wave function, describing the quantum state of a system, from which all physi-

cal phenomena can be derived. However, solving the many-electron Schrödinger equation is

practically unattainable except for very basic cases, like the H-atom, He+, and harmonic oscil-

lators, due to the computational limitations of computers regarding speed and memory. Given

these constraints, numerical solutions are only feasible for systems with a limited number of

electrons. Since determining an exact solution is computationally formidable, the common

approach is to transform the problem into a closely related one for which an exact solution

is known. The disparity between the two, assumed to be small, is then treated as a pertur-

bation to the exactly solvable problem. This way, an approximate solution is derived for the

many-electron problem, which is subsequently refined with minor corrections to improve the

previously obtained approximate values. Addressing the many-electron system begins with the

Born-Oppenheimer approximation, which decouples the motion of electrons and nuclei. Given

the considerable difference in mass between electrons and nuclei, the nuclei can be considered

at rest with respect to the electrons. Although this approximation simplifies the many-electron

problem, dealing with electron-electron interactions remains a challenge. For an N-electron

system, there are 3N variables. Two primary approaches are commonly employed to solve

the N-electron system: (i) the wave function-based approach and (ii) DFT. In the former, the

N-electron wave function is the primary focus, whereas the latter focuses on the 3D electron

density. A classic wave function method developed by Hartree in 1928 treats electrons as
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independent entities, with each electron interacting solely through a central potential created

by other electrons and nuclei. Therefore, the total wave function is represented as the prod-

uct of N independent electron wave functions. However, this approach fails to adhere to the

antisymmetric nature of electrons, which are fermions. In 1930, Fock replaced the Hartree

product of wave functions with the Slater determinant, satisfying the required antisymmetric

condition. This approximation is known as the Hartree–Fock approximation, considering direct

Coulomb and exact exchange interactions among electrons. Nonetheless, it falls short of ad-

dressing electronic correlation, leading to significant deviations from experimental results. To

overcome these limitations, post-Hartree–Fock methods were developed to incorporate elec-

tronic correlation into the many-electron wave function. These methods include Møller-Plesset

(MP) perturbation theory, configuration interaction (CI), coupled cluster (CC) methods, multi-

configurational self-consistent field (MCSCF), and quantum Monte Carlo (QMC) methods.

However, the precision of these accurate methods comes at a steep computational cost, render-

ing them applicable only to systems composed of a small number of atoms.

In the pursuit of practical solutions to the many-electron problem, approaches based on

DFT have been developed to address systems containing a large number of interacting parti-

cles while also considering electronic correlation. DFT was originally conceived as an exact

theory for dealing with many-electron systems, where the energy is expressed as a functional

of the electronic density. However, the precise relationship between energy and density re-

mains unknown. Consequently, DFT is applied with appropriate approximations to account

for exchange and correlation effects. DFT has achieved remarkable success in determining the

properties of diverse materials, owing to its effective balance of accuracy and computational

efficiency. Furthermore, DFT provides reliable estimations of ground-state properties. When

predicting excited-state properties, calculations using ab initio many-body perturbation theory,

such as the GW approximation and the Bethe-Salpeter equation (BSE) approach, offer better

performance.

2.4 Time-independent many-body Schrödinger equation

The initial step in the quantum mechanical approach to determine the electronic structure of

matter involves the Schrödinger equation, which is given as

ĤΨk (r1, r2, . . . , rN ,R1,R2, . . . ,RM) = EkΨk (r1, r2, . . . , rN ,R1,R2, . . . ,RM) (2.1)
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Ĥ is the Hamiltonian operator for a system of M nuclei and N electrons. The Hamiltonian

operator Ĥ can be expressed as follows

Ĥ = −
N∑
i=1

~2

2me

∇2
i −

M∑
I=1

~2

2M I

∇2
I −

N∑
i=1

M∑
I=1

ZIe
2

|RI − ri|

+ 1
2

N∑
i=1

N∑
j 6=i

e2

|ri − rj|
+ 1

2

M∑
I=1

M∑
J 6=I

ZIZJe
2

|RI − RJ |

(2.2)

Here, indices i and j run over N electrons, while I and J run over M nuclei within the sys-

tem. me stands for the mass of an electron, and MI represents the mass of nucleus I . ZI

represents the nuclear charge of nucleus I . The first two terms within Equation 2.2 account

for the kinetic energies of the N electrons and M nuclei, respectively. The last three terms

describe the attractive electrostatic interaction between the nuclei and electrons, as well as the

repulsive interactions between electron-electron and nucleus-nucleus pairs. The wavefunction,

Ψk (r1, r2, . . . , rN ,R1,R2, . . . ,RM) denotes the state k of the system, while Ek represents the

corresponding energy (eigenvalue). The wave function itself does not depict a physical quan-

tity; however, its square, denoted as |Ψ|2 1, gives the probability density. In simpler terms, |Ψ|2

represents the likelihood of finding a particle at a specific point in space at a given moment in

time. To be physically valid, the wave function should exhibit continuity, double differentiabil-

ity, and square integrability. For an introductory overview of quantum mechanics, please refer

to Ref [22].

2.4.1 Born–Oppenheimer approximation

The solution of Schrödinger equation is not feasible for many-electron system due to the high

dimensionality (i.e., where all the particles have three degrees of freedom) and the constraints

on the wave function. Consequently, approximations are employed to solve the Schrödinger

equation. The primary and fundamental approximation is the Born–Oppenheimer or adiabatic

approximation, in which the motion of the electrons and nuclei is considered independently.

Given the significantly greater mass of nuclei compared to electrons, the motions of electrons

and nuclei can be treated as separate processes. The positions of electrons rapidly adjust in

response to any nuclear movement, with the motion of electrons depending on the nuclear posi-

tions parametrically. Hence, within the Born–Oppenheimer approximation, the wave functions

1|Ψ|2 = Ψ∗Ψ, where Ψ∗ is the complex conjugate of Ψ.
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of electrons and nuclei can be separated as

Ψtotal = ψelectronic × ψnuclear

Ψ (r1, r2, . . . , rN ,R1,R2, . . . ,RM) = ψ (r1, r2, . . . , rN ; R1,R2, . . . ,RM)× ψ (R1,R2, . . . ,RM)
(2.3)

The contributions from the nuclei (including the kinetic energy of nuclei and the energy of

internuclear repulsion) can be introduced subsequently, once the electronic properties are de-

termined. As a result, the motions of the nuclei and electrons can be treated separately, and the

Hamiltonian for the electronic structure theory can be expressed as:

Ĥ = T̂ + V̂ ext + V̂ int (2.4)

In the atomic units, ~ = me = e = 4π
ε0

= 1. The kinetic energy operator for the electrons T̂ is

given as

T̂ = −
N∑
i=1

1
2∇

2
i (2.5)

The potential (V̂ext) acting on the electrons due to the nuclei is given as

V̂ext =
N∑
i=1

M∑
I=1

VI (|ri − RI |) (2.6)

and V̂int represents the electron-electron interaction,

V̂int = 1
2

N∑
i=1

N∑
j 6=i

1
|ri − rj|

(2.7)

Even with application of Born–Oppenheimer approximation, solving the Schrödinger equation

with the electronic Hamiltonian remains a challenging task. Therefore, additional approxima-

tions are required to address the Schrödinger equation, as discussed in the subsequent sections.

2.4.2 The Hartree approximation

Hartree introduced a significant method in 1984 to derive the most accurate single-electron

wavefunction. For the Schrödinger equation to be solved, the variables as functions of electron

coordinates must be separable. These variables should be separable in a manner that depends

solely on the coordinates of individual electrons. Consequently, an approximate Hamiltonian

was devised to account for the electron interactions in an averaged manner. By solving the

Schrödinger equation, the precise single-electron eigenfunctions of this approximate Hamil-

tonian can be determined. In the Hartree approximation, the multi-electron wavefunction is
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expressed as a product of individual single-electron wavefunctions.

Ψ (r1, r2, . . . , rN) = φ1 (r1)φ2 (r2) . . . φN (rN) (2.8)

where ri encompasses the spatial and spin coordinate for each electron, and φi (rj) represents a

single-electron spin-orbital. This equation implies that the electrons are treated as independent

entities and only interact with the average electron density. With this assumption, the electronic

Hamiltonian can be defined as

Ĥel =
N∑
i=1

ĥi + V̂int (2.9)

where

ĥi = −1
2∇

2
i + v̂i (2.10)

and ĥi is dependent on the coordinates ri of the i-th electron. V̂int is approximated by summing

up the interactions of each electron with the averaged electron density of the remaining N -1

electrons as follows

V̂int ≈
N∑
i=1

ĝi (r) (2.11)

where

ĝk (r) =
∫
ρ(k) (r′) 1

|r− r′|
dr′ (2.12)

and

ρ(k) (r) =
N∑
i=1
i 6=k

|φi (r)|2 (2.13)

As a result of these approximations, the many-electron Schrödinger equation simplifies into N

independent single-electron equations(
−1

2∇
2
i + v̂i + ĝi

)
φi (r) = εiφi (r) (2.14)

εi represents the energy of the i-th electron. In practice, we initialize with an initial guess for the

orbitals, φi (e.g., based on the hydrogen atom wave function). Subsequently, we compute the

spin-orbitals, ĝi, derived from these initial guesses. We then solve the N independent single-

electron equations to determine N new spin-orbitals. These new spin-orbitals serve as our

starting point, and we iterate until we achieve convergence. The resulting converged orbitals

are referred to as self-consistent field spin-orbitals. We utilize these self-consistent field spin-

orbitals to construct the many-electron wave function Ψ and proceed to compute the ground

state’s total energy, denoted as E. It’s important to note that the total energy is not equivalent to

the sum of individual orbital energies εi because the electron-electron interaction is accounted
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for twice in our effective potential formulation. As a result, the corrected total energy is given

by

E =
N∑
i=1

εi −
1
2

N∑
i=1

N∑
j 6=i

Jij (2.15)

Jij denotes the Coulomb interaction between electrons i and j. These interactions are com-

monly referred to as Coulomb integrals, and are given as

Jij =
∫ ∫ ρi (r1) ρj (r2)

|r1 − r2|
dr1dr2 =

∫ ∫
|φi (r1)|2 1

|r1 − r2|
|φj (r2)|2dr1dr2 (2.16)

Jij =
∫ ∫

φ∗i (r1)φi (r1) 1
|r1 − r2|

φ∗j (r2)φj (r2) dr1dr2 (2.17)

The Hartree approximation provides a crucial starting point for developing methods to deal

with many-electron systems.

2.4.3 The Hartree–Fock approximation

A significant limitation of the Hartree approximation is its failure to account for the anti-

symmetry property of the electronic wave function. This results in a violation of the Pauli

exclusion principle, rendering the description of the electronic component incomplete. The

primary aim of the Hartree-Fock approximation is to fix this shortcoming. In this approach, the

variational wave function takes the form of a Slater determinant, which ensures satisfaction of

the antisymmetric condition. The Pauli exclusion principle naturally arises from this condition,

stating that two fermions cannot simultaneously occupy the same orbital.

For N orbitals, the Slater determinant is written as

Ψ (r1, r2, . . . , rN) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 (r1) φ2 (r1) · · · φN (r1)

φ1 (r2) φ2 (r2) · · · φN (r2)
...

... . . . ...

φ1 (rN) φ2 (rN) · · · φN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.18)

ri incorporates the spatial coordinates and a spin coordinate for the i-th electron, while φi (rj)

denotes the i-th single-electron spin orbital. Consequently, the total energy is calculated as

follows:

E = 〈Ψ|H|Ψ〉 =
N∑
i=1

Hi + 1
2

N∑
i=1

N∑
j=1

(Jij −Kij) (2.19)
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where

Hi =
∫
φ∗i (r) ĥiφi (r) dr (2.20)

Kij is called as exchange integral, given as

Kij =
∫ ∫

φ∗i (r1)φj (r1) 1
|r1 − r2|

φi (r2)φ∗j (r2) dr1dr2 (2.21)

This exchange term results from the Pauli exclusion principle, introducing repulsion between

electrons of the same spin.

While the Hartree–Fock approximation addresses exact exchange, it overlooks electronic

correlation, a significant factor in bond formation and breaking. Moreover, there are also cases

where different wave functions that follow the exclusion principle can’t be represented by the

Hartree-Fock method’s single Slater determinant. To accommodate these correlation effects,

more complex methods, such as post-Hartree–Fock approaches, are necessary. However, these

methods are computationally intensive and become even more demanding as the system’s size

increases. In contrast, density functional theory offers a conceptually straightforward and com-

putationally feasible approach that incorporates both exchange and correlation effects.

2.5 Density functional theory (DFT)

In DFT, the fundamental quantity is electron density, which is a scalar function of position.

This differs from the traditional wave function approach to solving the Schrödinger equation.

Using electron density simplifies the many-electron system problem by reducing its dimen-

sionality from 3N to 3, and it retains its three-dimensional nature even as more electrons are

added. This feature makes DFT suitable for efficiently handling systems with a large number

of atoms. As a result, DFT finds extensive use in studying many-electron systems, including

atoms, molecules, and solids. Its primary application is in describing the ground-state prop-

erties of these systems, which are functions of electron density. The subsequent sections will

delve into the development of DFT.

2.5.1 Thomas-Fermi-Dirac approximation

Instead of utilizing wave function-based methods like Hartree and Hartree–Fock, a different ap-

proach emerged in 1927 through the work of Thomas and Fermi. Thomas and Fermi suggested
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the use of electronic density as the fundamental variable for computing the energy of many-

electron systems. In their original work, they proposed an expression for the kinetic energy of

these systems, approximating it as a functional of density. Their approach assumed the system

as non-interacting electrons uniformly distributed with density matching the local density at

any given point. They employed fermion statistical mechanics to calculate the kinetic energy

for this uniform electron gas model confined within a box.

TTF [n] = C1

∫
n

5
3 (r) dr (2.22)

here C1 = 3
10 (3π2)

2
3 n(r) = 2.871 in atomic units and n (r) represents the electronic density

of a uniform electron gas, approximately 2.871 in atomic units. Notably, the exchange and

correlation among electrons were neglected in this formulation. The introduction of exchange

effects can be achieved through a local approximation, taking into account Slater’s expression

for the uniform electron gas, as proposed by Dirac in 1930 and later by Slater in 1951.

EX [n] = C2

∫
n

4
3 (r) dr (2.23)

where C2 = −3
4

(
3
π

) 1
3 = 0.739 in atomic units. Thus, in presence of external potential Vext (r),

the energy functional for electrons is written as

ETFD [n] = C1

∫
n

5
3 (r) d3r +

∫
Vext (r)n (r) d3r + C2

∫
n

4
3 (r) d3r

+ 1
2

∫ n (r)n (r′)
|r− r′|

d3rd3r′
(2.24)

Here, the last term represents the classical electrostatic Hartree energy. When the approximated

exchange term is included, the theory is referred to as Thomas-Fermi-Dirac (TFD).

The ground-state electron density and energy are determined by minimizing the functional

E[n] for all potential n (r), with the condition that the total integrated charge matches the

number of electrons. ∫
n (r) d3r = N (2.25)

By employing the Lagrange multipliers method, one can obtain the solution through an uncon-

strained minimization of the functional.

ΩTF [n] = ETF [n]− µ
{∫

n (r) d3r −N
}

(2.26)

where the Lagrange multiplier µ represents the Fermi energy. Equation 2.26 can be written as

1
2
(
3π2

) 2
3 n

2
3 (r) + V (r)− µ = 0 (2.27)
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where V (r) = Vext (r) + VHartree (r) + Vx (r) is the total potential.

The fact that this model is constructed with crude approximations and lacks essential

physics, particularly correlation effects, renders it unsuitable for accurately describing the elec-

tronic structure of matter.

2.5.2 The Hohenberg-Kohn theorems

Back in 1964, Hohenberg and Kohn laid the foundation of modern density functional theory

with two fundamental theorems in their renowned paper [23].

Theorem I: In the case of a system of interacting electrons subjected to an external potential

Vext (r), the Vext (r) can be uniquely determined based on the electronic ground-state density

n (r), except for a trivial additive constant.

To prove this, let us assume the existence of two distinct potentials, Vext (r) and V ′ext (r), which

result in the same ground-state density n (r). These potentials correspond to two different

Hamiltonians,H andH ′. Solving the Schrödinger equation for each Hamiltonian yields distinct

wave functions Ψ and Ψ′. Subsequently, the ground-state energies for Ψ and Ψ′ are computed

as E = 〈Ψ|H|Ψ〉 and E ′ = 〈Ψ′|H ′|Ψ′〉. It is worth noting that we have considered the non-

degenerate case here, although the proof of the Hohenberg-Kohn theorem can be extended to

the degenerate case as well [24]. Additionally, by employing the variational principle, we can

establish that E and E ′ must yield the same energy due to their representation of the ground

state. Applying variational principle as

E < 〈Ψ′|H|Ψ′〉 = 〈Ψ′|H ′|Ψ′〉+〈Ψ′|H−H ′|Ψ′〉 = E ′+
∫
n (r) [Vext (r)− V ′ext (r)] dr (2.28)

Likewise, when we calculate E ′, we can interchange the indices in Equation 2.28, resulting in

the following form

E ′ < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉+ 〈Ψ|H ′ −H|Ψ〉 = E +
∫
n (r) [V ′ext (r)− Vext (r)] dr (2.29)

On adding Equation 2.28 and 2.29, we obtain

E + E ′ < E + E ′ (2.30)

This leads to a conflicting inequality. Hence, our initial presumption was incorrect, and the

ground-state density exclusively determines the potential.

Corollary I: Given that n (r) uniquely specifies Vext (r), and Vext (r) subsequently defines the

Hamiltonian, which, in turn, gives the many-body wave functions. Consequently, the system’s
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properties are entirely defined when only the ground-state density n (r) is known.

Theorem II: A universal energy functional E[n] that relies on the density n (r) can be estab-

lished, and it remains applicable for any number of particles and any external potential Vext (r).

In the case of a specific potential Vext (r), theE[n] corresponds to the exact ground-state energy

of the system, representing the global minimum for the correct ground-state density, n (r).

To establish this, we confine our analysis to densities that are V-representable, indicating they

can be represented by a potential. It is worth noting that a more comprehensive proof, without

this constraint, can be found in Ref [25]. Given that the entirety of a system’s properties can be

deduced from the density functional, we can express the energy functional as follows:

EHK [n] = T [n] + Eint [n] +
∫
Vext (r)n (r) dr

= FHK [n] +
∫
Vext (r)n (r) dr

(2.31)

where

FHK [n] = T [n] + Eint [n] (2.32)

represents the universal functional of n (r), encompassing both the kinetic and interaction en-

ergies of electrons within the system.

Given that Vext (r) relies on nuclear coordinates, its contribution is inherently specific to the

system. Now, let us contemplate a system with a ground-state density n1 (r), which corresponds

to the potential V 1
ext (r). In this context, the energy can be viewed as the expected value of the

Hamiltonian.

E1 = EHK [n1] = 〈Ψ1|H|Ψ1〉 (2.33)

where Ψ1 corresponds to the ground state wave function. Let us now explore an alternative

density, n2 (r), associated with a different wave function Ψ2. We can then apply the variational

principle

E1 = EHK [n1] = 〈Ψ1|H|Ψ1〉 < 〈Ψ2|H|Ψ2〉 = EHK [n2] = E2 (2.34)

Consequently, the Hohenberg-Kohn functional, derived from the actual ground-state density,

yields the minimum energy when compared to any other arbitrary density. This implies that

if we have knowledge of the density functional, we can ascertain the ground-state energy and

density by minimizing it with respect to density variations. It is important to note that this
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functional exclusively pertains to the ground state, and it does not offer insights into excited

states.

While these theorems establish the existence of a universal functional, FHK [n], they do not

provide a specific method for its determination. The Kohn-Sham equations, however, offer a

framework for addressing the many-electron system.

2.5.3 The Kohn-Sham ansatz

Figure 2.2: Schematic representation of mapping of interacting system to a non-interacting

many-electron system through the same ground-state electron density.

In 1965, Kohn and Sham proposed a method [26] for the determination of the unknown

functional FHK [n]. Their approach involved the introduction of a non-interacting particle sys-

tem and the crucial assumption that the ground-state density of the original interacting system

matched that of the auxiliary non-interacting system (see Fig. 2.2 for the schematic representa-

tion). The auxiliary Hamiltonian was designed to incorporate the conventional kinetic energy

operator and an effective local potential, V σ
eff (r), for an electron with spin σ located at the

position r.

Ĥσ
aux = −1

2∇
2 + V σ

eff (r) (2.35)

The eigenstates, denoted as ψσi (r), represent the Kohn-Sham orbitals corresponding to the

lowest eigenvalues εσi of the Hamiltonian described above. The density of the auxiliary system

is expressed as follows

n (r) =
∑
σ

n (r, σ) =
∑
σ

Nσ∑
i=1
|ψσi (r)|2 (2.36)
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The expression for the kinetic energy Ts in the independent-electron auxiliary system is written

as a functional of Kohn-Sham orbitals.

Ts = −1
2
∑
σ

Nσ∑
i=1
〈ψσi |∇2|ψσi 〉 = 1

2
∑
σ

Nσ∑
i=1

∫
|∇ψσi (r)|2dr (2.37)

and the Hartree energy is given as

EHartree [n] = 1
2

∫ n (r)n (r′)
|r− r′|

drdr′ (2.38)

Hence, the total energy within the Kohn-Sham framework may be represented as

EKS = Ts [n] +
∫
Vext (r)n (r) dr + EHartree [n] + Exc [n] (2.39)

The exchange-correlation energyExc consists of ll the many-body interactions of exchange and

correlation and can be written as

Exc [n] = FHK [n]− (Ts [n] + EHartree [n]) (2.40)

or

Exc [n] = 〈T̂ 〉 − Ts [n] + 〈V̂int〉 − EHartree [n] (2.41)

〈T̂ 〉 represents the kinetic energy, and 〈V̂int〉 signifies the internal interaction energy within the

original many-body interacting system. Exc [n] plays a pivotal role in binding atoms together

to form molecules and solids. Consequently, the Kohn-Sham equations can be formulated as

follows

Hσ
KSψ

σ
i (r) = εσi ψ

σ
i (r) (2.42)

where

Hσ
KS (r) = −1

2∇
2 + V σ

KS (r) (2.43)

and

V σ
KS (r) = Vext (r) + δEHartree

δn (r, σ) + δExc
δn (r, σ)

= Vext (r) + VHartree (r) + V σ
xc (r)

(2.44)

The above mentioned equations can be iteratively solved in a self-consistent manner, as de-

picted in Fig. 2.3. Nevertheless, the exact functional form of Exc [n] as a function of density n

remains unknown. Therefore, specific approximations are employed to deduce the exchange-

correlation functional.
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Figure 2.3: Flow chart to solve the Kohn-Sham equations self-consistently.

2.5.4 Exchange-correlation functionals

The exchange and correlation energy is defined as the difference between the exact total energy

of a system and the classical Hartree energy. Unless dealing with exceptionally straightforward

cases, achieving an exact treatment of exchange and correlation is practically impossible, mak-

ing the use of approximations essential. The accuracy of a DFT calculation depends on how

closely the chosen approximate exchange and correlation methods align with the exact values.
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2.5.4.1 Local Density Approximation (LDA)

Back in 1965, Kohn–Sham introduced an approximation for the exchange-correlation func-

tional, Exc [n], where it was modeled as a function primarily influenced by the local or near-

local electron density. This functional not only corrects self-interaction but also elucidates the

repulsion between electrons.

ELDA
xc [n] =

∫
n (r) εunifxc (n (r)) dr (2.45)

Here, εunifxc (n (r)) represents the exchange-correlation energy per electron within an electron

gas possessing a uniform density, n (r). LDA holds exact accuracy for systems with uniform

densities and remains dependable for cases where n (r) exhibits gradual spatial variations.

|∇n|
n
� kF =

(
3π2n

) 1
3 (2.46)

and
|∇n|
n
� kS = 2√

π

(
3π2n

) 1
6 (2.47)

where kF and kS denote the Fermi and Thomas-Fermi wave vector. From Wigner approxima-

tion (1938), εunifxc (n) can be expressed as

εunifxc (n) = εunifx (n) + εunifc (n) (2.48)

Dirac in 1930 formulated εunifx (n) as

εunifx (n) = − 3
4π

(
3π2n

) 1
3 = − 3

4πkF = − 3
4π

(
9π
4

) 1
3

rs
(2.49)

and Seitz radius, rs =
(

3
4πn

) 1
3 , corresponds to the radius of a sphere that, on average, encloses

a single electron. In 1938, Wigner formulated εunifx (n) as

εunifc (n) ≈ −0.056
 n

1
3

0.079 + n
1
3

 ≈ − 0.44
7.8 + rs

(2.50)

With exact high and low density limits, Quantum Monte Carlo (QMC) calculations provide an

accurate εunifc .

Fig. 2.4 illustrates Jacob’s ladder, showcasing a hierarchy of exchange-correlation func-

tional approximations. This ladder of density functional approximations for exchange-

correlation energy extends from the basic Hartree level to the more sophisticated realm of

chemical precision [27]. As we move up this ladder, we observe an increase in complexity,

accuracy, cost, and time commitment.
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Figure 2.4: Jacob’s ladder of density functional approximations.

2.5.4.2 Generalized Gradient Approximation (GGA)

It has become evident that relying solely on approximations based on a homogeneous electron

gas is unreasonable for materials with highly variable densities. Consequently, there is a need to

consider both the electronic density and its gradient. This semi-local approximation is referred

to as the generalized gradient approximation. The expression for the exchange-correlation

energy depends on n (r) and |∇n(r)|. The concept of GGA was introduced by Langreth and

Mehl in 1983 [28].

EGGA
xc [n] =

∫
n (r) εGGAxc (n, |∇n|) dr (2.51)

In 1968, Ma and Bruekner derived the gradient expansion (GE) [29] as follows

EGE
xc =

∫
n (r) εunifxc (n (r)) dr +

∫
Bxc (n) |∇n|

2

n
4
3
dr (2.52)

The coefficient Bxc (n) is approximately determined and comprises an exchange component,

which remains independent of electron density, and a correlation component, which exhibits

weak dependence on n. While it proves exact for slowly varying electron densities, up to the

order of |∇n|2, this is not the case for real systems composed of atoms, where the correlation
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component introduces significant errors. Hence, the GE falls short as an appropriate approxi-

mation for real systems. Consequently, a more rigorous treatment of the gradient expansion is

required, considering all relevant contributions up to the desired order and adhering to the exact

constraints imposed by exchange and correlation holes. In order to meet these conditions, mod-

ified gradient expansions are introduced, referred to as generalized gradient approximations

(GGAs). In 1996, Perdew, Burke, and Ernzerhof (PBE) presented a GGA derivation where all

parameters are fundamental constants [30], and this has become widely used. Another GGA

functional is BLYP, where parameters are fitted to experimental molecular data.

GGA enhances the accuracy of binding energies of atoms and leads to improved bond

lengths. However, it is important to acknowledge that GGA does have limitations in terms of

accuracy, as it does not fully account for the non-local effects of the exchange term and does

not entirely eliminate the self-interaction error

2.5.4.3 Meta-Generalized Gradient Approximation (meta-GGA)

In 1999, Perdew et. al. (PZKB) introduced the concept of meta-GGA and is defined as

EMGGA
xc [n] =

∫
n (r) εMGGA

xc (n, |∇n|, τ) dr (2.53)

where τ represents the kinetic energy density for the non-interacting system given as

τ (r) =
occup∑
i

1
2 |∇φi (r)|2 (2.54)

and ∫
τ (r) dr = Ts [n] (2.55)

τ can satisfy some exact constraints that are not satisfied by GGA.

Meta-GGA is a semi-local functional that, despite some improvements, presents certain

issues. Notably, it exhibits an incomplete self-interaction correction, which can only be rectified

through a non-local approximation.

2.5.4.4 Hybrid functionals

The concept of hybrid functionals was first introduced in 1993 by Becke, who combined a

fraction of exact exchange (Hartree-Fock (HF) exchange) with GGA exchange and correlation.

Ehyb
xc = αEHF

x + (1− α)EGGA
x + EGGA

c (2.56)
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where the coefficient α can either be empirically fitted or theoretically estimated.

Hybrid functionals offer a high level of accuracy by accounting for non-local effects. How-

ever, computationally calculating the HF exchange, especially for extended systems, is a chal-

lenging task. To address this challenge, Heyd, Scuseria, and Ernzerhof proposed the screened

hybrid functional (HSE) [31, 32]. In HSE, the long-range part of HF exchange is screened out

through the use of a screened Coulomb potential, reducing computational costs. The Coulomb

potential is divided into components for short-range (SR) and long-range (LR) interactions

1
r

= 1− erf(ωr)
r︸ ︷︷ ︸

SR

+ erf(ωr)
r︸ ︷︷ ︸

LR

(2.57)

with ω representing the screening parameter that defines the range of separation. The error

function is described as follows

erf(ωr) = 2√
π

∫ ωr

0
e−x

2
dx (2.58)

The exchange-correlation energy is determined as

EHSE
xc = αEHF,SR

x (ω) + (1− α)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c (2.59)

The HSE06 functional, employing default values of α = 0.25 and ω = 0.11 bohr−1, demon-

strates accurate predictions for enthalpies of formation, ionization potentials, electron affinities,

band gaps, and lattice constants. These parameters can be adjusted to match experimental data,

suggesting the need for empirical adjustments due to some aspects of their construction not

being fully understood.

In our thesis, we predominantly utilized the PBE functional of the GGA for structural re-

laxation and the HSE06 hybrid functional for energy calculations. There are various software

packages available for performing DFT calculations, and we conducted our computations using

the Vienna ab initio simulation package (VASP).

2.6 Basis set

The expansion of the many-electron wave function relies on a chosen basis set of functions,

which significantly influences the computational efficiency of a method. The initial step in im-

plementing a DFT method is selecting an appropriate basis set. Two commonly employed basis
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functions are plane waves and Gaussian-type orbitals (GTOs). Plane wave basis sets are typi-

cally employed in the context of periodic crystals, while GTOs find more application in molec-

ular systems. When using plane wave basis sets, pseudopotentials are often used to address the

interaction between core electrons and nuclei. Notably, the plane wave pseudopotential method

is free from basis set superposition error (BSSE), which can be present in methods relying on

localized basis sets such as GTOs. Therefore, corrections are required to account for BSSE. In

the present thesis, our calculations primarily focus on periodic solids, and we employ the plane

wave pseudopotential method for electronic structure calculations.

2.6.1 Plane waves basis set

Efficient numerical methods are essential for solving the single-particle Kohn-Sham equations

in extended systems. The prevalent approach to address this challenge involves expanding the

single-particle eigenstates of the Kohn-Sham equations using a set of basis functions. This

transformation results in the conversion of the Schrödinger equation into an algebraic equa-

tion defined by expansion coefficients, which can be solved numerically. In this context, plane

waves serve as a highly suitable basis function set for extended systems. Plane waves possess

the advantages of orthonormality and energy independence. Consequently, the Schrödinger

equation simplifies into a fundamental matrix eigenvalue problem for these expansion coeffi-

cients. As plane waves are not dependent on atomic positions, they eliminate Pulay forces,

allowing the direct application of the Hellmann-Feynman theorem for atomic force calcula-

tions.

The plane wave basis set typically consists of plane waves up to a specified wave vector

cutoff. The basis set convergence is primarily determined by a single parameter, the cutoff

wave vector length. However, representing the rapid oscillations of valence wave functions in

the core region near nuclei requires a substantial number of plane waves. Consequently, plane

waves are used in combination with pseudopotentials to approximate the impact of core elec-

trons. Furthermore, the utilization of Fast Fourier Transforms (FFTs) alongside plane waves

simplifies various integrals and operations, making plane waves suitable for larger systems.

In this section, we introduce the fundamental terminology used to describe infinitely ex-

tended periodic systems, followed by an exploration of the utility of the plane wave basis set

for wave function expansion. Subsequent sections will describe the pseudopotential approach.
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Bloch’s theorem

As per Bloch’s theorem, the eigenstates of the single-particle Schrödinger equation within a

periodic crystal, described in terms of plane waves, can be represented as

ψ (r + T) = eik·Tψ (r) (2.60)

with respect to every T in the Bravais lattice and k represents the wave vector. The permissible

values of k are confined to the reciprocal unit cell, commonly identified as the first Brillouin

zone (BZ). For each k value, distinct independent eigenstates exist, each distinguished by a

band index denoted as n.

Bloch’s theorem can be alternatively expressed, stating that all the eigenfunctions ψnk of

the single-particle Schrödinger equation having a periodic potential can be described as a plane

wave times a function unk with the periodicity of the Bravais lattice [12]

ψnk (r) = eik·runk (r) (2.61)

where

unk (r + T) = unk (r) (2.62)

for every T of the Bravais lattice. This enables the confinement of eigenfunction calculations

to a single unit cell, while Equation 2.61 can be used to determine eigenfunctions in other

unit cells. Additionally, normalizing the eigenfunctions with respect to a single unit cell is

convenient practice. ∫
Ωc
|ψnk (r)|2dr = 1 (2.63)

Given the periodic nature of the functions unk (r), it is possible to express them as a series of

plane waves. Thus, Equation 2.61 is transformed to

ψnk (r) =
∑

G
cnk (G) ei(k+G)·r (2.64)

where cnk (G) are the Fourier coefficients.

The Kohn-Sham equations in terms of Bloch states can be expressed as

(
−1

2∇
2 + Veff (r)

)
ψjk (r) = εjkψjk (r) (2.65)

where

Veff (r) = Vext (r) + VHartree [n (r)] + Vxc [n (r)] (2.66)
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and

n (r) = 2 Ωc

(2π)3
∑
j

∫
BZ
|ψjk (r)|2 Θ (EF − εjk) dk (2.67)

To distinguish between electron density and band index, n is used for electron density, and j for

band index. Electron spin is accounted for in Equation 2.67 by a factor of two. The function Θ

denotes the step function, yielding a value of one for positive arguments and zero for negative

ones. EF represents the Fermi energy, which determines the upper limit for occupying single-

particle states.

Fourier representation of the Kohn-Sham equation

The Kohn-Sham equation adopts a more straightforward form when the wave function is rep-

resented using a plane wave basis. Upon replacing Equation 2.64 with Equation 2.65 and

conducting some elementary mathematical transformations, we derive the matrix eigenvalue

equation [24]: ∑
G

(1
2 |k + G|2δG′G + Veff (G′ −G)

)
cjk

G = εjkc
jk
G′ (2.68)

In practice, the wave function’s Fourier expansion, as described in Equation 2.64, is limited by

including only those plane waves with kinetic energies below a specified cutoff value, denoted

as Ecut:
1
2 |k + G|2 ≤ Ecut (2.69)

Hence, to achieve convergence for the specific quantity, it is necessary to systematically in-

crease the value of Ecut. The Fourier expression for the electron density is given as

n (G) = 2
Nkpt

∑
jk
fjk

∑
G′

(
cjk

G′−G

)∗
cjk

G′ (2.70)

As the electron density, denoted as n and proportional to ψ2, demands Fourier components with

twice the spatial extent in all directions compared to those required for the wave function ψ.

Computing all these Fourier components as described in Equation 2.70 involves a double

summation, which scales with N2
G, where NG represents the number of G vectors required for

describing the electron density. This can become computationally expensive for large systems.

Furthermore, if the Bloch states are available on a grid comprising NR points in real space, de-

termining the electron density can be carried out within NR operations, effectively as a square.

This becomes very expensive for large systems. Moreover, if the Bloch states are known on

a grid of NR points in real space, the electron density can be determined as a square, in NR
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operations. The application of the fast Fourier transform (FFT) facilitates the transformation

between the two spaces inN lnN operations, whereN = NR = NG [24]. Hence, it is beneficial

to employ plane waves as they expedite the evaluation of these expressions by using the Fast

Fourier Transform (FFT).

2.6.2 Pseudopotentials

Figure 2.5: Schematic representation of pseudopotential technique. The all-electron wave func-

tion corresponding to Coulomb potential is shown by red color. The pseudo wave function

corresponding to pseudopotential is shown by blue color.

Solving the Kohn-Sham equations presents computational challenges due to the need to

determine wave functions for N electrons. Moreover, a significant number of plane waves are

required to effectively expand the tightly bound core orbitals and capture the rapid oscillations

within valence electrons’ wave functions in the core region [33]. The pseudopotential approach

mitigates this complexity by permitting the expansion of electronic wave functions using a

smaller basis set of plane waves.
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It is a well-established fact that the physical and chemical properties of a material are pre-

dominantly governed by valence electrons rather than core electrons. Therefore, the pseudopo-

tential approximation capitalizes on this by substituting the core electrons and their strong ionic

potential with a weaker pseudopotential acting on a set of pseudo wave functions in place of

true valence wave functions. This concept is schematically illustrated in Fig. 2.5. The Pauli

exclusion principle necessitates orthogonality between core wave functions and valence wave

functions, which is upheld by the rapid oscillations present in the valence wave functions within

the core electron region. he pseudopotentials are designed to ensure that the wave functions of

valence electrons match those of an all-electron calculation beyond the core region, as defined

by a cutoff radius rc, as depicted in Fig. 2.5. Within the core region, these pseudopotentials

are characterized by nodeless and smooth behavior. Pseudopotentials with larger rc values

yield softer potentials, converging effectively with a smaller basis set of plane waves. How-

ever, these soft pseudopotentials exhibit lower transferability, meaning they are less accurate

in reproducing valence properties in diverse chemical environments. An additional advantage

of employing pseudopotentials is the incorporation of relativistic effects for valence electrons,

even when they are treated non-relativistically. In the subsequent sections, we will discuss

regarding the pseudopotentials utilized in DFT.

2.6.3 Norm-conserving pseudopotentials

Hamann, Schlüter, and Chiang introduced norm-conserving pseudopotentials [24, 34] in 1979,

with subsequent refinements by Kleinman and Bylander. These pseudopotentials possess the

crucial characteristic of charge conservation, ensuring superior transferability compared to ul-

trasoft pseudopotentials. The degree of transferability depends on the choice of the cutoff

radius, rc. When rc falls within the inert region, a pseudopotential can be effectively applied

across various chemical environments. However, transferability diminishes when used out-

side this inert region. It is worth noting that ultrasoft pseudopotentials can be tailored for

transferability, meaning they can be generated for an atom and applied to molecules or solids

with comparable accuracy, although the process is challenging. As previously discussed, the

congruence between real and pseudo wavefunctions beyond the core region leads to identical

charge densities and, consequently, accurate determination of the exchange and correlation en-

ergy. The norm of the pseudopotential wavefunction (ψPseudo) equals that of the all-electron
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wavefunction (ψ).

∫ rc

0
r2ψ?Pseudo(r)ψPseudo(r)dr =

∫ rc

0
r2ψ?(r)ψ(r)dr (2.71)

One approach to achieving this is by employing a non-local pseudopotential, where each po-

tential corresponds to distinct components of the pseudopotential’s angular momentum. This

approach also allows for the determination of the ion’s dispersion characteristics in different

surroundings.

2.6.4 Ultrasoft pseudopotentials

The effectiveness of norm-conserving pseudopotentials is limited when applied to systems with

highly localized valence orbitals like 2p and 3d. This limitation arises from the challenges as-

sociated with representing the pseudo wave function using a plane waves basis set. In contrast,

ultrasoft pseudopotentials relax the norm-conserving constraint, requiring a smaller number

of plane waves. Ultrasoft pseudopotentials are inherently fully nonlocal and transition to a

local form outside the core [35]. They depend self-consistently on the charge density, enhanc-

ing their transferability. The smoothness of the pseudo wave function can be optimized as

the norm-conserving constraint is relaxed. The pseudo wave function can be divided into two

parts: (i) the ultrasoft valence wave function, which does not adhere to the norm conservation

constraint, and (ii) the core augmentation charge, representing the charge deficit within the core

region. The introduction of the ultrasoft valence wave function substantially reduces the plane

wave energy cutoff, but the latter feature introduces additional terms in the Kohn-Sham for-

malism. This complexity results in a higher number of operations required per computational

cycle. Despite the increased computational effort, the overall reduction in computational cost

achieved by lowering the plane wave energy cutoff is advantageous in many cases.

2.6.5 Projector augmented-wave (PAW) method

In 1994, Blöchl [36] introduced the projector augmented-wave (PAW) method, which inte-

grated concepts from both the pseudopotential approach and the linearized augmented plane

wave (LAPW) approach [37, 38]. The fundamental idea is to establish a correspondence be-

tween the Kohn-Sham all-electron wave function |φ0
s〉 for state s and a smooth pseudo wave

function |φ̃0
s〉, along with correction terms designed to restore oscillatory behavior within the
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core region. This mapping of |φ0
s〉 is achieved through a linear transformation operator T̂ :

|φ0
s〉 = T̂ |φ̃0

s〉 (2.72)

Considering that |φ0
s〉 exhibits oscillations near the core region and is smooth beyond a certain

threshold, the spatial domain is partitioned into two regions, as per the LAPW method: (i) the

augmentation region surrounding the nuclei Ωa, where a denotes an atom index, and (ii) the

interstitial region Ωi [39]. The definition of Ωa involves a cutoff radius rac to avoid overlap

of augmentation spheres. Since the pseudo wave function should match the all-electron wave

function outside Ωa, the linear transformation T̂ is designed to modify |φ0
s〉 solely within the

augmentation region. Consequently, T̂ can be expressed as follows:

T̂ = 1 +
∑
a

T̂ a (2.73)

The contribution of T̂ a, which is centered on the atom, alters |φ0
s〉 within Ωa, the region en-

closing the atom. This transformation operator is defined by introducing both the all-electron

partial waves ϕaj and the pseudo partial waves ϕ̃aj within the augmentation region, and can be

described as

T̂ = 1 +
∑
a

∑
j

(
|ϕaj 〉 − |ϕ̃aj 〉

)
〈p̃aj | (2.74)

In this expression, |p̃aj 〉 represents smooth projector functions. It is important to note that within

the augmentation sphere, these projector functions maintain orthogonality with the pseudo par-

tial waves. When this is applied to the all-electron wave function Equation 2.72, the following

expression is derived:

|φ0
s〉 = |φ̃0

s〉+
∑
a

∑
j

(
|ϕaj 〉 − |ϕ̃aj 〉

)
〈p̃aj |φ̃0

s〉 (2.75)

The subsequent conditions are valid within the augmentation region, specifically for r ∈ Ωa

φ0
s(r) = φas(r)

φ̃0
s(r) = φ̃as(r)

(2.76)

and outside the augmentation region, i.e., when r ∈ Ωi

φ0
s(r) = φ̃0

s(r)

φas(r) = φ̃as(r)
(2.77)

where
φas(r) =

∑
j

ϕaj (r)〈p̃aj |φ̃0
s〉

φ̃as(r) =
∑
j

ϕ̃aj (r)〈p̃aj |φ̃0
s〉

(2.78)
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These pseudo wave functions are represented through an expansion in a basis set of plane

waves, with a reduced energy cutoff owing to their smooth nature. Both the partial waves

and projectors are computed as products of radial functions and spherical harmonics. This ap-

proach, known as the PAW method, is recognized for its computational efficiency in electronic

structure calculations. In this thesis, DFT calculations have been performed utilizing the PAW

method as implemented in VASP.

2.7 Force theorem and geometry optimization

The process of geometry optimization is employed to find the equilibrium configuration where

atoms arrange themselves in the ground state. In this process, atoms move in the direction of

the force, to minimize the total energy. The equilibrium configuration is achieved when these

forces reach a state of equilibrium, typically when they fall within a predefined convergence

criterion. These forces are computed using a principle known as the force theorem, or the

Hellmann-Feynman theorem [40]. As per this theorem, the force acting on an ion, labeled as I ,

can be obtained by taking the derivative of the total energy, denoted as E, with respect to the

ion’s position, RI .

FI = − ∂E

∂RI

(2.79)

where

E = 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (2.80)

Considering the wave function is normalized, 〈Ψ|Ψ〉 = 1, we get

FI = −〈Ψ| ∂H
∂RI

|Ψ〉 − 〈 ∂Ψ
∂RI

|H|Ψ〉 − 〈Ψ|H| ∂Ψ
∂RI

〉 (2.81)

When |Ψ〉 is an eigenstate of H , we can write

FI = −〈Ψ| ∂H
∂RI

|Ψ〉 − E ∂

∂RI

〈Ψ|Ψ〉 (2.82)

The last term vanishes and we get

FI = −〈Ψ| ∂H
∂RI

|Ψ〉 (2.83)

Given that Equation 2.83 explicitly relies on the nuclei’s positions for the external potential

Vext (r) and the nuclei-nuclei interaction term EII , it can be expressed as follows

FI = −
∫
drn (r) ∂Vext (r)

∂RI

− ∂EII
∂RI

(2.84)
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If the chosen basis set is incomplete and reliant on the nuclei positions, it becomes necessary

to introduce additional terms, referred to as Pulay correction terms.

In the context of a periodic system, the optimization of the unit cell’s shape and volume

is essential in addition to the atomic positions. This process involves the calculation of stress,

where the application of a strain εαβ , defined as a spatial scaling rα → (δαβ + εαβ) rβ , leads

to the determination of stress σαβ . This is achieved by computing the derivative of the energy

concerning the strain, per unit volume [41].

σαβ = − 1
Ω
∂E

∂εαβ
(2.85)

2.8 Climbing image nudged elastic band (CINEB) method

The nudged elastic band (NEB) method is used for identifying saddle points and determining

the minimum energy path (MEP) between reactants and products in various processes, such as

chemical reactions, molecular conformation changes, and atomic exchanges [42, 43, 44]. This

method entails optimizing a series of intermediate images along the reaction pathway, with

each image positioned equidistantly from its neighbors. The optimization process includes

the introduction of spring forces connecting the images and considering the force component

projection perpendicular to the path. Within this framework, the highest energy configuration

among the images corresponds to the saddle point on the MEP, indicating the activation energy

barrier. The reactant and product states represent the local minima, and a set of intermediate

images between these states is generated through linear interpolation. The interconnection of

these images with spring forces forms an elastic band that optimizes the forces along the MEP.

However, the traditional elastic band approach faces two main challenges: the sliding down

problem and the corner-cutting issue [45, 46, 47]. The former arises when the spring constant

is too low, causing the images to shift toward the minima due to the true forces along the

path, resulting in decreased resolution around the saddle point. On the other hand, a higher

spring constant can lead to spring forces pushing the images away from the true MEP. The

convergence of the saddle point is highly sensitive to the choice of the spring constant. To

address these challenges, a nudging scheme has been introduced, which eliminates both the

parallel and perpendicular components of the true force and spring force. As a result, the total

force acting on each image becomes the sum of the perpendicular true force and the spring force
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Figure 2.6: Schematic diagram to show the various forces acting on the elastic band during the

optimization.

along the local tangent. To illustrate this, let us consider an elastic band with N+1 images [R1,

R2, ...,RN−1], where R0 and RN represent the initial and final states. Fig. 2.6 shows the forces

acting on the i-th image, which can be represented as follows:

Fi = F s
i |‖ −∇E(Ri)|⊥ (2.86)

E represents energy, which depends on atomic coordinates. The images along the MEP satisfy

the condition: ∇E(Ri)|⊥ = 0. Consequently, the true force expression can be given as

∇E(Ri)|⊥ = ∇E(Ri)−∇E(Ri).τ̂i (2.87)

For every image i, τ̂i is the normalized local tangent and the spring force is given as

F s
i |‖ = k(|Ri+1 − Ri| − |Ri − Ri−1|).τ̂i (2.88)

The spring constant, denoted as k, ensures equal spacing between the images. If this spring

constant is allowed to vary as a parameter, it provides greater resolution near the saddle point.

This is because the spring constant is connected to the energy of the images. Low-energy

images have a weaker spring constant, while those near the saddle point have a stronger one.
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However, a limitation of this method is its inability to precisely capture the transition state in

the MEP. To address this limitation, a modified approach called the Climbing Image Nudged

Elastic Band (CINEB) method has been introduced. This method identifies the highest energy

image, labeled as imax, which is not influenced by spring forces and experiences a reversed

force – the true force acting in the opposite direction of the elastic band. This imax image is

known as the climbing image, and the force acting on it is determined as follows:

Fimax =−∇E(Rimax) + 2∇E(Rimax)|‖

=−∇E(Rimax) + 2∇E(Rimax)|‖.τ̂iτ̂i
(2.89)

This approach allows us to identify the climbing image with the highest energy along the path

and the images with the lowest energy perpendicular to the path in all directions. Consequently,

it ensures the accurate determination of the saddle point’s location and guarantees the conver-

gence of the MEP. This makes the CINEB method a suitable choice for accurately calculating

the activation barrier of chemical reactions.

2.9 Cascade genetic algorithm (cGA)

The Genetic Algorithm (GA) is a widely applied optimization method inspired by natural evo-

lution processes in scientific and technological fields. It identifies global minima and perform

thorough searches of potential energy surfaces (PES) to discover low-energy structures ??. In

this thesis, we have applied the massively parallel cascade genetic algorithm (cGA) for study-

ing metal oxide clusters [48]. In the cGA approach, each subsequent level employs a more

accurate level of theory and leverages information from the lower levels. This cascade process

helps filter out unsuitable structures, enhancing the search efficiency. The working of cGA is

outlined in Fig. 2.7. The initial step involves generating a random pool of structures, ensuring

that the minimum distance between neighboring atoms is greater than 1.21 Å. The subsequent

stage involves local optimization, where multiple energy and force optimizations occur. This

step is computationally intensive and time-consuming, particularly at the ab initio level. To re-

duce computational costs, local optimization for the initial pool is performed using semi-local

functionals and lower-level settings. The most suitable structures falling within an energy range

of 2.5 eV from the initial level are advanced to the subsequent stage of the cascade. Here, the

chosen structures undergo relaxation using higher-level configurations. Following this relax-

ation, their single-point energies are determined employing hybrid functionals at a higher level
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Figure 2.7: Flow chart of cascade genetic algorithm.

of settings. With these energy considerations, a fitness value (ρi) normalized to the cluster’s

energetics is assigned to each ith cluster, given by

ρi = εi∑
i εi

(2.90)

where εi is the relative energy of the ith cluster, defined as:

εi = Emax − Ei
Emax − Emin

(2.91)

Here, Ei represents the total energy of the i-th cluster in the population. Emin and Emax denote

the lowest and highest total energies within the population pool, respectively. As per the con-

dition outlined above, it becomes evident that clusters with lower energy (i.e., more negative

values) exhibit high fitness, while clusters with higher energy (less negative values) demon-

strate low fitness.

0 < ρi < 1 (2.92)

When Ei = Emax, the corresponding ρi will be 0, indicating poor fitness of the structure. Selec-

tion of two structures for crossover and mutation from the pool is guided by the fitness function.

The structures with higher fitness values have a greater probability of being chosen. The effec-

tiveness and precision of cGA across various levels of theory and settings concerning advanced

theory are extensively discussed in [48]. It is worth noting that selecting an appropriate func-

tional for estimating the fitness function is crucial for a meaningful exploration of the PES.
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The fitness function plays a crucial role in determining the selection probabilities for structures

from the pool when applying mating operators (crossover and mutation) to generate structures

in the next generation. This fitness function dictates the likelihood of structures being selected

from the pool for mating operations, such as crossover and mutation, in generating the next

generation of structures. Structures with higher fitness values have a greater chance of being

selected from the pool, thereby increasing the likelihood of retaining advantageous structural

characteristics during the evolutionary process. The performance of cGA relies significantly on

the choice of crossover operators. In our approach, we have integrated three distinct crossover

methods to achieve the most favorable outcomes as swiftly as feasible, minimizing the overall

scanning time.

Subsequently, we also permit the selection of a limited number of structures with high ρi

values for mating operations to prevent premature convergence to a local minimum in the ge-

netic algorithm scheme. Following local optimization of the offspring with higher-level config-

urations, their energies and radial distribution functions are employed to assess the uniqueness

of the newly constructed structure compared to the ones already present. This ensures that

duplicate candidates are not unnecessarily added to the pool. It is worth noting that a new

candidate is only included if no identical copy already exists in the pool; otherwise, it is omit-

ted. This iterative process continues until the specified convergence criteria are met. Notably,

there is not a strict criterion for determining the convergence threshold in global scanning. A

practical approach is to run the cascade genetic algorithm for an extended duration until no

significant improvements in fitness values are achieved beyond the current optimal one. In our

specific case, we extended the scanning process to at least twice the time needed to discover

the genuine global minimum. Furthermore, if no updated lowest minima are found during this

extended period, we can reasonably assume that the global minimum has been identified. For

additional insights and validation of the cascade genetic algorithm, please refer to [48]. In

the cGA, the fitness criteria are determined by calculating the energetics at the hybrid level,

providing a more dependable exploration of all low-energy isomers.

2.10 Ab initio atomistic thermodynamics (aiAT)

DFT determines the ground-state properties via electronic structure calculations at zero-

temperature and pressure conditions, operating within the microscopic realm. It enables the
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computation of the potential energy surface (PES) E({RI}), where {RI} represents the atomic

configuration. ab initio atomistic thermodynamics takes into account the influence of finite tem-

perature and pressure by leveraging the DFT-derived PES to calculate relevant thermodynamic

potentials, such as the Gibbs free energy [49]. Consequently, the integration of thermodynam-

ics with DFT calculations yields macroscopic system properties. This approach is particularly

valuable for larger systems, which can be partitioned into smaller subsystems maintaining ther-

mal equilibrium. These interconnected subsystems are characterized by their respective ther-

modynamic potentials.

2.10.1 Thermodynamic potentials

The state of a thermodynamic system can be described in terms of various thermodynamic

potentials. These potentials include the internal energy U , Helmholtz free energy F = U−TS,

enthalpy H = U + pV , and Gibbs free energy G = U + pV − TS = H − TS = F + pV .

These thermodynamic potentials depend on specific natural variables, namely temperature (T ),

entropy (S), pressure (p), and volume (V ). When a system is held at constant T and V , it

minimizes its Helmholtz free energy. Conversely, at constant (T , p), it aims to minimize its

Gibbs free energy. In practice, chemical reactions occur under conditions of constant T and

p, making the Gibbs free energy the most applicable thermodynamic potential for determining

the stable equilibrium geometry under specific environmental conditions.

2.10.2 Partition function

The partition function (qN ) provides insights into how energy is distributed among different

energy levels. Essential thermodynamic properties such as average energy (U ), Helmholtz free

energy (F ), Gibbs free energy (G), chemical potential (µ), entropy (S), and pressure (p) can be

derived from the partition function and its derivatives.

qN =
∑
i

eβEi (2.93)

In the above equation, β = 1
kBT

, where i represents the microstate index, and Ei corresponds to

the total energy of the system in the specific microstate. The partition function for a continuous

system is given by

qN = 1
hf

∫
eβEidfqdfp (2.94)
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Here, h represents the Planck constant, while f signifies the number of degrees of freedom.

For a molecule consisting of N atoms, it possesses 3N degrees of freedom. Among these 3N

degrees of freedom, three are associated with rotational motion, and the remaining 3N–6 are

vibrational (non-linear molecules). Linear molecules exhibit two rotational degrees of freedom

and 3N–5 vibrational degrees of freedom. For indistinguishable particles:

qN = 1
hfN !

∫
eβEidfqdfp (2.95)

The partition function of an ideal gas made up of N identical molecules is given as

qN = 1
N ! [q]

N (2.96)

and for distinguishable molecules:

qN = [q]N (2.97)

When N = 1 (a single molecule), q represents the partition function of a single molecule.

The various modes of motion, such as translational (trans), rotational (rot), vibrational (vib),

configurational (conf), electronic (elect), and nuclear (nucl), collectively constitute the total

energy of a molecule.

q =
∑
i

e−βE
trans
i −βEroti −βE

vib
i −βE

conf
i −βEelecti −βEnucli (2.98)

q =
(∑

i

e−βE
trans
i

)(∑
i

e−βE
rot
i

)(∑
i

e−βE
vib
i

)
(∑

i

e−βE
conf
i

)(∑
i

e−βE
elect
i

)(∑
i

e−βE
nucl
i

) (2.99)

Therefore, the total partition function for a single molecule is made up of individual contribu-

tions, enabling us to compute each component independently. This decomposition is facilitated

by the Born–Oppenheimer approximation, which separates the nuclear/electronic part from the

vibrational/rotational components. Additionally, the vibrational and rotational components can

be treated separately since these motions occur on distinct time scales [50].

q = qtrans × qrot × qvib × qconf × qelect × qnucl (2.100)

where

qtrans =
(

2πmkBT

h2

) 3
2

V =
(

2πmkBT

h2

) 3
2 kBT

p
(2.101)
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m represents the mass of the molecule, and we have made use of ideal gas approximation

to derive this partition function. It is worth noting that the nuclear state remains relatively

unchanged during chemical processes, which is why the qnucl term does not significantly affect

thermodynamic changes.

qrot = 8π2IAkBT

h2 , (linear molecules) (2.102)

qrot = 8π2
(

2πkBT

h2

) 3
2

(IAIBIC) 3
2 , (non-linear molecules) (2.103)

qvib =
∏
i

[
e
− hνi

2kBT

(
1− e−

hνi
kBT

)−1
]

(2.104)

qconf = 1
σ

(2.105)

qelect =
∑
i

(
Mie

− Ei
kBT

)
≈Me

−E
DFT

kBT (2.106)

IA, IB, and IC represent the molecule’s moment of inertia, while νi corresponds to the vi-

brational frequencies of the molecule. It is important to emphasize that we have adopted the

harmonic approximation to account for the vibrational modes. σ denotes the count of sym-

metry operations based on the molecule’s symmetry point group, representing the number of

indistinguishable orientations. For diatomic molecules, σ = 1 for heteroatomics and σ = 2 for

homoatomics. EDFT signifies the ground-state energy, andM stands for the spin multiplicity.

It is worth mentioning that in this context, we have not considered any interaction among the

first excited state and the ground state.

2.10.3 Chemical potential

The chemical potential of oxygen, µO(T, pO2), as a function of temperature and pressure is

determined by establishing thermodynamic equilibrium with the surrounding gas-phase reser-

voir. This reservoir can be approximated as an ideal gas consisting of N indistinguishable O2

molecules. Consequently, µO(T, pO2) is expressed as

µO(T, pO2) = 1
2µO2(T, pO2) = 1

2
(
−kBT lnQtot

O2 + pO2V
)
/N (2.107)



Chapter 2. Theoretical methodology 51

Here, kB represents the Boltzmann constant, and V signifies the volume. The evaluation of the

partition function for an ideal O2 gas, Qtot
O2 , proceeds as follows:

Qtot
O2 = 1

N ! (qO2)N = 1
N !

(
qtrans qrot qvib qelectr qnucl

)N
(2.108)

qO2 represents the partition function for a single O2 molecule. This partition function can

be further divided into distinct components using Born-Oppenheimer approximation. Using

Equation 2.108 and 2.107, we get

µO(T, pO2) =− 1
2N

[
kBT ln

( 1
N ! (q

trans)N
)
− pO2V

]
+ 1

2µ
rot + 1

2µ
vib + 1

2µ
electr + 1

2µ
nucl

(2.109)

where, the individual terms can be written as

− 1
2N

[
kBT ln

( 1
N ! (q

trans)N
)
− pO2V

]
= −1

2kBT ln
[(2πm

h2

)3/2 (kBT )5/2

pO2

]

µrot ≈ −kBT ln
(

8π2IkBT

σh2

)

µvib = EZPE + ∆µvib =
M∑
i=1

[
~ωi
2 + kBT ln

(
1− exp

(
− ~ωi
kBT

))]

µelectr ≈ E total
O2 − kBT lnM

(2.110)

The chemical potential of oxygen can be written as

µO(T, pO2) = µref
O + ∆µO(T, pO2) (2.111)

where µref
O = 1

2EO2 + 1
2E

ZPE
O2 is a reference chemical potential while ∆µO(T, pO2) has all the

temperature and pressure dependent contributions

∆µO(T, pO2) = 1
2

[
−kBT ln

[(2πm
h2

) 3
2

(kBT )
5
2

]

+ kBT ln pO2 − kBT ln
(

8π2IkBT

h2

)

+ kBT ln
[
1− exp

(
−~ωO

kBT

)]

− kBT lnM+ kBT ln σ
]

(2.112)

It is crucial to maintain a consistent selection of the chemical potential reference. Additionally,

the choice of an appropriate εxc functional is important when calculating energies.
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2.11 Many-body perturbation theory (MBPT): The Green’s

function approach

DFT has proven to be a robust method for evaluating the ground-state properties of many-

electron systems such as lattice parameters, phase transitions, charge density, and bulk mod-

ulus. In practical DFT applications, the actual interacting system is substituted with a non-

interacting fictitious counterpart, both of which share an identical ground-state density. Solving

the Kohn-Sham equation for this fictitious system provides us with single-particle eigenstates

and eigenvalues. It is important to note, however, that these eigenvalues do not directly repre-

sent excitation energies. Instead, they are mathematical tools and do not possess an inherent

physical meaning, with the exception of the highest occupied state, which corresponds to the

system’s exact ionization energy [51, 52]. In many instances, DFT falls short in accurately

predicting properties related to excited states, such as band gaps and optical absorption. Con-

sequently, delving beyond DFT becomes imperative when exploring many-body physics. The

Green’s function formulation of many-body perturbation theory (MBPT) [53] offers a promis-

ing approach for addressing these challenges. MBPT encompasses the one-particle Green’s

function approach, known as the GW method for charged excitations, and the two-particle

Green’s function approach, referred to as the Bethe-Salpeter Equation (BSE) for neutral exci-

tations.

In experimental settings, the determination of band gaps relies on excited-state spectroscopy

techniques. As illustrated in Fig. 2.8, this involves examining both charged and neutral excita-

tions. In direct photoemission, when a sample is exposed to light, an electron is emitted from

the material. This process allows for the calculation of the ionization potential (IP) by assess-

ing the total energy difference between a system with N electrons and one with N -1 electrons.

Conversely, in inverse photoemission, an electron is introduced into the system, resulting in

the emission of a photon. Here, the electron affinity (EA) is determined by evaluating the total

energy difference between a system with N electrons and one with N+1 electrons. Both direct

and inverse photoemission spectroscopies provide insights into the excitation energy of indi-

vidual charge carriers, be it electrons or holes. From a theoretical perspective, these processes

can be explored using the one-particle Green’s function approach, specifically the GW approx-

imation. Furthermore, in the context of optical absorption, when an electron is excited from the

valence band to the conduction band upon photon absorption, it may appear as a combination
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Figure 2.8: Schematic representation of excited-state spectroscopies, namely, direct photoemis-

sion, inverse photoemission, and optical absorption. Here, IP and EA represent the ionization

potential and electron affinity, respectively. Also, EN is the total energy of N -electron system.

Moreover, EGW
g = IP− EA is the quasiparticle (QP) band gap and EBSE

g = IP− EA− EB is the

optical band gap, where EB is the exciton binding energy.

of direct and inverse photoemission. However, it is crucial to note that the excited electron and

hole do not act as independent entities and cannot be studied separately. Instead, they form a

bound state known as an exciton. This electron-hole interaction is theoretically well-described

through a two-particle Green’s function approach, i.e., BSE.

2.11.1 Green’s function

Theoretical descriptions of processes involving the injection or ejection of electrons require a

framework that connectsN -particle and (N±1)-particle systems. This can be achieved through

the use of MBPT. At the core of MBPT is the time-ordered Green’s function, G (rt, r′t′), which

contains information about excitation energies and lifetimes. The definition of the one-particle

Green’s function is as follows:

G (rt, r′t′) =− i〈ΨN
0 |ψ̂(rt)ψ̂†(r′t′)|ΨN

0 〉Θ(t− t′)

+ i〈ΨN
0 |ψ̂†(r′t′)ψ̂(rt)|ΨN

0 〉Θ(t′ − t)
(2.113)

where Θ(t− t′) represent the Heaviside step function and is given as

Θ(t− t′) =


1 if t > t′

0 if t < t′



2.11. Many-body perturbation theory (MBPT): The Green’s function approach 54

|ΨN
0 〉 denotes the ground state of an N -electron system. The field operators ψ̂†(rt) and ψ̂(rt)

are responsible for creating and annihilating electrons, respectively, at a given position r and

time t. In the Heisenberg picture, we can express ψ̂(rt) = eiĤtψ̂(r)e−iĤt. When t > t′,

the Green’s function generates an electron in the system at r′ and t′, subsequently guiding it

to position r, where it is annihilated at time t. Conversely, for t < t′, it characterizes the

propagation of a hole. This function is commonly referred to as a propagator.

The transition from the time domain to the energy domain to obtain the spectral represen-

tation of the Green’s function can be achieved through a Fourier transform, resulting in the

following mathematical expression

G(r, r′, ω) = lim
η→0+

∑
s

ψs(r)ψ∗s(r′)×
[

Θ(εs − EF )
ω − (εs − iη) + Θ(EF − εs)

ω − (εs + iη)

]
(2.114)

where the excitation energies (εs) are

εs =


EN − EN−1 for εs < EF

EN+1 − EN for εs ≥ EF

and the transition amplitudes (ψs(r)) from the N to the N ± 1-body states are expressed as

ψs(r) =


〈ΨN−1

s |ψ̂(r)|ΨN
0 〉 for εs < EF

〈ΨN
0 |ψ̂(r)|ΨN+1

s 〉 for εs ≥ EF

EF represents the Fermi level. The inclusion of a small imaginary part η is essential to ensure

the convergence of the Fourier transform. Within Equation 2.114, ω represents an energy (fre-

quency). The excitation energies of the many-body system can be determined from the poles

of the Green’s function. The relationship between the spectral function, which describes the

density of excited states, and the Green’s function is as follows

A(r, r′, ω) = 1
π
|Im G(r, r′, ω)|

=
∑
s

ψs(r)ψ∗s(r′)δ(ω − εs)
(2.115)

When considering non-interacting electrons, the particles exhibit an infinite lifetime. Conse-

quently, the spectral function displays a series of delta peaks, each corresponding to a specific

transition (refer to the delta peaks for non-interacting particles in Fig. 2.9). However, exper-

imental observations show that the peak positions exhibit finite widths, typically attributed to
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Figure 2.9: Schematic representation of spectral function in the case of non-interacting (elec-

trons) single-particle excitation and interacting single-particle like (QP) excitation.

Figure 2.10: Illustration of a QP formation in the case of photoemission spectroscopy.

single-particle-like excitations (QP) (as depicted in Fig. 2.9). These wider peaks are the re-

sult of multiple closely positioned delta peaks merging together. Additionally, there is often a

broader peak with lower intensity known as the satellite peak. In summary, the spectral func-

tion provides insights not only into the position of the QP peak but also into: (i) the excitation’s

lifetime due to electron-electron interactions, inversely related to the width of the QP peak, and

(ii) the spectral weight of the QP. Consequently, the spectral function can also be written as

A ≈ 1
π

∣∣∣∣∣ Zs
ω − (εs + iΓ)

∣∣∣∣∣ (2.116)

The QP weight, denoted asZs, and the peak width, represented as Γ , are significant parameters.

Fig. 2.10 illustrates the QP concept in real-space.

A charged particle enveloped by a polarization cloud is considered a QP. In the context
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of photoemission spectroscopy, when the system evolves following the ejection or creation

of an electron or hole, the surrounding electrons encase the “bare” hole. This surrounding

process results in the screening of the hole’s interaction with the rest of the system and leads

to the concept of self-energy. In other words, it reflects the energy experienced by the particle

because of its own presence.

2.11.2 Dyson’s equation

Calculating the precise one-particle Green’s function is an impractical task, necessitating the

use of a viable approximation. The connection between the Green’s function and Σ is estab-

lished through Dyson’s equation, as presented below

G(r, r′, ω) = G0(r, r′, ω) +
∫ ∫

G0(r, r′′, ω)Σ(r′′, r′′′, ω)G(r′′′, r′, ω)dr′′dr′′′ (2.117)

Here, the non-interacting Green’s function, denoted as G0(r, r′, ω), is derived from mean-field

theory and satisfies the following equation

ĥ0φ
0
i (r) = ε0iφ

0
i (r) (2.118)

where the single-particle Hamiltonian is:

ĥ0 = −1
2∇

2 + Vext(r) +
∫ n(r′)
|r− r′|

dr′ (2.119)

The eigenstates and eigenvalues, denoted as φ0
i (r) and ε0i , respectively, represent the non-

interacting system. The non-local self-energy operator Σ, which is dependent on energy (fre-

quency) and non-Hermitian, encompasses all many-body exchange and correlation effects. The

Dyson equation can be transformed into an effective single-particle equation, serving to de-

scribe the behavior of QP.

ĥ0(r)ψs(r) +
∫

Σ(r, r′, εs)ψs(r′)dr′ = εsψs(r) (2.120)

These wavefunctions ψs(r) make up a complete set, but lack orthonormality because of the

energy-dependent self-energy operator. The Dyson equation may also be expressed alge-

braically as

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + ...

G = G0 +G0ΣG
(2.121)
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Figure 2.11: Schematic representation of the Dyson’s equation, which relates the non-

interacting (G0) and interacting (G) Green’s functions via the self-energy operator (Σ). Here,

the black arrow describes the propagation of a non-interacting particle and the viloet color rep-

resents screening process of different orders.

The schematic illustration of Dyson equation is shown in Fig. 2.11. The various components in

Equation 2.121 correspond to single, double, and so on, scattering events with Σ representing

the scattering potential. Consequently, the self-energy can be considered as the cumulative

effect of all these scattering events. Nonetheless, accurately determining the exact Σ associated

with multiple scattering processes is a complex task. Hence, a suitable approximation becomes

necessary to assess it.

2.11.3 GW approximation: Hedin’s equations

With the help of polarizability (P ) and the vertex function (Γ), Hedin formulated a system

of five self-consistent integro-differential equations in 1965 [19]. These equations connect the

self-energy with the Green’s function and the screened Coulomb interaction (W ).

G(1, 2) = G0(1, 2) +
∫
d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2)

P (1, 2) = −i
∫
d(3, 4)G(2, 3)G(4, 2+)Γ(3, 4; 1)

W (1, 2) = v(1, 2) +
∫
d(3, 4)W (1, 3)P (3, 4)v(4, 2)

Σ(1, 2) = i
∫
d(3, 4)G(1, 4)W (1+, 3)Γ(4, 2; 3)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +
∫
d(4, 5, 6, 7) δΣ(1, 2)

δG(4, 5)G(4, 6)G(7, 5)Γ(6, 7; 3)

(2.122)

Here, we employ the notation 1 = (r1, t1), and v represents the unscreened (bare) Coulomb

interaction. Additionally, 1+ denotes (r1, t1 + η), with η being a small positive value. Fig. 2.12

shows the self-consistent iterative process diagrammatically. Within this framework, the vertex

function encompasses higher-order corrections to the interaction between QPs. Calculating this

term can be particularly challenging, given its functional derivative nature and its dependency
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Figure 2.12: Schematic representation of the self-consistent Hedin’s equations.

on three spacetime points. As a result, to streamline these equations, approximations are often

applied to the vertex function.

Neglecting the functional derivative of the self-energy with respect to the Green’s function

in the GW approximation results in

Γ(1, 2; 3) = δ(1, 2)δ(1, 3)

P (1, 2) = −iG(1, 2+)G(2, 1)

Σ(1, 2) = iG(1, 2)W (1+, 2)

(2.123)

Therefore, in the GW approximation, the self-energy emerges as the outcome of the interplay

between the Green’s function and the screened Coulomb interaction. The GW approach shares

similarities with Hartree-Fock theory, where the dynamically screened Coulomb interaction is

replaced by the bare Coulomb interaction.

2.11.4 Implementation of the single-shot GW (G0W0)

In a standard GW computation, the initial step involves acquiring ground state orbitals and

orbital eigenvalues through DFT. Subsequently, GW corrections to the eigenvalues are deter-

mined by employing the GW method (single-shot or self-consistent). The choice of the initial

approach (LDA/PBE/HSE06) is critical, as it significantly influences the QP energies. There-

fore, we need to choose the starting point carefully. In many scenarios, G0W0 calculations

provide band gap values that align well with experimental data [54, 55]. Additionally, a self-

consistent GW (scGW ) approach is an option, where both QP energies and their corresponding
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orbitals are updated in a self-consistent manner [56]. However, it is worth noting that the scGW

method tends to overestimate band gaps compared to experimental measurements [57]. The in-

troduction of self-consistency without considering vertex corrections can lead to discrepancies

with experimental results. In our thesis, we primarily employed the single-shotGW approach.



CHAPTER 3

Heterogeneous catalysis in energy applications

3.1 Theoretical insights into C−H bond activation of

methane by transition metal clusters: the role of anhar-

monic effects

3.1.1 Introduction

Methane, the primary component of natural gas, is an abundant, cost-effective, and environ-

mentally friendly energy source [58, 59, 60, 61, 62, 63]. The world’s growing dependence on

petroleum, coal, and other non-renewable resources has prompted extensive research into more

efficient ways to harness natural gas. While carbon dioxide (CO2) typically garners attention

as the primary greenhouse gas, it’s worth noting that methane, due to its widespread presence

and considerable stability, is actually more potent in terms of its contribution to the greenhouse

effect than carbon dioxide. Therefore, there is a growing interest in developing methods to

convert methane into valuable chemical products [64]. One critical method for efficiently uti-

lizing the abundant natural gas is the production of synthesis gas (syngas), a gaseous mixture

composed of carbon monoxide (CO) and hydrogen (H2). Syngas plays a vital role in various

industrial processes, including the production of methanol, liquid hydrocarbons, ammonia, and

dimethyl ether [65, 66, 67]. However, the efficient activation of methane has been a signif-

icant challenge due to the strong C−H bonds in methane, characterized by their high bond

strength (4.5 eV), low polarizability, and negligible electron affinity, making it one of the least

reactive hydrocarbons [68, 69, 70]. Given methane’s extreme inertness, transforming it into

chemical products presents difficulties. To address this problem, a suitable catalyst must be

developed. The catalytic conversion of methane is one of the most appealing fields of study in

60



Chapter 3. Heterogeneous catalysis in energy applications 61

both academia and industry [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82].

Transition metal (TM) clusters are renowned for their efficient catalytic activity in both

homogeneous and heterogeneous reactions [83, 84, 85, 86, 87, 88]. This remarkable catalytic

performance can be largely attributed to their partially occupied d-shells, enabling them to

exhibit multiple oxidation states in their complexes [89, 90, 91]. When studying heterogeneous

catalysis, it is crucial to identify the active species and determine the catalyst’s structure [92].

The catalyst assumes various structures under reaction conditions, with different atom numbers

and oxidation states, all of which can play a role in the catalytic process to varying degrees. As

a result, gaining a comprehensive understanding of catalysis demands a robust methodological

approach that integrates various levels of theory into a cohesive multi-scale simulation [93].

Extensive experimental and theoretical investigations have elucidated that the reactivity of

small gas-phase metal clusters is strongly influenced by their size, as the number of atoms

plays a significant role [94, 95, 96, 97]. Notably, as the cluster size decreases, intriguing size-

dependent phenomena become apparent, introducing various size effects with important impli-

cations [91, 98, 99, 100]. Furthermore, a material’s properties can undergo substantial changes

when exposed to operational environments, particularly in the presence of reactive molecules.

This naturally gives rise to essential questions, such as determining the composition and struc-

tures of species within a real catalyst and understanding how these catalysts alter their structure

and catalytic properties upon the adsorption of different ligand molecules. In light of these con-

siderations, there is a compelling need to provide theoretical insights that guide experimental

investigations towards understanding the stoichiometry and stability of clusters under realistic

conditions. To approach this from a theoretical perspective, we examine a prototypical model

system featuring nickel (Ni4, chosen as a tetrahedral nickel cluster renowned for its high selec-

tivity [101, 102, 103]) in a reactive environment consisting of O2 and CH4 gas molecules under

realistic conditions. It’s worth noting that Ni-based catalysts have gained widespread usage in

catalysis due to their cost-effectiveness, high selectivity, and activity, and they have been the

focus of extensive research over the years [104, 105, 106, 107, 108, 109]. Typically, in the pres-

ence of a reactive atmosphere, clusters adsorb surrounding gas molecules, giving rise to inter-

mediate phases denoted as [Ni4Ox(CH4)y] at thermodynamic equilibrium. These intermediate

phases often exhibit high reactivity and find applications in various aspects of heterogeneous

catalysis, underscoring the importance of understanding their stable stoichiometries.

In this chapter, we have investigated the role of environment [i.e., temperature (T ), partial
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pressure of oxygen (pO2) and partial pressure of methane (pCH4)] to understand the thermo-

dynamic stability of different configurations of Ni4Ox(CH4)y (0≤x≤8, 0≤y≤3) clusters in a

reactive atmosphere of O2 and CH4 molecules. As a first step, a systematic scanning of poten-

tial energy surface (PES) is done via cascade genetic algorithm (cGA) [48, 110, 111] approach

to obtain the global minimum (GM) configurations of Ni4Ox(CH4)y clusters. Subsequently,

we have employed ab initio atomistic thermodynamics (aiAT) [49, 112] in the framework of

density functional theory (DFT) [23, 26] to determine the thermodynamic stability of those

configurations under operational conditions. To incorporate the anharmonicity in the vibra-

tional free energy contribution to the configurational entropy, we evaluate the excess free en-

ergy of the clusters numerically by thermodynamic integration method with ab initio molecular

dynamics (aiMD) simulation inputs. On analyzing a large dataset, we show that the conven-

tional harmonic approximation miserably fails to estimate the accurate thermodynamic stabil-

ity. Therefore, consideration of anharmonic effects is of paramount importance to avoid all

the possibilities of missing the stable phases of the clusters. If the anharmonic effects are not

included, the stable phases would be destabilized erroneously resulting in inaccurate predic-

tion of the stable phases. Further, we have computed the Infrared (IR) spectra of these stable

configurations, which also confirm the anharmonicity in such structures. Besides, the latter has

significance in the activation of C−H bond, while the harmonic IR spectrum fails to capture it.

The sharp peak corresponding to the C−H stretching mode (of the activated C−H bond) in the

anharmonic IR spectrum signifies enhanced dipolar interaction in the C−H bond, which results

from the localization of charge in C and H atoms of the Ni4O7(CH4)2 cluster, is well captured

by the anharmonic IR spectrum. Therefore, to develop a suitable catalyst (with active sites),

incorporation of the anharmonic effects is essential in these class of materials.

3.1.2 Computational methods

We have generated a large data set of Ni4Ox(CH4)y (0≤x≤8, 0≤y≤3) clusters. We have varied

the value of x and y (x = no. of oxygen atoms, y = no. of CH4 molecules) from zero to the

saturation value, which means x and y values are increased with all possible combinations until

no more O-atom/CH4 molecule can be absorbed by the cluster. As a first step, we have used

a massively parallel cascade genetic algorithm (cGA) to thoroughly scan the potential energy

surface (PES) in determining all possible low-energy structures (including the global mini-

mum). The term “cascade” means a multi-stepped algorithm, where successive steps employ
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higher level of theory and each of the next level takes information obtained at its immediate

lower level. Typically, a cGA algorithm starts with classical force field and goes upto density

functional theory (DFT) with hybrid exchange and correlation (εxc) functionals. Note that it is

reported that PBE εxc functional [30] highly overestimates stability of clusters containing larger

concentration of O-atoms [92, 97, 110, 113]. This results in a qualitatively wrong prediction

of O2 adsorption for O-rich cases. Such behaviour is not confirmed by more advanced hybrid

εxc functionals (e.g., HSE06 [31], PBE0 [114]) as employed in our calculations. Moreover, the

spin states of the clusters are also different as found by PBE and PBE0/HSE06 εxc functionals.

In view of this, in the cascade algorithm, we have only optimized with PBE but the energetics

are computed with PBE0 εxc functional to evaluate the fitness function of the cluster. This is due

to the reason that in optimization of the structures, we basically compute the forces amongst

atoms, which is determined by gradient of energy i.e., precisely the differences of energies in

order to compute the derivative. As a result, the electron’s self- interaction present in PBE εxc

functional gets canceled out. Therefore, there is not much difference in the structures that we

get from PBE and/or PBE0 εxc functionals. In addition, PBE0 εxc functional is computation-

ally much expensive than PBE εxc functional making PBE εxc functional an efficient choice for

structural optimization in our system. We have incorporated all these settings in cGA. For de-

tails of this cGA implementation, accuracy and validation, we recommend our previous studies

as given in Ref. [48, 110, 111].

All DFT calculations have been performed using FHI-aims code, employing an all-electron

code with numerical atom centered basis sets [115]. Considering the fact that first-principles

based calculations are computationally demanding, lighter (viz., light settings with tier 2 basis

set [115]) DFT settings have been implemented in the cGA to find the global minimum struc-

tures. The atomic zero-order regular approximation (ZORA) is used for the scalar relativis-

tic correction [116]. The vdW correction is calculated according to the Tkatchenko-Scheffler

scheme [117]. The low energy structures obtained from the cGA are further optimized with

PBE at higher level settings (viz., tight settings with tier 2 basis set [115]). The atomic forces

are converged up to 10−5 eV/Å. Finally, the total single point energy is calculated on top of this

optimized structure using PBE0 hybrid εxc functional and the global minimum structures are

obtained. The role of εxc functionals in identifying global minima is illustrated in Fig. 3.1. The

vibrational frequencies are determined of the stable compositions under harmonic approxima-

tion using finite displacement method. Next, to capture the anharmonic effects using thermody-
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Figure 3.1: Structures of different isomers of Ni4O7 clusters obtained from PBE (represented

by dashed blue line) and HSE06 (represented by dashed red line) exchange-correlation (εxc)

functionals. Dashed circles represent the global minima from the two functionals.

namic integration method, we have carried out ab initio molecular dynamics (aiMD) simula-

tions for 8 ps each at different temperatures namely T = 50 K, 100 K, 300 K, 600 K and 800 K

in canonical ensemble (i.e., one with constant temperature and volume). We have employed

Velocity Verlet scheme [118] for the integration of Newtonian equations with a time-step of 1 fs

and the temperature of the system is controlled using Nose-Hoover thermostat [119]. Here, we

represent a test case of Ni4Ox(CH4)y (x = 6, y = 1) cluster to validate our ab initio molecular

dynamics (aiMD) simulations. Fig. 3.2 shows the histogram that we have obtained from aiMD

simulation for Ni4O6CH4 cluster at T = 600 K. From the histogram, we infer that average tem-

perature of the simulation is indeed coming around the intended temperature viz., 600 K. Note

that here, only the last 1 ps equilibrium stable data is considered after ignoring a large part of

the data to avoid any thermal fluctuations. Therefore, Nose-Hoover thermostat is apt to control

the temperature during simulation.
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Figure 3.2: Histogram of aiMD simulation for Ni4O6CH4 cluster at T = 600 K.

3.1.3 Results and discussion

3.1.3.1 Determination of stable phases of the [Ni4Ox(CH4)y] clusters

After obtaining all low energy isomers corresponding to different configurations of

Ni4Ox(CH4)y clusters from cGA, we study their thermodynamic stability under realistic con-

ditions using aiAT approach. Here, we assume that there is an exchange of atoms between the

system (Ni4 cluster) and the surroundings (consisting of O2 and CH4 gas molecules) at finite

temperatures and pressures, via the following reaction:

Ni4 + x

2 O2 + y CH4 
 Ni4Ox(CH4)y (3.1)

Note that adsorption and desorption of O2, H2, H2O and CO2 moieties are also taken into

account by GA, where all sorts of mutation and crossover operations take place giving rise to

all possible structural moieties. Therefore even if the configuration stoichiometrically reads as

Ni4Ox(CH4)y, it does include all possible moieties.

The Gibbs free energy of formation (∆G) of all the Ni4Ox(CH4)y structures is then eval-

uated as a function of T , pO2 and pCH4 by applying aiAT. The composition (for a particular

value of x , y) having the minimum Gibbs free energy of formation is most likely to be found

in the experiments at a specific T , pO2 and pCH4 . ∆G(T, p) is, therefore, calculated as per the
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following equation:

∆G(T, pO2 , pCH4) = FNi4Ox(CH4)y(T )− FNi4(T )

− x× µO(T, pO2)− y × µCH4(T, pCH4)
(3.2)

Here, FNi4Ox(CH4)y(T ) and FNi4(T ) are the Helmholtz free energies of the cluster+ligands

[Ni4Ox(CH4)y] and the pristine [Ni4] cluster, respectively. x and y represent the number of

oxygen atoms and methane molecules, that are exchanged with the environment in the reactive

atmosphere, respectively. µO(T, pO2) and µCH4(T, pCH4) represent the chemical potential of an

oxygen atom (µO = 1
2µO2) and the methane molecule, respectively. The relation of µO(T, pO2)

with T and pO2 is governed by the ideal (diatomic) gas approximation. The expression is as

follows [120, 121]:

µO2 (T, pO2) = −kBT ln
[(2πm
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For CH4 molecule, IA=IB=IC=I, and therefore,
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The contribution of different terms is given as [48]:

µtranslational = −kBT ln
[(2πm

h2

) 3
2

(kBT ) 5
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]
+ kBT ln pCH4 (3.5)

µrotational = −kBT ln
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where the summation runs over all the vibrational modes of methane.

µelectronic = EDFT − kBT lnM (3.8)

Here kB, h, EDFT, νOO and νCH are respectively the Boltzmann constant, Planck constant,

total DFT energy and stretching frequencies of O–O and C–H bonds. m, I,M and σ represent

the mass, moment of inertia, spin multiplicity and symmetry no. of the molecule, respectively.

The Helmholtz free energies FNi4Ox(CH4)y(T ) and FNi4(T ) consist of respective total DFT

energy along with their free energy contributions from translational, rotational, vibrational,

symmetry and spin-degeneracy terms [49]. It has been noticed that total DFT energy is the

dominant term, which is evaluated in its ground state configuration with respect to both ge-

ometry and spin state. The rest of the terms, except contribution from vibrational degrees of

freedom (Fvibs), are usually considered as invariant since they do not change much (and even

if they change, the order is insignificant) due to the dependence on most of the constant terms

viz., mass, moment of inertia, universal constants, etc. However, the vibrational contribution

is dependent on frequencies of vibration, which are unique for a given structure. Thus, the

Helmholtz free energy can be written as follows:

F (T ) = EDFT + Fvibs + ∆ (3.9)

∆ is considered to be the constant term. At low temperature, Fvibs usually contributes at the

first order after the decimal for a small cluster of few atoms. Thus, while computing ∆G(T, p),

since we take differences of two free energy expressions (i.e., a system with ligands and system

without ligands), we assume this to be very small and therefore, can be neglected. However,

there exist some systems, where Fvibs contributes significantly even after taking the difference

of two such terms to compute ∆G(T, p) [112]. In view of this, though a significant number

of works have neglected Fvibs, but it is not recommended. Here, we have estimated the role of

Fvibs via state-of-the-art theoretical techniques at various level of accuracy.

Using Equation 3.2, we have obtained the 3D phase diagram (pO2 vs pCH4 vs ∆G(T,p)) at

an experimentally relevant T (here, 800 K) by taking its 2D projection after aligning negative

∆G(T, p) axis to be vertically up. We have considered all the configurations of Ni4Ox(CH4)y

clusters. Note that only those phases that minimize the ∆G(T, p) at a specific pO2 , pCH4 and

T = 800 K, are visible (see Fig. 3.3). Each color in the phase diagram represents a stable

configuration of the catalyst. All the phase diagrams are constructed at T = 800 K as it is a

suitable temperature for methane activation.
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Figure 3.3: 2D projection of 3D phase diagram obtained for Ni4Ox(CH4)y clusters in the reac-

tive atmosphere of O2 and CH4. In this plot ∆G(T, p) is computed (a) when only DFT total

energies are included, (b) DFT+Fharmonicvibs are included and (c) DFT+Fanharmonicvibs are included

to compute F (T ) of respective configurations as shown in Equation 3.2. Colored regions show

the most stable compositions in a wide range of pressure at T = 800 K.

3.1.3.2 Comparing the role Fvibs in ∆G(T, p): Importance of capturing anharmonic ef-

fects

Herein, we have implemented a suite of three state-of-the-art techniques to plot ∆G(T,p). The

first one is without any explicit contribution of Fvibs (as in Equation 3.9) i.e., only total DFT

energy (EDFT) of the cluster with and without ligands is considered (see Fig. 3.3a). In the

second case, we have duly considered Fvibs upto harmonic approximation to calculate ∆G(T,p).

F harmonic
vibs is computed using the following equation [48]:

F harmonic
vibs =

∑
i

hνi
2 +

∑
i

kBT ln
[
1− exp

(
hνi
kBT

)]
(3.10)

Note that after adding F harmonic
vibs with EDFT (as in Equation 3.9), a new phase is introduced

along with slight rearrangement of the existing phases, especially near the boundary region of

competing configurations (see Fig. 3.3b). However, despite some small changes in Fig. 3.3a

and 3.3b, we do not see any significant difference to identify the most stable phases at ex-

perimentally realistic pressure range. In this region, Ni4O6CH4, Ni4O7(CH4)2 and Ni4O8CH4

are the stable phases and if we see at the region, where pO2 = pCH4 = 10−5 atm (T = 800 K),

Ni4O7(CH4)2 comes out to be the most stable phase (see Fig. 3.3a and 3.3b) irrespective of

F harmonic
vibs is taken into consideration or not.

Now here, it is assumed that at T = 800 K, the oscillations are constrained to vibrate under

a harmonic potential. However, the real system does not necessarily follow this assumption.
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And if so, the real anharmonic potential can be very different from harmonic potential. In

such case, the expression for Fvibs can vary from one configuration to the other. Therefore, in

an attempt to refine the expression of ∆G(T, p) at finite T, p, we have included anharmonic

effects in the potential energy surface (see Fig. 3.3c). In order to quantitatively account for

the anharmonic effects, we have performed the thermodynamic integration taking input from

aiMD simulation to evaluate the excess free energy of clusters. Here, we have assumed that

at low T ( 10K), both harmonic and anharmonic potentials do not diverge much. Taking such

low T as our reference state, the Helmholtz free energy F (T ) is calculated according to the

following equation:

F (T ) = EDFT + UZPE︸ ︷︷ ︸
Uref

+ T

T◦
F harmonic
vibs (T◦)

− T
∫ T

T◦

dT

T 2 (〈U〉T − U ref )︸ ︷︷ ︸
thermodynamic integration

−kBT
N

2 ln T

T◦

(3.11)

where T ◦ and T represent the initial and final temperatures, respectively. EDFT, Uref ,

F harmonic
vibs (T◦), N and 〈U〉T are respectively the total DFT energy, zero point energy, Helmholtz

free energy at temperature T ◦ (10 K) under harmonic approximation, total number of atoms

and canonical average of the total energy at temperature T (800 K) of the clusters. We have run

aiMD simulations in canonical ensemble for 8 ps at five different temperatures, from T = 10 K

to T = 800 K to obtain the average energy (〈U〉T ). After that, we have performed quadratic

curve fitting for this data and numerically integrated the corresponding function over the limits,

T ◦ = 10 K to T = 800 K to get the value of F (T ) at T = 800 K. After evaluating F (T ), we

have minimized ∆G(T, p) using the same aforementioned procedure and obtained the phase di-

agram with the anharmonic effects. Interestingly, we have noticed, a completely new phase viz.,

Ni4O6(CH4)2 appears to be stable alongside three existing phases [viz., Ni4O6CH4, Ni4O8CH4

and Ni4O7(CH4)2] at reaction condition (pO2 = pCH4 = 10−5 atm and T = 800 K). On comparing

Fig. 3.3a, 3.3b and 3.3c, we infer that stable phases have not only been destabilized erroneously

but also the new phases have a high probability of being missed at reaction conditions, if the

anharmonic effects are not taken into consideration for this class of materials. Hence, it man-

ifests that the inclusion of anharmonicity in these clusters affects the thermodynamic stability

under operational conditions.

To clearly examine the relative probability of all the competing isomers simultaneously,

we have estimated the probability of occurrence of all (meta)stable phases using all the three
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Figure 3.4: Logarithm of probability of occurrence (in %) of Ni4O7(CH4)2, Ni4O8CH4,

Ni4O6CH4 and Ni4O6(CH4)2 clusters in all the three cases (DFT, DFT+Fharmonicvibs and

DFT+Fanharmonicvibs ) at (a) T = 800 K and pO2 = 1 atm, pCH4 = 1 atm (b) T = 800 K and pO2

= 10−10 atm, pCH4 = 1 atm.

methods (viz., DFT, DFT+Fharmonicvibs and DFT+Fanharmonicvibs ) under different reaction conditions.

It is calculated by the following equation:

Nn

N
= exp(β∆Gn)

1 +∑
m exp(β∆Gm) (3.12)

Here, we assume total N different configurations are possible out of which Nn is the number of

a given type (say n) and it’s occurrence is given as per Fermi-Dirac statistics. Thus Nn
N is the

probability of occurrence of type-n configuration. ∆Gn is the Gibbs free energy of formation of

type-n configuration. Nm is any other considered configuration type. As the range of Nn
N ×100%



Chapter 3. Heterogeneous catalysis in energy applications 71

is significantly large, we have taken logarithm of the above equation in the plots (see Fig. 3.4).

log10

[(Nn

N

)
× 100

]
(3.13)

Therefore, the maximum possible value on y-axis is 2 for Nn = N. In Fig. 3.4a, we can clearly

see that the first structure [viz., Ni4O7(CH4)2] is most likely to be stable by all three methods.

But after that for the next three structures (viz., Ni4O8CH4, Ni4O6CH4 and Ni4O6(CH4)2),

DFT+Fharmonicvibs and DFT+Fanharmonicvibs work counter to each other. Moreover, if we see Fig. 3.4b,

the situation is even worse and inclusion of DFT+Fanharmonicvibs is absolutely essential as both

DFT and DFT+Fharmonicvibs find different structures to be thermodynamically more stable and

vice versa.

Next, we have shown two important applications of this finding by computing the IR spectra

of two test cases: (i) Ni4O6(CH4)2 and (ii) Ni4O7(CH4)2.

3.1.3.3 Ni4O6(CH4)2 cluster: Harmonic IR vs Anharmonic IR

IR spectroscopy covers the infrared region of the electromagnetic spectrum with frequencies

ranging from 4000 cm−1 to 40 cm−1 [122, 123, 124, 125, 126]. In IR spectroscopy, specific

frequencies are absorbed by the molecules that are the characteristic of their structure. Here, we

have simulated the IR spectra of one of the clusters viz., Ni4O6(CH4)2, that is explicitly stable

on including the anharmonic contribution to the free energy, to determine its characteristic vi-

brational normal modes. For this, we have run 8 ps aiMD simulation in the canonical ensemble

with Bussi-Donadio-Parrinello (BDP) [127] thermostat. From Fig. 3.5, we have noticed signif-

icant dissimilarities between the harmonic and anharmonic IR spectra of Ni4O6(CH4)2. Aside

from the usual difference in peak intensities, the O−H stretching mode as per harmonic IR

analysis near 2300 cm−1 (see Fig. 3.5 upper panel) is just a negligible hump in anharmonic IR

(see Fig. 3.5 lower panel). Similarly, the C−H stretching mode around 3000 cm−1 is also not

contributing in anharmonic IR. Hence, it is evident that there is a fundamental difference in the

characteristic frequencies of vibration of this structure as computed with harmonic approxima-

tion and that of after capturing the anharmonic effects. As a result, they contribute differently to

the free energy of vibration. This makes Ni4O6(CH4)2 stable in the anharmonic case, whereas

unstable under the harmonic approximation. Note that we have taken just a prototypical model

system here viz., Ni4 cluster to study its stable phases under the reactive atmosphere of O2 and
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Figure 3.5: Infrared (IR) spectra of Ni4O6(CH4)2 for both harmonic (upper panel) as well as the

anharmonic (lower panel) case. The possible vibrational modes are also shown corresponding

to those respective peaks.

CH4. Nevertheless, this model system is relevant and sufficient to convey the underlying mes-

sage that there is a high chance of leaving important stable phases of the catalyst while ignoring

the anharmonic effects during reaction condition.

3.1.3.4 Ni4O7(CH4)2 cluster and C−H bond activation

Apart from the above important facts, we notice that incorporation of anharmonic effects helps

in predicting the potential catalyst for C−H bond activation. For this, we have considered a test

case viz., Ni4O7(CH4)2 cluster, which is stable in all the three cases as shown in Fig. 3.3a, 3.3b

and 3.3c. We have plotted its IR spectra (harmonic vs anharmonic) and compared in Fig. 3.6a.

From Fig. 3.6a, we have noticed that O−H stretching presents significant anharmonic red-shifts

in comparison to harmonic case around 273 cm−1. These red-shift corrections lead to change

in IR spectrum shape due to a reorganization of the vibrational modes. Primarily, we have

observed some remarkable dissimilarities between harmonic and anharmonic IR spectra, for

e.g., the intensity of C−O stretching peak has reduced significantly after the inclusion of an-

harmonic effects. Moreover, in the anharmonic IR spectrum, we have found an intense peak

around 995 cm−1 corresponding to C−H bending vibration. This type of highly intense IR ab-

sorption is due to the change in dipole moment that occurs during a vibration, especially when

the bond is highly polar in nature so that its dipole moment changes considerably as the bond
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stretches. However, the harmonic IR spectrum completely fails to capture this information. To

Figure 3.6: (a) Infrared (IR) spectra of Ni4O7(CH4)2 for both harmonic as well as the an-

harmonic case. Contour plots of electronic charge density associated with (001) plane of (b)

CH4 (delocalization of charge within C−H bonds) and (c) Ni4O7(CH4)2 cluster (localization of

charge within C−H bonds).

validate this enhance dipolar interaction into this structure, we have plotted the charge density

of Ni4O7(CH4)2 cluster and compared the same with CH4 (see Fig. 3.6b and 3.6c). To obtain

the charge density contour analysis, we have plotted the electron charge density for CH4 and

Ni4O7(CH4)2 cluster for the electronic levels near respective Highest Occupied Molecular Or-

bitals (HOMO). The constant slicing plane is chosen such that both the C and H atoms of the

C−H bond is covered. The value of electron charge density varies from maximum (red color)

to minimum (blue color). Now, if we notice the nature of the C−H bond in either case, we can

clearly see the difference in charge localization. In conventional CH4, the C−H bond is purely

covalent, which makes it rather inert to get functionalized easily. However, in the Ni4O7(CH4)2

cluster, the C−H bond is very much polar with the localized charge on C and H respectively.

This unusual localization of charge in the C−H bond gives rise to enhanced dipolar interac-

tions (see Fig. 3.6c), and as a consequence of this, Ni4 is expected to be a reliable catalyst in

activating the C−H bonds in methane. This can be further explored by performing NEB/kMC

simulations on the cluster. However, if this entire analysis is done using only harmonic approx-

imation, this stable configuration would not even be considered for C−H bond activation as its

peak in the IR spectrum is pretty small and delocalized. This further concludes the importance

of capturing the anharmonic contribution to this class of materials.



3.1. Theoretical insights into C−H bond activation of methane by transition metal
clusters: the role of anharmonic effects 74

3.1.4 Conclusions

In summary, we have carried out state-of-the-art hybrid density functional theory (DFT) cal-

culations combined with ab initio atomistic thermodynamics (aiAT) and ab initio molecular

dynamics (aiMD) simulation. Our aim was to explore how the thermodynamic stability of

transition metal (TM) oxide clusters evolves in response to changes in temperature and pres-

sure (T , pO2 and pCH4). The inclusion of anharmonicity in our analysis unveiled the existence

of previously ignored stable phases, which were not accounted for by conventional DFT and

DFT+Fharmonicvibs methods. This discovery has profound implications, particularly in the context

of CH bond activation. Harmonic IR methods proved inadequate in accurately depicting the

vibrational modes necessary for understanding the activation of stable CH bonds in methane

using a metal oxide cluster as a catalyst. Therefore, it is imperative to consider anharmonic

effects when dealing with these materials, particularly in the context of catalytic processes.
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3.2 O-vacancy mediated partially inverted ferrospinels for

enhanced activity in the sulfuric acid decomposition for

hydrogen production

3.2.1 Introduction

Over recent decades, the increasing global demand for energy has led to a significant rise in

greenhouse gas emissions, primarily resulting from the burning of non-renewable fossil fuels

like coal, natural gas, and petroleum oils. These sources release substantial amounts of green-

house gases into the environment, emphasizing the need to explore cleaner and sustainable

energy alternatives [128, 129, 130, 131]. Hydrogen emerges as a highly promising option,

serving as a clean and sustainable energy carrier that emits no harmful greenhouse gases dur-

ing combustion [132, 133, 134, 135, 136, 137, 138]. It can be generated from various raw

materials, including water, through indirect techniques for water splitting [139, 140, 141, 142].

One such method, the Iodine-Sulfur (IS) cycle, is a non-carbon, thermochemical process with

a reported efficiency of approximately 51% for hydrogen production [143, 144]. This multi-

step cycle involves three key reactions: the Bunsen reaction, sulfuric acid decomposition, and

hydroiodide decomposition [143]. Notably, the thermochemical decomposition of sulfuric acid

is an extremely endothermic and corrosive process, characterized by significant kinetic bar-

riers [145, 146, 147, 148]. This reaction occurs in two distinct steps. Initially, sulfuric acid

undergoes thermal decomposition, yielding SO3 and H2O. Subsequently, in the second step,

SO3 undergoes catalytic decomposition into SO2 and O2 [149]. The latter step, known as the

SO3 decomposition or oxygen-evolving step, is particularly energy-intensive and requires the

presence of a highly efficient and stable catalyst to facilitate the conversion of SO3 into SO2

and O2 [150, 151].

Efforts to develop a highly active and thermally stable catalyst have led to numerous studies

employing various materials, including precious metals, transition metal oxides, and complex

metal oxides, such as perovskites and spinels [152, 153, 154, 155, 156, 157, 158]. Notably, sup-

ported transition metal oxides and complex metal oxides have garnered significant attention as

potential alternatives to precious metal oxides due to their cost-effectiveness and enhanced sta-

bility [152, 159, 160, 161]. Complex metal oxides, particularly perovskites and spinels, stand
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out as promising alternatives to platinum-based catalysts, owing to their robust thermal stability,

especially under high-temperature conditions. Spinel structures are typically described by the

formula AB2O4, where A and B represent the cation sites within the tetrahedral and octahedral

arrangements, respectively. These cations are strategically arranged in a cubic close-packing of

oxygen atoms, thereby exhibiting cubic symmetry with the space group Fd3̄m. The structure of

spinel oxides substantially influences their physical and chemical properties by accommodat-

ing diverse cations [162, 163, 164]. These cations can occupy various oxidation states across

the A and B geometric sites. It is imperative to determine the degree of inversion and cation

distribution, as these factors impact the material’s physical and chemical characteristics. In

the case of normal spinels, divalent and trivalent cations exclusively occupy the sites, resulting

in an inversion degree of zero. Conversely, completely inverted spinels exhibit an inversion

degree of 1. The preferences of cations for either tetrahedral or octahedral sites, coupled with

parameters like temperature, cooling rate, and the method of synthesis, significantly influence

the spatial arrangement of cations in spinel structures.

In this regard, Banerjee and colleagues synthesized AFe2O4 spinels (A = Cu, Ni, Co) utiliz-

ing the glycine-nitrate gel combustion method [165]. Among these spinels, CuFe2O4 exhibited

superior catalytic performance, achieving 78% conversion at 1073 K. This exceptional activ-

ity of CuFe2O4 can be attributed to the high electronegativity of the Cu2+ ion in comparison

to Fe2+ and Ni2+, which weakens the S-O bond within mixed metal oxides. Consequently,

CuFe2O4 exhibits a reduced susceptibility to sulfation in comparison to other metal oxides.

The estimated activation energies for CoFe2O4, CuFe2O4, and NiFe2O4 were determined as

168.23, 116.91, and 229.16 kJ/mol, respectively. This same research group also investigated

metal oxides based on chromium (Fe2(1−x)Cr2xO3) and discovered that the maximum SO2 yield

was achieved at 1073 K, with no evidence of deactivation [166]. In the process of SO3 decom-

position, SO3 interacts at available anchor sites on these metal surfaces, leading to the formation

of metal sulfates. Subsequently, these metal sulfates decompose into SO2 and oxygen via the

dissociation of S-O bonds, underscoring the significance of the thermal stability of metal sul-

fates [165, 167]. The degree of thermal stability within a sulfate governs its susceptibility to

S-O bond dissociation. The thermal stability of the S-O bond within the M-O-S linkage of a

metal sulfate depends on the electronegativity of the metal M and, consequently, the polariza-

tion of the S-O bond. Specifically, a higher electronegativity of the metal M results in a weaker

S-O bond, and vice versa. In the case of ferrospinels, their electronegativity follows the order of
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Fe3+ > > Cu2+ > Ni2+ > Co2+. Consequently, the catalytic activity and activation energy of the

three ferrospinels AFe2O4 (A = Cu, Ni, Co) are arranged in the order of CuFe2O4 > NiFe2O4

> CoFe2O4 [165]. Nonetheless, it is noteworthy that Co3+ has a higher electronegativity than

Fe2+ and Cu2+ [168]. Hence, FeCo2O4 ferrospinels possess the potential to serve as active cat-

alysts in the high-temperature sulfuric acid decomposition reaction for thermochemical oxygen

evolution.

Although these bimetallic catalysts have been widely explored for their exceptional bifunc-

tional performance, there is still a need to investigate the role of their surface states, given the

higher diversity of cations involved. The introduction of a secondary metal through doping

leads to the formation of a double spinel, which combines characteristics of both normal and

inverted spinels. This dual-phase structure allows us to enhance catalytic properties by gen-

erating additional oxygen vacancies, which not only act as active sites but also contribute to

improved thermal stability. Therefore, the incorporation of a secondary metal into Co3O4 is a

judicious choice for obtaining a catalyst with an increased number of active sites. In practice,

the effective utilization of these active metals requires their stabilization on a support mate-

rial. This approach facilitates superior heat distribution and helps prevent metal agglomeration,

ensuring prolonged catalyst performance. To mitigate issues such as support sulfation, agglom-

eration, and metal loss during extended exposure to high temperatures, our research focuses on

employing SiC-based support materials, which offer enhanced metal-support interaction [159].

SiC, with its high thermal conductivity, stability, and inert properties, has emerged as a promis-

ing catalyst support for high-temperature reactions. Our prior investigations have highlighted

the critical role of strong metal-support interaction in enhancing activity and prolonging the

stability of iron oxide when supported on pretreated SiC [159].

In this chapter, we focuse on stability and catalytic performance of both cobalt-rich

(FeCo2O4) and iron-rich (CoFe2O4) spinel over support material for the SO3 decomposition.

Our methodology combines state-of-the-art theoretical approaches to provide a comprehen-

sive understanding for the design of potential catalysts. The resulting catalyst, consisting of

complex metal oxide nanoparticles supported on SiO2 grown on SiC and mesoporous silica,

exhibits remarkable activity and stability. To the best of our knowledge, this is the first attempt

to investigate the catalytic activity of cobalt-rich (FeCo2O4) and iron-rich (CoFe2O4) spinels

for this reaction. Thus, the present study enables us to engineer a highly active and stable

catalyst for high-temperature reactions.
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3.2.2 Computational methods

The spin-polarized density functional theory (DFT) calculations were performed using the

plane-wave-based pseudopotential approach as implemented in the Vienna Ab initio Simu-

lation Package (VASP) [169, 170]. To optimize the modeled geometries, the Perdew–Burke–

Ernzerholf (PBE) exchange-correlation εxc functional was utilized within the generalized gra-

dient approximation (GGA) [171]. For high-precision calculations, the electron wave func-

tion was expanded with an energy cutoff of 500 eV. The self-consistency loop was converged

to a total energy threshold of 0.01 meV, and the structures were fully relaxed until the Hey-

mann–Feynman forces on each atom were less than 10−5 eVÅ using conjugate gradient (CG)

minimization. The Brillouin zone was sampled at the Γ point for all DFT calculations. It is

well known that the local and semi-local functionals are insufficient to predict the stability and

adsorption of oxide systems accurately. Therefore, the change in Gibbs free energy (∆G) for

the adsorption and dissociation of SO3 molecules on the supported cluster was determined us-

ing a hybrid functional (HSE06) [31]. For the different reaction steps, the change in Gibbs free

energy (∆G) is calculated according to the following equations:

∆G1 = Gcatalyst+SO3 −GSO3 −Gcatalyst (3.14)

∆G2 = GSO2−catalyst−O −Gcatalyst+SO3 (3.15)

where Gcatalyst, GSO3 , Gcatalyst+SO3 and GSO2−catalyst−O represent the total energy of the cat-

alyst (CoFe2O4/SiC-Pretrt and FeCo2O4/SiC-Pretrt), the gas-phase adsorbate, the adsorbate

adsorbed on the catalyst, and the adsorbate dissociated on the catalyst, respectively. An elec-

tron density difference analysis was conducted to gain insight into the nature of the bonding

between the adsorbate and the catalyst. The electron density difference (∆ρ) was determined

as:

∆ρ = ρ(catalyst + SO3)− ρ(SO3)− ρ(catalyst) (3.16)

In order to identify the transition states (TSs) along the minimum energy path, we have

employed the climbing-image nudged elastic band (CI-NEB) method [43, 172]. We extracted

a nanocluster of CoFe2O4/FeCo2O4-np with a radius of 5 Å from its bulk cubic crystal (space

group Fd3̄m) and referred to this cluster as CoFe2O4/FeCo2O4 throughout this study. To con-

struct the computational model of SiC that supports CoFe2O4/FeCo2O4, we utilized the {111}
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facet of the "β-SiC" phase. To mimic our experimental model system, we added a layer of

SiO2 on top of the SiC support. To prevent unintended interactions between periodic images, a

vacuum layer with a thickness of 20 Å was used.

Figure 3.7: Radial distribution function (RDF) plot at 0 K and 1000 K for (a) FeCo2O4 and

CoFe2O4 clusters over SiC-Pretrt, respectively.

3.2.3 Results and discussion

3.2.3.1 Thermodynamic stability and activation barrier

To gain a deeper understanding of catalytic performance in the spinels, we modeled a supercell

consisting of a substrate (SiO2/SiC) and a catalyst (FeCo2O4/CoFe2O4) bonded to it. Firstly,

we conducted 8 ps ab initio molecular dynamics simulations to assess the structural stability

of the catalysts at high temperatures. This was accomplished by plotting the radial distribu-
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Figure 3.8: Free energy profiles for the adsorption and dissociation of SO3 on the surfaces

of CoFe2O4/SiC-Pretrt and FeCo2O4/SiC-Pretrt catalysts, respectively, were calculated using

HSE06 εxc functional.

tion function (RDF) for FeCo2O4 and CoFe2O4 clusters over the SiC-Pretrt layer. The RDF

analysis provides insights into the average distribution of atoms around a given atom within

the system. Fig. 3.7 illustrates the RDF plots, indicating that there were no significant changes

at 0 K and 1000 K for the clusters. These results suggest that our modeled systems maintain

stability at high temperatures. Subsequently, we calculated the change in Gibbs free energy

(∆G) for the adsorption (the first step) and dissociation (the second step) of SO3 on top of

CoFe2O4/SiC-Pretrt and FeCo2O4/SiC-Pretrt (see Fig. 3.8). These calculations employed the

Heyd–Scuseria–Ernzerhof (HSE06) εxc functional. Both adsorption and dissociation processes

for SO3 were found to be exergonic, with negative ∆G values for both systems. This indicates

the thermodynamic stability of these systems. The FeCo2O4/SiC-Pretrt system exhibited a

more negative ∆G, highlighting its higher stability in comparison to CoFe2O4/SiC-Pretreated.

To gain further insight into the reaction mechanism, we calculated the activation barrier us-

ing the climbing image nudge elastic band (CI-NEB) method. It is important to note that

conducting NEB calculations with a support structure consisting of over 200 atoms is compu-

tationally demanding. Therefore, we simplified the estimation of the activation barrier for SO3

dissociation by excluding the support effect. Fig. 3.9 illustrates the reaction profile for the dis-
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sociation of SO3 on the catalyst surface. We evaluated the activation barrier for both CoFe2O4

and FeCo2O4 systems. The FeCo2O4 system displayed a lower activation barrier, facilitating

the decomposition of SO3. Therefore, from the stability and activation barrier analysis, we

observed that FeCo2O4/SiC-Pretrt exhibits better catalytic performance.

Figure 3.9: Reaction profiles for the decomposition of SO3 with the initial state (IS), transition

state (TS), and final state (FS) on (a) CoFe2O4 and (b) FeCo2O4 clusters with oxygen (O)

vacancy were calculated using HSE06 εxc functional. Structures and charge density difference

contours for SO3 adsorbed on top of (c) CoFe2O4 and (d) FeCo2O4 clusters with O-vacancy.

Cyan and yellow colors represent the negative and positive charge, respectively.

Next, to investigate the underlying reasons behind the catalytic performance of the spinel,

we conducted an analysis of the atom-projected density of states (pDOS), as illustrated in

Fig. 3.10. In the pDOS of isolated SO3, distinctive and sharp peaks are observed. The HOMO

level is primarily contributed by O atoms, while the LUMO level is associated with unoccupied

states of S and O (see Fig. 3.10). Upon the adsorption of SO3 onto the catalyst, we observed

noteworthy changes in the S states. These states displayed dispersion, broadening, and a shift

toward higher energy levels. This shift can be attributed to a charge transfer from the cata-

lyst to the SO3 molecule, leading to the elongation and weakening of one of the S-O bonds.
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The presence of S states near the Fermi level signifies the occurrence of charge transfer from

the cluster to SO3. A greater number of S states in proximity to the Fermi level indicates a

higher degree of charge transfer and a more pronounced elongation of the S-O bond. For in-

stance, when SO3 adsorbs at the oxygen vacancy of FeCo2O4, it results in more S states near

the Fermi level in comparison to SO3 adsorption on CoFe2O4. To depict this charge transfer,

charge difference density maps for both configurations were plotted. The charge transfer plays

a pivotal role in influencing the elongation and dissociation of the S-O bond, thereby signifying

the catalytic activity of the cluster. Notably, the localization of the charge is found to be more

pronounced when SO3 is adsorbed at the O-vacancy of FeCo2O4, as demonstrated in Fig. 3.9.

Consequently, the FeCo2O4 catalyst with an O-vacancy exhibits enhanced catalytic activity in

the decomposition of SO3 compared to the CoFe2O4 catalyst.

Figure 3.10: Projected density of states (pDOS) for (a) isolated SO3, and SO3, adsorbed over the

cluster (b) CoFe2O4 and FeCo2O4 clusters, respectively. Here, red and blue colors correspond

to O and S states, respectively. The energy range (y-axis) is the same for all figures.

3.2.4 Conclusions

In summary, we have carried out density functional theory (DFT) calculations combined with

ab initio atomistic thermodynamics (aiAT) and ab initio molecular dynamics (aiMD) simu-

lation to study the thermodynamic stability and catalytic performance in CoFe2O4/SiC-Pretrt

and FeCo2O4/SiC-Pretrt systems. The negative value of Gibbs free energy shows the ther-

modynamic stability of the spinel systems. Our activation barrier calculations indicate that

FeCo2O4/SiC-Pretrt exhibits better catalytic performance for the SO3 decomposition. The
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charge transfer between SO3 and spinel results in the elongation of the S-O bond, which in

turn facilitates the SO3 decomposition. The enhanced performance can be attributed to the

high electronegativity of Co3+, the presence of oxygen vacancies, and the robust metal-support

interaction.



CHAPTER 4

Origin of Rashba spin-splitting and strain tunability in

ferroelectric bulk CsPbF3

4.1 Introduction

Lead halide perovskites have become an excellent choice in optoelectronics due to their remark-

able properties, including a suitable optical band gap, high absorption coefficient, low trap den-

sity, and cost-effective manufacturing [173, 174, 175, 176, 177, 178, 179, 180, 181]. These cap-

tivating materials find extensive use as absorbers in high-efficiency solar cells [182, 183, 184].

Over the last decade, dedicated research efforts have led to a remarkable increase in power

conversion efficiency, exceeding 25% [185, 186]. Moreover, the significant influence of spin-

orbit coupling (SOC), attributed to the presence of the heavy element Pb, plays a pivotal role in

shaping the electronic characteristics of lead halide perovskites [187, 188]. SOC’s impact on

the band structures of these perovskites has been extensively documented [188]. Intriguingly,

when combined with broken inversion symmetry, SOC becomes a critical component giving

rise to various exotic phenomena, such as persistent spin textures [189, 190], topological sur-

face states [191], and Rashba-Dresselhaus (RD) effects [192, 193, 194, 195, 196].

In the absence of inversion symmetry, the crystal experiences an effective magnetic field

generated by spin-orbit coupling (SOC). This field, combined with the spin moment, results

in the momentum-dependent splitting of energy bands, a phenomenon referred to as Rashba-

Dresselhaus (RD) splitting. Originally, these effects, known as the Dresselhaus effect [197] and

the Rashba effect [198], were identified in different crystal structures: zinc-blende and wurtzite,

respectively. The key distinction between these effects lies in their origins of noncentrosym-

metry. While the Rashba effect is associated with site inversion asymmetry, the Dresselhaus

effect arises from bulk inversion asymmetry. Over the past decade, the RD effect has been

84
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the focus of extensive research due to its potential applications in the emerging field of spin-

tronics [199, 200]. Consequently, lead halide perovskites have been investigated as promising

materials for spin-based applications [201, 202, 203, 204, 205]. Recently, a noteworthy Rashba

effect has been observed in the tetragonal phase of MAPbI3 (MA = CH3NH3
+), a phenomenon

attributed to the reorientations of MA ions [206, 207]. Furthermore, predictions indicate that

similar effects may be present in CsPbBr3 and MAPbBr3 perovskites [208, 209]. In recent

studies, researchers have explored the potential of harnessing ferroelectric-coupled Rashba

effects in halide perovskites (e.g., β-MAPbI3, β-MASnI3, ortho-MASnBr3, FASnI3 (FA =

HC(NH2)2
+), opening up new avenues for spin-based devices utilizing perovskites [201, 210].

However, the stability of these perovskites in the presence of heat and moisture remains a chal-

lenge due to the volatile nature of organic molecules [211]. Hence, our current study aims to

investigate the manifestation of the Rashba-Dresselhaus (RD) effect in inorganic ferroelectric

(FE) perovskites. Notably, the intriguing interplay between ferroelectricity and the Rashba

effect opens up the potential for electrically controlling the bulk Rashba effect, giving rise

to a fascinating category of materials known as Ferroelectric Rashba Semiconductors (FER-

SCs) [212, 213, 214]. The quantification of this effect can be theoretically approached using

k.p perturbation theory. According to this theory, the fundamental RD Hamiltonian can be

expressed as [215, 216].

HRD(k) = αR(σxky − σykx) + αD(σxkx − σyky) (4.1)

In this equation, σx and σy denote Pauli spin matrices, ki represents the crystal momentum

(i = x, y, z), αR and αD correspond to the Rashba and Dresselhaus coefficients, respectively.

When these terms are incorporated into the free-electron Hamiltonian, we get two distinct spin-

split states with opposite spin polarizations. Although Rashba and Dresselhaus effects both

produce a type of energy band splitting, the spin’s orientation in momentum space, known

as spin texture, provides insights into the nature of the splitting. In the pursuit of achieving

a substantial Rashba-type energy band splitting, CsPbF3 perovskite emerges as a promising

candidate. To the best of our knowledge, a comprehensive quantitative investigation of the RD

effect in this material is lacking in the existing literature. The presence of lead (Pb) and the

noncentrosymmetric ferroelectric phase in CsPbF3 suggests the potential occurrence of the RD

effect within this material.

With this inspiration, we conducted a theoretical study based on the perturbative k.p for-
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malism and backed by the first-principles calculations. In the present work, we have studied

Pm3̄m and R3c phases of CsPbF3. Firstly, we have examined the electronic band structures

in the above mentioned phases. After that, we have estimated the band gap of these phases

using first-principles based approaches combined with SOC, viz., density functional theory

(DFT) [14, 15] with semi-local exchange-correlation (εxc) functional (PBE [217]), hybrid DFT

with HSE06 [31, 32] and single-shot GW (G0W0) [19, 218] under the many body perturbation

theory (MBPT) and Wannier model approach. Subsequently, we have analyzed the electronic

band structure of R3c phase in terms of Rashba splitting under the combined framework of DFT

and perturbative k.p formalism. We have also investigated the effect of strain on electronic band

gap and Rashba parameters of R3c phase. Finally, we have determined the minimum energy

pathway of the FE transition using climbing image nudged elastic band (CINEB) method.

4.2 Computational methods

The DFT based first-principles calculations have been performed using the Vienna ab initio

simulation package (VASP) [219, 220]. The ion-electron interactions in all the elemental

constituents are described using projector augmented wave (PAW) [36, 170] method as im-

plemented in VASP. We have considered pseudopotentials with the following valence states:

Cs, 5s25p66s1; Pb, 6s25d106p2; F, 2s22p5. The structures are optimized using Perdew-Burke-

Ernzerhof generalized gradient approximation (PBE-GGA), relaxing all ions until Hellmann-

Feynman forces are less than 0.001 eV/Å. The cutoff energy of 520 eV is used for the plane-

wave basis set such that the total energy calculations are converged within 10−5 eV. The Γ-

centered 6×6×6 and 9×9×4 k-grid are used to sample the irreducible Brillouin zones of cu-

bic phase with Pm3̄m space group and rhombohedral phase with R3c space group of bulk

CsPbF3, respectively. The phonon calculations are performed for 3×3×3 and 2×2×2 super-

cells in Pm3̄m and R3c phases using PHONOPY package [221, 222]. In order to predict band

gap, single-shot GW (G0W0) calculations have been performed on top of the orbitals obtained

from HSE06+SOC εxc functional [G0W0@HSE06+SOC]. For this, we have used 6×6×6 and

4×4×2 k-grids in Pm3̄m and R3c phases, respectively. The number of bands is set to four times

the number of occupied bands. The polarizability calculations are performed on a grid of 50

frequency points. FE polarization is evaluated in the framework of Berry-phase theory of po-

larization [223, 224]. The minimum energy pathways of FE transitions are determined through
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the climbing image nudged elastic band (CINEB) method [43]. Spin textures are plotted by

calculating expectation values of spin operators Si (i = x, y, z), given by

〈Si〉 = 1
2 〈Ψk|σi |Ψk〉 (4.2)

where σi are the pauli matrices and Ψk is the spinor eigenfunction obtained from noncollinear

spin calculations. The spin texture is calculated with closely spaced 12×12 k-grid around high

symmetry points. The PyProcar code is used to calculate the constant energy contour plots of

the spin texture [225].

4.3 Results and discussion

4.3.1 Crystal structure

CsPbF3 is primarily found in two phases: cubic (Pm3̄m) and rhombohedral (R3c) phases [226,

227]. The Pm3̄m phase is centrosymmetric, meaning it contains an inversion center. In contrast,

the noncentrosymmetric rhombohedral R3c phase displays ferroelectric (FE) behavior due to

cationic distortions away from anionic polyhedra [227]. The unit cell of the R3c phase com-

prises 6 Cs atoms, 6 Pb atoms, and 18 F atoms. In comparison, the Pm3̄m phase features 1 Cs

atom, 1 Pb atom, and 3 F atoms (as depicted in Fig. 4.1(a) and 4.1(b)). The calculated change

in FE polarization for the rhombohedral (R3c) phase, relative to the centrosymmetric structure,

is 34 µC/cm2 along the [0001] direction in the hexagonal setting (or along the [111] direction

in the rhombohedral setting). The details of optimized lattice parameters of Pm3̄m and R3c

phase are provided in Table 4.1 and 4.2.

Table 4.1: Optimized lattice parameters of Pm3̄m phase, a = 4.80652 Å.

Atom x y z

Cs (1a) 0 0 0

Pb (1b) 0.5 0.5 0.5

F (3c) 0 0.5 0.5
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Table 4.2: Optimized lattice parameters of R3c phase, a = 6.80864 Å, c = 16.30620 Å. Hexag-

onal settings are used.

Atom x y z

Cs (6a) 0 0 0

Pb (6b) 0 0.5 0.5

F (18e) 0.44 0 0.25

Figure 4.1: Crystal structure of CsPbF3 (a) cubic Pm3̄m phase and (b) rhombohedral R3c phase.

Cs, Pb and F atoms are indicated by red, grey and yellow colors, respectively. Phonon band

structure of CsPbF3 (c) cubic Pm3̄m phase and (d) rhombohedral R3c phase.

4.3.2 Electronic structure analysis

We have examined the electronic band structures of Pm3̄m and R3c phases. As shown in

Fig. 4.2, the band structure of Pm3̄m phase in presence of SOC reveals that there is no

momentum-dependent splitting owing to its centrosymmetric structure. In addition, the cubic

Pm3̄m phase is not dynamically stable due to the presence of negative frequencies in phonon
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Figure 4.2: Band structure of cubic Pm3̄m phase of CsPbF3, calculated using (a) PBE (b)

PBE+SOC. (c) Projected density of states (pDOS), calculated using HSE06+SOC.

bandstructure (see Fig. 4.1(c)). Therefore, we have explored RD splitting in the latter phase

(i.e., R3c). Also, we have plotted the band structure of FE R3c phase along the high symmetry

path using hexagonal setting (as shown in Fig. 4.3(b)). Firstly, we have performed non-spin po-

larized calculations. After that, we have considered SOC in the calculation of electronic band

structure. Fig. 4.3(c) and 4.3(d) show the electronic band structures calculated using PBE and

PBE+SOC, respectively. A direct band gap of 3.26 eV is observed without SOC, whereas on

including SOC, the band gap is reduced to 2.42 eV (indirect) around the Γ point. This change

in band gap is attributed to SOC arising from the presence of Pb-6p orbitals in the conduction

band (see pDOS in Fig. 4.3(g)). Hence, SOC is indispensable and duly considered in all further

calculations. Note that PBE εxc functional is well known to underestimate the band gap due to

its inability to capture the electron’s self-interaction error. Therefore, we have also calculated

the band gap with hybrid εxc functional HSE06 (with SOC), which comes out to be 3.57 eV. To

date, there is no theoretical or experimental report on the band gap of R3c phase. In view of

this, for a better estimation of the band gap, we have employed G0W0 approximation on top of

HSE06+SOC orbitals, that results in the band gap of 5.01 eV (see Fig. 4.4(a)).

Subsequently, we have also plotted the imaginary part (Im (ε)) of dielectric function with

converged k-grid for R3c phase of CsPbF3 using HSE06+SOC and G0W0@HSE06+SOC (see

Fig. 4.4(b)). The first peak of Im (ε) corresponds to the electronic band gap, which is the same

as we get from band structure calculations. For imaginary part (Im (ε)) of dielectric function

of Pm3̄m phase, see Fig. 4.5. The values of band gaps are listed in Table 4.3. It is worth quot-

ing that HSE06+SOC/G0W0@HSE06+SOC only enhances the band gap without any notable

change in the nature of band structure and strength of Rashba splitting [199, 206]. To confirm
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Figure 4.3: (a) Optimized crystal structure of CsPbF3 in rhombohedral R3c phase. Cs, Pb and

F atoms are indicated by red, grey and yellow colors, respectively. (b) The first hexagonal

Brillouin zone showing the high symmetry path for band structure calculations in R3c phase

of CsPbF3. Electronic band structure of CsPbF3 for R3c phase, calculated using (c) PBE (d)

PBE+SOC. The conduction and valence bands considered in the discussion are indicated by

orange color. (e) Schematic representation of bands showing Rashba splitting. (f) Splitting of

conduction band minimum (CBm) and valence band maximum (VBM) of the chosen bands

along the M-Γ-K path. The inset shows the enlarged view of Cbm. (g) Projected density of

states (pDOS) in R3c phase of CsPbF3 calculated using HSE06+SOC. The Fermi energy is set

to zero in the energy axis.
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Figure 4.4: (a) Band structure of R3c phase using G0W0@HSE+SOC. (b) Imaginary part (Im

(ε)) of the dielectric function for R3c phase of CsPbF3 calculated using HSE06+SOC and

G0W0@HSE+SOC.

Table 4.3: Band gap (in eV) of Pm3̄m and R3c phases using different εxc functionals.

Structure PBE PBE+SOC HSE06 HSE06+SOC G0W0@HSE06+SOC

Pm3̄m 2.62 1.69 3.61 [228, 229] 2.71 4.38

R3c 3.26 2.42 4.34 3.57 5.01

Figure 4.5: Imaginary part (Im (ε)) of the dielectric function for Pm3̄m phase of CsPbF3 calcu-

lated using HSE06+SOC and G0W0@HSE+SOC εxc functional, respectively.

this, we have compared the band structures of Pm3̄m phase using PBE+SOC, HSE06+SOC,

G0W0@HSE06+SOC and have found that the band profile remains same (see Fig. 4.6). There-
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fore, in view of computational cost PBE+SOC is considered to compute RD parameters.

Figure 4.6: Band structure of cubic Pm3̄m phase of CsPbF3, calculated using (a) PBE+SOC (b)

HSE+SOC (c) G0W0@HSE+SOC, respectively.

4.3.3 Rashba and Dresselhaus spin-splitting in R3c phase

Inclusion of SOC leads to the splitting of bands in kz=π
c

plane, which is perpendicular to the

direction of polarization (see Fig. 4.3(d)). On the contrary, splitting is completely absent along

Γ-A i.e., in direction parallel to polarization axis, indicating that the momentum dependent

splitting around Γ point is the Rashba-type splitting. As a consequence, the CBm and VBM

are located slightly off the Γ point. The CBm shifts from Γ towards M and K by 0.075 Å−1 and

0.061 Å−1, respectively. The VBM shifts from Γ towards M and K by 0.022 Å−1 and 0.012

Å−1, respectively (see Fig. 4.3(f)). This shift from Γ point in either direction is known as offset

momentum (δk) (see Fig. 4.3(e)). The difference of energies at Γ and extremum point is known

as Rashba spin-splitting energy (δE).

To grasp the overall nature of splitting, the constant energy 2D contour plots of spin texture

are plotted in kx-ky plane centered at Γ point (see Fig. 4.7(a)) for schematic representation of

spin textures). Fig. 4.7(b) and 4.7(c) show x, y and z components of spin at constant energies

around CBm and VBM, respectively. As we can see from spin textures of CBm and VBM, the

in-plane spin components (Sx and Sy) are perpendicular to the crystal momentum and out-of-

plane component (Sz) is completely absent. This results in the helical shape of spin texture with

inner and outer bands having opposite orientation, which confirms the existence of dominant

Rashba splitting. In order to have a quantitative study of the RD effect, we have considered

the k.p Hamiltonian. The model Hamiltonian of R3c structure possessing C3v point group
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Figure 4.7: (a) Schematic representation of spin textures in Rashba splitting. Spin projected

constant energy contour plots of spin texture calculated in kx-ky plane centered at Γ point. The

upper and lower panels represent the spin textures calculated at constant energy: (b) E=EF +2.5

eV and (c) E=EF−0.2 eV, respectively. Electronic band structures showing spin-splitting of (d)

CBm and (e) VBM around Γ point, respectively. Band structure is plotted along (2π
a

0.25, 0, 0)

− (0, 0, 0)− (2π
a

0.16, 2π
b

0.16, 0) direction of momentum space, which is M− Γ− K direction.

DFT and k.p band structures are plotted with dashed lines and dots, respectively. In the color

scale, red depicts spin-up while blue depicts spin-down states.

symmetry near Γ point in the presence of SOC can be written as [230, 231, 232]:

HΓ(k) = Ho(k) + ασykx + βσxky + γσz[(k3
x + k3

y)− 3(kxk2
y + kyk

2
x)] (4.3)

Here Ho(k) is the Hamiltonian of the free electrons with eigenvalues Eo(k). α, β are the coef-

ficients of the linear term and γ is the coefficient of the higher order term in the Hamiltonian.

Since we have not noticed out-of-plane spin component in the spin texture, therefore, we have

neglected the higher order terms in the Hamiltonian. Hence, the Hamiltonian for Γ point (con-
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sidering only linear terms) can now be written as:

HΓ(k) = Ho(k) + αkxσy + βkyσx

= Ho(k) + αR(σxky − σykx)

+ αD(σxkx − σyky)

(4.4)

The energy eigen values corresponding to this Hamiltonian is given as,Eo(k) = ~2k2
x

2m∗x
+ ~2k2

y

2m∗y
and

m∗x, m∗y are the effective masses in x and y directions, respectively. Rashba and Dresselhaus

coefficients are defined as αR = (α − β)/2 and αD = (α + β)/2, respectively [233]. On

diagonalizing Eq. 4.4, we get energy eigenvalues as:

E±(k) = Eo(k)±
√
α2k2

x + β2k2
y (4.5)

The band structures obtained from DFT and the model Hamiltonian around Γ point are shown

with dashed lines and dots in Fig. 4.7(d) and 4.7(e), respectively. The good agreement between

both the band structures justifies the reliability of the chosen Hamiltonian. The DFT calcula-

tions for CBm give δE = 43.5 meV, δk = 0.075 Å−1 along Γ-M direction, where ky = 0. Hence,

the value of α = 2δE
δk

= 1.16 eVÅ. Along Γ-K direction, where kx = ky, δE = 43.5 meV, δk =

0.061 Å−1 and the calculated value of
√
α2 + β2 = 2δE

δk
= 1.43 eVÅ. On putting the value of

α, we get β = - 0.84 eVÅ, which results in αR = 1.00 eVÅ and αD = 0.16 eVÅ. Similarly,

for VBM, δE = 3.4 meV, δk = 0.022 Å−1 along Γ-M direction. So, the value of α = 2δE
δk

=

0.31 eVÅ. Along Γ-K direction, δE = 3.4 meV and δk = 0.012 Å−1. Therefore,
√
α2 + β2 =

2δE
δk

= 0.57 eVÅ, which gives β = - 0.48 eVÅ. Using α and β parameters, the estimated values

of αR and αD are 0.40 eVÅ and αD = 0.09 eVÅ, respectively. The values are summed up in

Table 4.4. As we can see from the values of RD parameters, the Rashba effect dominates in the

Table 4.4: Rashba parameters for band-splitting at Γ point in R3c phase.

Position δE (meV) δkΓ−M (Å−1) δkΓ−K (Å−1) αR (eVÅ) αD (eVÅ)

CBm 43.5 0.075 0.061 1.05 0.15

VBM 3.4 0.022 0.012 0.41 0.08

conduction band. The origin of large Rashba effect in CBm can be attributed to the stronger

SOC stemming from higher contribution of Pb-6p orbital in conduction band (see Fig. 4.3(g)).



Chapter 4. Origin of Rashba spin-splitting and strain tunability in ferroelectric bulk
CsPbF3 95

This large contribution of SOC in CBm compared to VBM is in well agreement with the pre-

vious findings [234]. On fitting the DFT band structure around Γ point for CBm, we find α =

-0.90 eVÅ and β = 1.20 eVÅ. This gives αR = 1.05 eVÅ and αD = 0.15 eVÅ. Similarly, fitting

the band structure for VBM, gives α = -0.33 eVÅ and β = 0.49 eVÅ and hence αR = 0.41 eVÅ

and αD = 0.08 eVÅ. These values are in well agreement with the predicted values based on

DFT calculation. The calculated values of RD parameters also confirm that the splitting around

Γ point is mainly dominated by the Rashba effect.

4.3.4 Effect of strain on Rashba spin-splitting

After thorough analysis of RD spin-splitting, we have investigated the effect of strain on the

band structure of R3c phase. For this, we have applied uniaxial strain in z-direction, which is

defined as

x = c− c0

c0
× 100% (4.6)

where c0 is the equilibrium lattice constant and c is the strained lattice constant. The lattice

vector c is varied from -5% to +5%, where “+” and “−” are used to denote tensile and compres-

sive strain, respectively. After optimizing the structures at a given strain, we have plotted the

band structures along high symmetry path. Fig. 4.8(a) shows the band structure of R3c phase

along Γ-M-K-Γ-A-L path, under the uniaxial strain of ±5%. To clearly examine the shift, we

have also plotted the band structures along M-Γ-K (see Fig. 4.8(b)). Here, we have focused

on CBm as there is large Rashba splitting in comparison to VBM. From the band structures

in Fig. 4.8(b), we infer that strain causes a shift in momentum (δk) on either side of Γ point.

The arrows represent the direction of shift. We have taken the equilibrium band structure (i.e.,

with 0% strain) as the reference for all the strained band structures. Interestingly, under com-

pressive strain, the bands shift off from Γ on either side towards M and K. On the contrary,

under tensile strain, the bands shift towards Γ from either side. This in turn changes δk and

δE as a function of strain, and the overall effect of these parameters will change αR and αD

accordingly. To quantify the effect of strain on Rashba parameters, we have calculated their

values at a given strain within the framework of DFT. The values of Rashba parameters are

mentioned in Table 4.5. Fig. 4.8(c-e) show δE, δk, αR and αD as a function of strain. From

Fig. 4.8(c), we have observed that under compressive strain αR is significantly enhanced from

1.05 to 1.48 eVÅ making the material tunable for spintronics application. Also, we have seen

notable change in electronic band gap on the application of strain. The band gap values are
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Figure 4.8: Band structures of CsPbF3 (R3c phase) under uniaxial strain of ±5%, calculated

using PBE+SOC for path (a) Γ-M-K-Γ-A-L and (b) M-Γ-K. (c) Rashba spin-splitting energy

(δE) (d) offset momentum (δk) (e) Rashba parameters (αR and αD) as a function of strain. The

values are calculated for CBm in R3c phase. Note that δE is same along both M-Γ and Γ-K

directions.

mentioned in Fig. 4.8(b).

Lastly, we have explored the possibility of polarization switching in FE CsPbF3 using

strain effects. To predict the feasibility of this phenomenon, we have analyzed the minimum

energy pathway of the FE transition using CINEB method [235, 236]. For this, we have chosen

the structure deformation path between two FE states with opposite spontaneous polarization

through a centrosymmetric reference. As shown in Fig. 4.9, the Eb denotes the activation

barrier for the polarization switching, which comes out to be 0.75 eV. This suggests that a

switchable FE polarization is plausible in the material. The strain tunability and reversible

spin textures owing to FE switching in CsPbF3 give electrical control of spins and provide an

all-semiconductor design for spintronic devices such as in spin-field effect transistor [237, 238].
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Figure 4.9: (a) Climbing image nudged elastic band (CINEB) calculation for the polarization

switching process in CsPbF3 perovskite. Two ferroelectric (FE) structures in the ground state

with opposite direction of electric polarization are shown. Eb is the activation barrier energy

for the polarization switching process. Reversible in-plane spin textures calculated at constant

energy E = EF+2.5 eV with oppposite spin polarization: (b) -P (c) +P.
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Table 4.5: RD parameters as a function of strain for CBm in R3c phase.

Strain (%) δE (meV) δkΓ−M (Å−1) δkΓ−K (Å−1) αR (eVÅ) αD (eVÅ)

-5 109.2 0.126 0.103 1.48 0.25

-4 96.9 0.118 0.096 1.41 0.23

-3 83.5 0.108 0.087 1.35 0.21

-2 70.2 0.098 0.079 1.25 0.19

-1 56.8 0.086 0.070 1.13 0.18

0 43.5 0.075 0.061 1.00 0.16

1 31.0 0.062 0.050 0.87 0.13

2 21.6 0.051 0.041 0.74 0.11

3 11.9 0.037 0.030 0.55 0.09

4 8.7 0.032 0.025 0.49 0.05

5 3.9 0.022 0.017 0.32 0.02

4.4 Conclusions

In summary, we conducted a comprehensive study on the electronic properties of CsPbF3 in

its Pm3̄m and R3c phases using first-principles based methodologies viz., PBE, HSE06 and

many-body perturbation theory (G0W0). Notably, we considered the influence of SOC in all

our calculations. For the noncentrosymmetric R3c phase, we performed a detailed analysis

of its Rashba-Dresselhaus (RD) splitting characteristics. We employed a symmetry-adapted

k.p model Hamiltonian to validate our DFT results. Our analysis revealed that the material

predominantly exhibits the Rashba effect, with a minimal contribution from the Dresselhaus

effect. We also found that the Rashba effect is more prominent in the conduction band mini-

mum (CBm) compared to the valence band maximum (VBM) of the R3c phase, primarily due

to the significant contribution of the Pb-6p orbital in the conduction band. Furthermore, we

observed that the Rashba parameters, viz., δk, δE, αR, and αD increase linearly under com-

pressive strain. Applying strain significantly tuned the band gap of CsPbF3. Lastly, we noticed
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reversible changes in spin textures during ferroelectric switching, indicating that CsPbF3 holds

great potential in the field of spintronics.



CHAPTER 5

Vacancy-ordered double perovskites Cs2BI6 (B = Pt,

Pd, Te, Sn): an emerging class of thermoelectric

materials

5.1 Introduction

The pursuit of sustainable and renewable energy sources has long been a global prior-

ity [173, 184, 239, 240]. In addition to solar energy, one prominent avenue for renewable

energy is the conversion of waste heat into electricity. To harness this waste heat effectively,

we require highly efficient thermoelectric materials [241, 242, 243]. Advantageously, thermo-

electric generators offer durability, robustness, scalability, compactness, and lack of moving

parts. In order to achieve the maximum thermoelectric figure of merit (zT, as explained below),

the material needs to have substantial Seebeck coefficient (S), coupled with high electrical

conductivity (σ) and low thermal conductivity (κ) [244, 245, 246].

zT = S2σT

κ
(5.1)

However, achieving a high zT in a single system is challenging due to the strong coupling and

trade-off relationship between these parameters.

Halide-based perovskites have introduced a paradigm shift in the pursuit of high-

performance materials [173, 247, 248]. This can be attributed to their diverse compositions

and structures, which offer a wide range of functional properties [249]. More recently, halide

perovskites have garnered attention for thermoelectric energy conversion due to their unique

structural characteristics and lattice dynamics [250, 251, 252, 253, 254]. Yang et al. [251] re-

ported an ultralow thermal conductivity of 0.5 Wm−1K−1 in halide perovskite nanowires made

from CsPbI3, CsPbBr3, and CsSnI3. Furthermore, various strategies, such as introducing lattice

100
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defects [255, 256], creating artificial superlattices, and developing composite materials [257],

have been explored to reduce lattice thermal conductivities in materials. Most of the thermo-

electric materials reported, like SnSe [258, 259], PbTe [260, 261, 262, 263], Cu2Se [264], and

BiCuSeO [265, 266], exhibit low intrinsic lattice thermal conductivity, similar in magnitude

to that observed in halide perovskites. This exceptionally low thermal conductivity of halide

perovskites, coupled with their high carrier mobility, positions them as promising candidates

for thermoelectric applications [252, 267, 268]. Unfortunately, these promising materials are

plagued by lead toxicity and long-term instability. Consequently, these drawbacks have spurred

the scientific community to explore alternative perovskite compositions and structures.

One alternative category of materials includes inorganic lead-free double perovskites, char-

acterized by the general formula A2BX6. These are commonly referred to as vacancy-ordered

double perovskites. This variation of halide perovskite structures is achieved by doubling the

ABX3 unit cell along all three crystallographic axes and eliminating every other B-site cation,

as depicted in Fig. 5.1. These perovskite materials offer promising prospects for environmen-

tally friendly and stable substitutes for both lead (Pb) and tin (Sn). In recent studies, vacancy-

ordered double perovskites have garnered attention in the field of thermoelectrics due to their

exceptional ability to minimize lattice thermal conductivity. This exceptional property can be

attributed to their highly anharmonic lattice dynamics [250, 252, 269]. For instance, recent

research by Jong et al. has highlighted the significant role of twofold rattling modes involving

Cs atoms and SnI6 clusters in achieving ultralow thermal conductivity in Cs2SnI6 [270].

Figure 5.1: Schematic of the relationship between ABX3 perovskite and A2BX6 (vacancy-

ordered) double perovskite.

In this chapter, we have studied the vacancy-ordered double perovskites Cs2BI6 (B = Pt,

Pd, Te, Sn) using state-of-the-art first-principles based methodologies under the framework of

density functional theory (DFT) [14, 15] with suitable exchange-correlation (εxc) functionals
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combined with many-body perturbative approaches (G0W0) [19, 218] and spin-orbit coupling

(SOC). First, we have examined the structural, mechanical and thermodynamic stability of

these materials. After that, we have studied the thermoelectric properties, where we find rea-

sonably high zT values, calculated as a function of temperature (T ). Interestingly, we have

observed the presence of anharmonic effects, which are quantified by computing the harmonic

and anharmonic energy contribution as a function of temperature in these vacancy-ordered dou-

ble perovskites. In order to further explore the underlying mechanisms, we have examined the

dynamical stability and anharmonicity by computing the phonon bandstructures and electron

localization function (ELF). The ELF further confirms the presence of anharmonicity in this

class of systems. As a consequence, we find that the study of electron-phonon interaction is

important. The electron-phonon interaction is well captured by studying Fröhlich mesoscopic

model [271, 272] to investigate the interaction of longitudinal optical phonon modes with the

carriers that strongly influence the carrier mobility.

5.2 Computational methods

All the DFT [14, 15] calculations have been performed using the Vienna ab initio simulation

package (VASP) [219, 220]. The ion-electron interactions in all the elemental constituents

are described using the projector augmented wave (PAW) [36, 170] method as implemented

in VASP. The structural optimization is performed using generalized gradient approximation

(PBE) [30] and optB86 [273] εxc functional with vdW corrections, relaxing all ions until

Hellmann-Feynman forces are less than 0.001 eV/Å. The two-body vdW interaction, devised

by Tkatchenko-Scheffler has been used during optimization [117]. The cutoff energy of 600 eV

is used for the plane wave basis set such that the total energy calculations are converged within

10−5 eV. The Γ-centered 4×4×4 k-grid is used to sample the Brillouin zone except when

stated otherwise. The band gap is calculated using hybrid εxc functional (HSE06) [31, 32]

and many-body perturbation theory. Note that the single-shot GW (G0W0) [19, 218] calcula-

tions have been performed on top of the orbitals obtained from PBE/HSE06 (with SOC) εxc

functional [G0W0@PBE+SOC/HSE06+SOC]. The number of bands is set to four times the

number of occupied bands. The polarizability calculation is performed on a grid of 50 fre-

quency points. The effective mass is calculated by SUMO [274] using a parabolic fitting of the

band edges. The phonon calculation is performed for 2×2×2 supercell using the PHONOPY
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package [221, 222]. The BoltzTrap Code [275] based on Boltzmann transport theory and

phono3py [276] are used to evaluate thermoelectric properties. The self-consistent process

described by Hellwarth is used to calculate the electron-phonon coupling strength [271]. Static

dielectric constant is calculated using density functional perturbation theory (DFPT) [277]

with a denser k-grid (6×6×6). To calculate the anharmonic energy, we have carried out ab

initio molecular dynamics (AIMD) simulation employing Nose-Hoover thermostat [119] and

pyHMA package [278].

5.3 Results and discussion

5.3.1 Crystal structure

Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites have a face-centered cubic

crystal structure with the space group Fm3m (no. 225). In this structure, the Cs atoms are

situated at the 8c Wyckoff positions and (0.25, 0.25, 0.25) coordinates, B atoms at 4a Wyck-

off positions and (0, 0, 0) coordinates, and I atoms at 24e Wyckoff positions and (x, 0, 0)

coordinates, where the value of x is around 0.20. Each of the Cs atoms resides between the

[BI6] octahedra and is surrounded by 12 I atoms, while the B atoms are at the corners and

face-centered positions of [BI6] octahedra. The Cs atoms located in the octahedral cage can

act as heavy rattlers and lead to lattice anharmonicity [270]. Table 5.1 shows the optimized

lattice parameters of vacancy-ordered double perovskites calculated using PBE and optB86

exchange-correlation (εxc) functionals along with van der Waals (vdW) forces. The two-body

vdW interaction, devised by Tkatchenko-Scheffler, has been used during optimization. The

optB86-vdW εxc functional reproduces the lattice parameters of vacancy-ordered double per-

ovskites close to experimental ones.

5.3.2 Stability of Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-ordered double per-

ovskites

5.3.2.1 Structural stability

Firstly, we have examined the stability of material as it is an essential factor in achieving a

high-performance device applications. In order to predict the structural stability of the vacancy-

ordered double perovskites, we have calculated the Goldschmidt tolerance factor (t) [281, 282]
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Table 5.1: Calculated lattice parameters (Å) of Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-ordered

double perovskites using different exchange-correlation (εxc) functionals.

Configurations Experimental PBE PBE-vdW optB86-vdW

Cs2PtI6 11.37 [279] 11.74 11.47 11.29

Cs2PdI6 11.33 [280] 11.67 11.42 11.23

Cs2TeI6 11.70 [249] 12.06 11.87 11.65

Cs2SnI6 11.65 [249] 12.00 11.82 11.57

and octahedral factor (µ) [283], given as:

t = rA + rX√
2(rB + rX)

, µ = rB
rX

(5.2)

where rA, rB, and rX are the Shannon ionic radii [284] for A, B and X ions, respectively. The

Shannon radii for Cs+, Pt4+, Pd4+, Te4+, Sn4+ and I− are 1.88, 0.63, 0.62, 0.69 and 0.97 Å,

respectively. For stable cubic perovskites, the ranges of t and µ are 0.8 ≤ t ≤ 1.0 and 0.29 ≤

µ ≤ 0.55. Recently, Bartel et al. have reported a new tolerance factor (τ ) [285] to predict the

stability of a perovskite, which is given as:

τ = rX
rB
− nA

nA − rA/rB
ln(rA/rB)

 (5.3)

where nA is the oxidation state of cation A, ri is the ionic radius of ion i and rA > rB by

definition. τ < 4.18 indicates the formation of perovskite (92% accuracy). Since the range of τ

is calculated for ABX3 and A2BB′X6 double perovskites, this may deviate for vacancy-ordered

double perovskites (due to defects). The calculated values given in Table 5.2 show that the

considered perovskites are stable in cubic structures.
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Table 5.2: Goldschmidt tolerance factor (t), octahedral factor (µ) and new tolerance factor (τ )

of Cs2BI6 vacancy-ordered double perovskites.

Configurations t µ τ

Cs2PtI6 1.02 0.28 5.25

Cs2PdI6 1.02 0.28 5.31

Cs2TeI6 0.91 0.44 4.19

Cs2SnI6 0.99 0.31 4.90

5.3.2.2 Thermodynamic stability

Besides structural stability, we have also calculated the thermodynamic stability [286, 287] of

Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites. For this, we have calculated

the Gibbs free energies (∆G) of perovskites as per the equations:

Cs2PtI6 −→ 2CsI + PtI4 (5.4)

Cs2PdI6 −→ CsI3 + PdI2 + CsI (5.5)

Cs2TeI6 −→ 2CsI + TeI4 (5.6)

Cs2SnI6 −→ 2CsI + SnI4 (5.7)

HereE(Cs2BI6),E(CsI3),E(CsI) andE(BI4) are respectively the total DFT energies of Cs2BI6,

CsI3, CsI and BI4 and ∆HD is the decomposition energy. The ∆G(T, P ) values are listed in

Table 5.3. The negative values confirm the thermodynamic stability of these vacancy-ordered

double perovskites (see Fig. 5.2).
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Table 5.3: ∆G(T, P ) of Cs2BI6 perovskites calculated using PBE and HSE06 εxc functionals

Configurations ∆G (eV/atom)(PBE) ∆G (eV/atom)(HSE06)

Cs2PtI6 -0.62 -0.77

Cs2PdI6 -0.04 -0.16

Cs2TeI6 -1.09 -1.17

Cs2SnI6 -0.35 -0.44

Figure 5.2: ∆G (T, P ) of Cs2BI6 vacancy-ordered double perovskites calculated using PBE

and HSE06 εxc functionals.

5.3.2.3 Mechanical stability

To determine the mechanical stability of the perovskites, we have calculated the elastic con-

stants of the materials using the finite strain theory [288]. For cubic symmetry, three indepen-

dent elastic constants viz.,C11,C12 andC44 are sufficient to explain the mechanical stability and

related properties of the crystal. The corresponding mechanical stability criterion [289, 290] is

given as follows:

C11 > 0, C44 > 0, C11 − C12 > 0, C11 + 2C12 > 0 (5.8)

Using these elastic constants, we can calculate Bulk (B), Shear (G) and Young’s modulus (E)

of the perovskites. The Voigt bulk (BV ) and shear (GV ) moduli, Reuss bulk (BR) and shear
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(GR) moduli are calculated using the following relations:

BV = BR = (C11 + 2C12)
3 (5.9)

GV = (C11 − C12 + 3C44)
5 (5.10)

GR = 5(C11 − C12)C44

4C44 + 3(C11 − C12) (5.11)

According to Voigt-Reuss-Hill approximations [291], Young’s modulus (E) and Poissons’s

ratio (ν) are obtained as:

B = BV +BR

2 , G = GV +GR

2 (5.12)

E = 9BG
3B +G

(5.13)

ν = 3B − 2G
3B +G

(5.14)

The ductility of these perovskites is studied in terms of Pugh’s (B/G) and Poisson’s ratio (ν). If

theB/G is found to be greater (or lower) than 1.75, the material is ductile (or brittle). For ν, the

limiting value is 0.26. The calculated elastic constants and moduli are given in Table 5.4. As

Table 5.4: Calculated elastic constants Cij (GPa), Bulk modulus B (GPa), Shear modulus G

(GPa), Young’s modulus E (GPa), Pugh’s ratio B/G, Poisson’s ratio ν and elastic anisotropy A

of Cs2BI6 vacancy-ordered double perovskites.

Configurations C11 C12 C44 B G E B/G ν A

Cs2PtI6 9.58 4.51 3.93 6.20 3.30 8.40 1.88 0.27 1.55

Cs2PdI6 16.64 8.98 7.36 11.53 5.66 11.39 2.04 0.29 1.92

Cs2TeI6 20.30 10.55 8.70 13.80 6.90 17.74 2.00 0.29 1.78

Cs2SnI6 14.36 8.20 6.65 10.25 4.88 12.63 2.10 0.29 2.16

we can see, the elastic constants satisfy the stability criteria, indicating the mechanical stability

of these vacancy-ordered double perovskites. The calculated values of B/G (> 1.75) and ν
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(> 0.26) show that the studied vacancy-ordered double perovskites are ductile (see Table 5.4).

Also, we have calculated the elastic anisotropy (A) of these materials, given by the equation:

A = 2C44

C11 − C12
(5.15)

where A represents the elastic anisotropy coefficient. The value of A is equal to 1 for an

isotropic crystal. The deviation from this value measures the degree of elastic anisotropy pos-

sessed by the crystal. According to the calculated values, all the considered double perovskites

are anisotropic in nature.

5.3.3 Electronic structure analysis

After studying the stability, we have calculated the electronic band gaps (with and without

SOC) of the vacancy-ordered double perovskites. Since simple local/semi-local εxc function-

als (viz., LDA, GGA) are unable to predict the band gaps correctly due to their incapability

of capturing the electron’s self-interaction error, we have employed HSE06 εxc functional and

many-body perturbation theory (G0W0) to calculate the band gaps more accurately. The cal-

culated band gaps of Cs2PtI6, Cs2PdI6, Cs2TeI6 and Cs2SnI6 are 1.35, 1.43, 1.49 and 1.23 eV,

respectively. This implies that all these perovskites have band gaps in the visible region, ex-

panding their scope for energy-harvesting applications. The values of band gaps are listed in

Table 5.5, which agree well with the experimental values. Also, we have plotted the bandstruc-

tures of perovskites using HSE06+SOC εxc functional (see Fig. 5.3).

Figure 5.3: Band structures of (a) Cs2PtI6, (b) Cs2PdI6, (c) Cs2TeI6 and (d) Cs2SnI6 vacancy-

ordered double perovskites, calculated using HSE06+SOC εxc functional.

Fig. 5.4 shows the pDOS of all four vacancy-ordered double perovskites. The valence band

maximum (VBM) of these perovskites are mostly dominated by I-p orbitals, while conduction

band minimum (CBm) are contributed by I-p orbitals along with Pt-d, Pd-d, Te-p and Sn-s
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Table 5.5: Band gap (eV) of Cs2BI6 vacancy-ordered double perovskites calculated using dif-

ferent εxc functionals.

Configurations PBE PBE+SOC HSE06 HSE06+SOC G0W0@PBE+SOC G0W0@HSE06+SOC Experimental

Cs2PtI6 0.36 0.29 1.07 0.96 1.35 2.20 1.37 [292]

Cs2PdI6 0.06 0.02 0.62 0.51 0.59 1.43 1.41 [293]

Cs2TeI6 1.14 0.91 1.70 1.49 2.12 2.44 1.50 [294]

Cs2SnI6 0.09 0.06 0.84 0.70 1.23 2.31 1.25 [249]

Figure 5.4: Projected density of states (pDOS) of (a) Cs2PtI6, (b) Cs2PdI6, (c) Cs2TeI6 and (d)

Cs2SnI6 vacancy-ordered double perovskites, calculated using HSE06+SOC εxc functional.

orbitals in Cs2PtI6, Cs2PdI6, Cs2TeI6 and Cs2SnI6, respectively. The VBM is also composed

of Pt-d, Pd-d and Te-s orbitals in Cs2PtI6, Cs2PdI6 and Cs2TeI6, respectively. There is a strong

hybridization of Te-p and I-p orbitals in Cs2TeI6 and Sn-s and I-p orbitals in Cs2SnI6. For the

reliability of the calculations, we have checked the convergence of the properties viz., energy

(E), imaginary (Im(ε)) and real (Re(ε)) part of the dielectric function in the vacancy-ordered

double perovskites with k-grid. The energies of the Cs2BI6 perovskites in Table 5.6 show that

4×4×4 k-grid is sufficient to calculate E.

5.3.4 Thermoelectric properties of Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-

ordered double perovskites

Next, we have calculated the thermoelectric properties of the perovskites using the BoltzTrap

Code [275]. Fig. 5.5(a) shows the Seebeck coefficient (S) as a function of chemical potential

(µ) for Cs2BI6 perovskites. S measures the induced thermoelectric voltage (∆V ) in response to

a temperature difference (∆T ) across the material and is given as S=∆V /∆T , while µ shows
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Table 5.6: Energies (eV) of Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-ordered double perovskites at

different k-grids calculated using PBE εxc functional.

E (eV)

Configurations 2×2×2 3×3×3 4×4×4 5×5×5 6×6×6

Cs2PtI6 -110.5206 -110.5481 -110.5493 -110.5493 -110.5494

Cs2PdI6 -106.3718 -106.4057 -106.4056 -106.4057 -106.4052

Cs2TeI6 -98.7717 -98.7872 -98.7873 -98.7874 -98.7873

Cs2SnI6 -105.2440 -105.2542 -105.2547 -105.2550 -105.2532

the addition or removal of electrons (doping) against the repulsive forces of electrons already

present in the material. Advantageously, the position of µ determines the fraction of electrons

in the conduction or valence band which take part in the electronic transport and hence influ-

ences S. Thus, S can be determined from the change in the chemical potential of electrons

induced by the temperature difference. By definition, µ=0 coincides with the top of the valence

band in semiconductors. This implies that at µ=0, the nature of S determines the type of semi-

conductor. From Fig. 5.5(a), we can see that at µ=0, the value of S is positive for Cs2PtI6 and

Cs2TeI6 at various temperatures, indicating that these perovskites are p-type semiconductors.

The maximum values of S for Cs2PtI6 and Cs2TeI6 are 710 and 190 µV/K, respectively, at

300 K. On the other hand, S is negative for Cs2PdI6 and Cs2SnI6, which indicates the n-type

character in these perovskites [295]. For Cs2PdI6 and Cs2SnI6, the maximum values of S are

148 and 290 µV/K, respectively, at 300 K. Also, we have observed that the value of S decreases

with an increase in temperature for all the considered Cs2BI6 perovskites. Fig. 5.5(b) shows

the variation of S with carrier concentration (n) [296, 297] at different temperatures. Subse-

quently, to calculate the efficiency of material to convert heat into electrical energy, we have

calculated the zT as a function of temperature (see Fig. 5.5(c)) for Cs2BI6 perovskites. The

computed average zT for Cs2PtI6, Cs2PdI6, Cs2TeI6 and Cs2SnI6 are 0.88, 0.85, 0.95 and 0.78,

respectively, which make them promising for thermoelectric applications.
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Figure 5.5: Seebeck coefficient (S) as a function of (a) chemical potential (µ) and (b) carrier

concentration (n) at 300, 500 and 800 K. (c) Thermoelectric figure of merit (zT ) as a function

of temperature (T ) for Cs2PtI6, Cs2PdI6, Cs2TeI6 and Cs2SnI6, calculated using HSE06 εxc

functional.

5.3.5 Relation between anharmonicity and lattice thermal conductivity

Low thermal conductivity is desirable for efficient thermoelectric materials, which in turn de-

pends on lattice dynamics [298, 299]. Lattice dynamics play a pivotal role in governing mate-

rials properties such as thermal conductivity [300], ionic and electronic transport [301], optical

emission [302], ferroelectricity and superconductivity [303]. Deviation from harmonic vibra-

tional potential results in high amplitude anharmonic vibrations that introduce vibrational dis-

order in the system. This results in significant phonon-phonon scattering, which leads to low

thermal conductivities and better thermoelectric performance [304, 305, 306] (see Fig. 5.6).

To examine this deviation at high temperatures, we have calculated the harmonic (Uh) as

well as anharmonic energy (Uah) in vacancy-ordered double perovskites. Uh is calculated un-
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Figure 5.6: Calculated (a) electronic thermal conductivity, (b) lattice thermal conductivity and

(c) total thermal conductivity in Cs2BI6 vacancy-ordered double perovskites, calculated using

PBE εxc functional.

der harmonic approximation for all perovskites. To quantify Uah in Cs2BI6 vacancy-ordered

double perovskites, we have performed AIMD calculations at different temperatures using

Nose-Hoover thermostat [119]. This data is then fed to a post-processing python package

pyHMA [278], which determines the anharmonic energy. Fig. 5.7(a-d) show the variation of

Uah with temperature. As the temperature increases, we observe a deviation from harmonic

potential leading to lattice anharmonicity.

The intimate connection between anharmonic lattice dynamics and functional properties

motivates a fundamental understanding of anharmonicity in this class of materials. To further

assess anharmonicity in our system, we have first examined the dynamical stability by plotting

the phonon dispersion bandstructures of all Cs2BI6 perovskites using density functional pertur-

bation theory (DFPT) [277], as shown in Fig. 5.8(a). For vacancy-ordered double perovskites,

the structural symmetry confirms 108 phonon modes as they contain 36 atoms per unit cell.
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Figure 5.7: Harmonic (Uh) and anharmonic energy (Uah) of (a) Cs2PtI6 (b) Cs2PdI6 (c) Cs2TeI6

and (d) Cs2SnI6 as a function of temperature (T ), calculated using HSE06 εxc functional.

Out of these 108 phonon modes, there are 3 acoustic modes, while the remaining modes are

optical, characterized as low and high-frequency phonons, respectively. The absence of neg-

ative frequencies confirms the dynamical stability of these perovskites. After examining the

phonon modes, we try to explore the interaction between the atoms of these perovskites. The

spatial distribution of the electron density around atom gives the measure of phonon anhar-

monicity. Therefore, we have computed the ELF to study materials bonding and anharmonicity

(see Fig. 5.8(b)). The localization of electrons is estimated by a dimensionless ELF probability

density ranging between 0 and 1. With the increase in ELF value, the electrons get more local-

ized, and hence the bonds become stronger. As we can see in Fig. 5.8(b), I atoms draw more

charge because of its higher electronegativity in comparison to B atoms. Nevertheless, there

is significant charge sharing among B-I bonds due to the small electronegativity difference,

indicating the possibility of covalent bonding. On the other hand, no charge is shared between

Cs and B/I atoms. However, physical interaction between Cs and [BI6] octahedra results in

nonspherical electron density around Cs and I atoms, which explains the origin of the phonon

anharmonicity. Also, there is no charge transfer between the neighbouring octahedra owing to

the vacancies in Cs2BI6 perovskites. This indicates that [BI6] octahedra in Cs2BI6 are loosely

bound and may lead to cluster-rattling vibrations along with Cs atom rattlers [270]. This in

turn, increases the phonon scattering followed by suppression of κ [305, 306].

Anharmonic lattice dynamics give rise to stronger electron-phonon coupling in the material

as electrons interact with lattice vibrations via the formation of polarons [307, 308]. To study

these electron-phonon interactions, we have calculated the electron-phonon coupling strength

using Fröhlich’s polaron model [272]. The dimensionless Fröhlich electron-phonon coupling
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Figure 5.8: (a) Phonon dispersion plots and (b) two dimensional ELF of (110) plane passing

through Cs, Pt, Pd, Te, Sn and I atoms of Cs2PtI6, Cs2PdI6, Cs2TeI6 and Cs2SnI6, calculated

using PBE εxc functional. The ELF values of 0.0, 0.5, and 1.0 are interpreted as absence,

uniform electron gas like, and localized electrons, respectively.

parameter (α) measures the electron-phonon coupling strength of the material and is given as:

α = 1
4πε0

1
2

( 1
ε∞
− 1
εstatic

) e2

~ωLO

(2m∗ωLO

~

)1/2
(5.16)

The α depends on the material-specific properties, viz., electronic (ε∞) and ionic static (εstatic)

dielectric constants, permittivity of free space (ε0), the effective carrier mass (m∗), and a char-

acteristic longitudinal optical phonon angular frequency (ωLO). For a system having multiple

phonon branches, an average LO frequency is calculated by considering all the infrared ac-

tive optical phonon branches and taking a spectral average of them [309]. The values of α for

Cs2BI6 perovskites are listed in Table 5.7 and follow the order: Cs2PtI6 > Cs2PdI6 > Cs2TeI6 >

Cs2SnI6. The ELF and strong electron-phonon coupling validate the presence of anharmonicity

in our considered perovskites. Also, the heavy atoms present in the system act as phonon rat-

tlers and help suppress the lattice thermal conductivity effectively. This leads to their effective

utilization in high-performance thermoelectric device applications.
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Table 5.7: Effective mass of electrons m∗ in terms of rest mass of electron m0, electronic

dielectric constant ε∞ and ionic static dielectric constant εstatic of Cs2BI6 perovskites.

Configurations m∗ ε∞ εstatic

Cs2PtI6 0.49 3.41 4.55

Cs2PdI6 0.47 2.80 3.30

Cs2TeI6 0.40 3.59 5.55

Cs2SnI6 0.33 2.67 3.46

Table 5.8: Calculated polaron parameters corresponding to electrons in Cs2BI6 perovskites.

ωLO (THz), αe, mP, lP (Å) and µP (cm2V−1s−1) are the optical phonon frequency, Fröhlich cou-

pling constant, polaron mass, polaron radii and polaron mobility, respectively.

Configurations ωLO (THz) αe mP/m∗ lP (Å) µP (cm2V−1s−1)

Cs2PtI6 1.74 2.24 1.29 22.90 42.15

Cs2PdI6 1.62 1.81 1.19 25.10 64.90

Cs2TeI6 4.26 1.73 1.35 50.98 45.30

Cs2SnI6 3.52 1.50 1.27 47.43 71.12

5.3.6 Conclusions

In summary, we have carried out an extensive study to investigate the structural, elastic and

thermoelectric properties of Cs2BI6 (B = Pt, Pd, Te, Sn) vacancy-ordered perovskites under

the framework of density functional theory. The Pugh’s and Poisson’s ratios show the duc-

tile nature of the perovskites. Furthermore, the negative Gibbs free energies and phonon band

structures affirm the stability of these materials. The band gaps calculated using different εxc

functionals fall within the visible region, which is advantageous for energy-harvesting proper-

ties. The zT values for Cs2PtI6, Cs2PdI6, Cs2TeI6 and Cs2SnI6 are 0.88, 0.85, 0.95 and 0.78,

respectively, which show that these perovskites are promising for thermoelectric applications.

To examine the role of anharmonicity, the ELFs are plotted for these perovskites, which indi-
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cates the presence of lattice anharmonicity. The calculation of the harmonic and anharmonic

energy confirm the anharmonicity in this class of materials. As a result of anharmonicity,

these compounds have strong electron-phonon coupling and the strength of this coupling is

quantified using Fröhlich’s polaron model. The observed phonon-phonon scattering, driven

by anharmonicity and the influence of heavy atoms as phonon rattlers, contributes to the low

thermal conductivity and enhanced thermoelectric properties.



CHAPTER 6

Low lattice thermal conductivity and its role in

thermoelectric performance of CsNaS and RbNaS

alkali metal sulfides

6.1 Introduction

Thermoelectric (TE) materials hold significant importance in energy generation as they possess

the capability to convert heat into electricity and vice versa, without the requirement for any

mechanical components. These materials have emerged as promising solutions to tackle waste

heat challenges and enhance energy efficiency in response to the growing energy demands of

contemporary technology [241, 310]. The evaluation of a TE device’s performance typically

revolves around a dimensionless parameter known as the figure of merit, denoted as zT . This

parameter relies on various crucial physical parameters, including the Seebeck coefficient (α),

electrical conductivity (σ), total thermal conductivity (κ, consisting of electronic (κe) and lattice

(κph) contributions), and temperature (T ). Mathematically, zT is represented as zT = α2σT /(κ

= κe+κph). Achieving a high zT in a TE material poses a significant challenge due to the

intricate interplay among these TE parameters.

To tackle this challenge, researchers have explored various innovative approaches aimed

at decoupling the transport of electrons and phonons within materials, thereby improving

the zT parameter. These methods encompass a diverse array of techniques, such as band-

structure engineering [311, 312, 313, 314, 315], nanostructuring [316], composite materi-

als [317, 318, 319, 320], and the application of the high-entropy concept [321, 322]. Essen-

tially, the simultaneous enhancement of electronic transport and the suppression of phonon

propagation stand as critical criteria for the advancement of high-performance TE materials, as

demonstrated by materials like PbTe [323], SnSe [258], skutterudites [324], and half-Heusler
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compounds [325]. In this chapter, we have studied the thermoelectric properties of CsNaS

and RbNaS alkali metal sulfides. This class of materials represents environmentally friendly

alternatives to lead halide perovskites.

6.2 Computational methods

The density functional theory (DFT) [14, 15] calculations were carried out using the plane-

wave-based pseudopotential approach, as implemented in the Vienna Ab initio Simula-

tion Package (VASP) [169, 170]. The structural optimization of all the modeled struc-

tures was performed using generalized gradient approximation (GGA) expressed by the

Perdew–Burke–Ernzerhof (PBE) [217] exchange-correlation (εxc) functional. The self-

consistency loop was converged with a total energy threshold of 0.01 meV by conjugate gradi-

ent (CG) minimization. The structures were fully relaxed until the Heymann–Feynman forces

on each atom were less than 10−5 eV/Å. All the structures were visualized through VESTA

(Visualization for Electronic and STructural Analysis) [339] software. A 6 × 6 × 2 k-mesh was

used for Brillouin zone sampling. The electron wave function was expanded in a plane-wave

basis set with an energy cutoff of 600 eV. Phonon calculations were obtained within the har-

monic approximation and using a finite displacement method [340]. The phonon dispersion

plots and group velocities were calculated using the PHONOPY package [222, 221]. Lattice

thermal conductivity (κl) is calculated using phono3py. The BoltzTrap Code [275], based on

Boltzmann transport theory, was used to evaluate thermoelectric properties.

6.3 Results and discussion

6.3.1 Dynamical stability

CsNaS and RbNaS exhibit an ABX-type structure with P4/nmm symmetry. The structures of

these alkali metal sulfides are shown in Fig. 6.1a and 6.1b. To examine the dynamical stabilities

of these sulfides, we have calculated the phonon dispersion (ω vs k) plots. As illustrated in

Fig. 6.1c and 6.1d, there are no negative frequencies in the phonon spectrums, suggesting the

dynamical stability of CsNaS and RbNaS alkali metal sulfides.
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Figure 6.1: Crystal structure of (a) CsNaS (b) RbNaS having P4/nmm symmetry. Cs, Rb, Na

and S atoms are indicated by pink, green, yellow and purple colors, respectively. Phonon band

structure of (a) CsNaS (b) RbNaS alkali metal sulfides.
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6.3.2 Electronic properties

Next, to gain a deeper understanding of the electronic transport, we conducted DFT calcula-

tions to analyze the electronic band structures of CsNaS and RbNaS alkali metal sulfides. The

bandstructures, calculated using PBE functional, are shown in Fig. 6.2. The band gaps for

CsNaS and RbNaS are 2.52 and 2.41 eV, respectively, which are favorable for thermoelectric

applications.

Figure 6.2: Band structures of (a) CsNaS and (b) RbNaS, calculated using PBE εxc functional.

6.3.3 Lattice thermal conductivity (κl)

Subsequently, to investigate the thermal transport, we have determined the lattice thermal con-

ductivity (κl) as a function of temperature for CsNaS and RbNaS alkali metal sulfides using the

second-order and third-order IFCs by solving the linearized phonon Boltzmann transport equa-

tion (PBTE) (see Fig. 6.3). From the calculations, we observe that the calculated lattice thermal

conductivity of CsNaS and RbNaS are 0.25 Wm−1K−1 and 0.65 Wm−1K−1 at 300 K, which

is much lower than that for commonly known thermoelectrics, such as PbSe (2.64 Wm−1K−1)

and PbTe (2.30 Wm−1K−1). Lower values of κl makes these materials promising for ther-

moelectric applications. Additionally, it is observed that the κl has anisotropic nature. The

estimated values are higher along the x-direction as compared to those along the z-direction,

suggesting the thermal conduction along z as more beneficial for TE applications.
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Figure 6.3: Lattice thermal conductivity as a function of temperature of (a) CsNaS and (b)

RbNaS alkali metal sulfides.

6.3.4 Gruneisen parameter (γ) and phonon lifetime (τ )

To analyze the origin of this low thermal conductivity, we have determined the Gruneisen

parameter (γ). This parameter gives a estimation of the phonon’s anharmonicity and predomi-

nantly determines the magnitude of phonon scattering. The γ is found to vary from 0.2 to 5.1

for CsNaS and 0 to 3.7 for RbNaS over the entire range of frequencies (see Fig. 6.4), which is

higher than the value estimated for PbTe (1.66) and PbSe (1.52). This shows that the anhar-

monicity in both materials is very pronounced and thus assists in reducing the phonon thermal

conductivity. To further analyze the lattice conductivity, we focus on the phonon lifetime (τ )

for the frequency range of interest (see Fig. 6.5). The phonon modes are depicted as black spots

in the picture; as the color thermometer shows, red and blue are the regions of most significant

phonon mode density. The spread of phonon lifetimes indicates that the maximum value for

the materials is 6 ps, which is quite promising being less than the highest phonon lifetime of 8

ps for the good TE performer PbTe. Short lifetimes imply the phonon–phonon scattering rates

will be remarkably higher, consequently leading to a low κl value.
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Figure 6.4: Gruneisen parameter (γ) of (a) CsNaS and (b) RbNaS alkali metal sulfides.

Figure 6.5: Phonon lifetimes (τ ) of (a) CsNaS and (b) RbNaS alkali metal sulfides.

6.4 Conclusions

In summary, our investigation has focused on the thermoelectric properties of CsNaS and Rb-

NaS alkali metal sulfides within the framework of density functional theory. Specifically, we

have analyzed the lattice thermal conductivity (κl) of these sulfides across varying tempera-

tures. Our computational findings indicate that these materials exhibit low κl values, suggesting

their potential suitability for thermoelectric applications. Additionally, we have explored sev-

eral contributing factors to this low κl, including strong anharmonicity and a reduced phonon

lifetime primarily influenced by intense phonon-phonon scattering.



CHAPTER 7

Enhancing thermoelectric properties via crystal field

engineering and low thermal conductivity

7.1 Engineering electronic structure and lattice dynamics to

achieve enhanced thermoelectric performance of Mn–Sb

co-doped GeTe

7.1.1 Introduction

Thermoelectric (TE) materials, which have the unique ability to convert heat energy into electri-

cal power bidirectionally, offer promising solutions to address the global energy challenge [241,

343]. Recent advancements in TE properties have been driven by innovative transport mech-

anisms, focusing on (a) optimizing electrical transport performance [311, 312, 344, 345] and

(b) reducing thermal conductivity within a single system [346, 347, 348]. Within the realm

of notable TE materials, IV–VI-based chalcogenides like GeTe, PbTe, and SnTe stand out due

to their attractive TE properties in the intermediate temperature range (∼ 500–800 K). These

materials owe their remarkable characteristics to their distinct band structure, high carrier mo-

bility, and intrinsically low κph (phonon thermal conductivity) [349, 350, 351]. However, the

GeTe system contains inherent Ge vacancies, resulting in a high hole carrier concentration (n

∼ 1021 cm−3), high electrical conductivity (σ ∼ 8000 S/cm), and a small Seebeck coefficient

(α ∼ 28 µV/K at 300 K), which collectively lead to inferior TE properties. Additionally, GeTe

undergoes a second-order phase transition (∼ 700 K) from a high-temperature cubic (Fm-3m)

to a low-temperature rhombohedral structure (R3m). Recent research has focused on optimiz-

ing GeTe’s TE properties and lowering the transition temperature to enhance its practical util-

ity [352, 353]. Achieving a high zT (thermoelectric figure of merit) relies on optimizing carrier

123
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concentration (n ∼1019–1020 cm−3), band engineering [354], and reducing κph through vari-

ous techniques, including hierarchical architecture engineering [245], defect engineering [260],

composite approaches [317, 355], and the incorporation of multiscale scattering centers [356].

As discussed earlier, various strategies have been explored to reduce the high hole carrier

concentration and enhance α in GeTe [338]. Aliovalent dopants such as Bi3+ and Sb3+ at the

Ge2+ site have been employed to lower carrier concentration and decrease κph through phonon

scattering via solid-solution point defects. While such doping also reduces the phase transi-

tion temperature to ∼ 300 K at a doping concentration of ∼10%, it significantly diminishes

electrical conductivity [357]. In contrast, Mn doping in GeTe has effectively promoted band

convergence by decreasing the energy difference between the light and heavy hole bands and

increasing symmetry through a hexagonal-to-cubic transition, ultimately leading to an increase

in the carriers’ effective mass [358]. Mn doping also improves carrier concentration (n) in

GeTe. Notably, intrinsic vacancies in GeTe result in a high carrier concentration (∼ 1021 cm−3)

and deepens the Fermi level (EF ) in the valence band. Increasing Mn doping in GeTe fur-

ther deepens EF in the valence band, which does not benefit TE performance. Moreover, a

higher Mn content (∼ 10%) at the Ge site significantly reduces carrier mobility due to induced

spin scattering and does not improve the overall zT [341]. Therefore, optimizing co-doping of

Mn and Sb in GeTe is essential to achieve a synergistic effect of enhanced band convergence

and an optimized Fermi level position, leading to an improved α for high TE performance in

GeTe. This study showcases improved TE properties in Mn and Sb co-doped GeTe through

the manipulation of electronic structure (optimized Fermi level position, carrier concentration,

and band convergence) and lattice dynamics (reduced phonon velocity). A systematic band-

structure calculation for Mn-Sb co-doped GeTe was performed to corroborate experimental

results, employing density functional theory (DFT) calculations. Furthermore, a phonon dis-

persion calculation that accounts for Ge vacancies in GeTe and Mn-Sb co-doped GeTe was

conducted to shed light on the reduction of κph.

7.1.2 Computational methods

All of the density functional theory (DFT) calculations were performed using the plane-wave-

based pseudopotential approach, as implemented in the Vienna Ab initio Simulation Pack-

age (VASP). The self-consistency loop was converged with a total energy threshold of 0.01

meV. The structures were fully relaxed until the Heymann-Feynman forces on each atom were



Chapter 7. Enhancing thermoelectric properties via crystal field engineering and low
thermal conductivity 125

less than 10−5 eV/Åfor both pure and doped configurations. The effects of doping were

considered by substituting Mn and Sb atoms at the specific sites of Ge atoms in a 2×2×2

supercell (originally in rhombohedral phase) consisting of 48 atoms. The structural opti-

mization was carried out using generalized gradient approximation (GGA) expressed by the

Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional. Spin-orbit coupling interac-

tions owing to heavy atoms were included when calculating the electronic structures. A 6×6×2

k-mesh was used for Brillouin zone sampling. The electron wave function was expanded in a

plane-wave basis set with an energy cutoff of 600 eV. Phonon calculations were obtained within

the harmonic approximation and using a finite displacement method. A 2×2×2 supercell was

set for the cubic GeTe containing 64 atoms, whereas, for the rhombohedral phase, a 3×3×1

supercell containing 54 atoms was built. In the Mn–Sb co-doped rhombohedral system, we

used a 2×2×1 supercell consisting of 96 atoms.

7.1.3 Results and discussion

7.1.3.1 Electronic structure

In order to gain insights into the electronic transport properties in the Mn–Sb co-doped GeTe

system, we conducted DFT calculations to analyze the electronic band structure and density of

states (DOS) for pristine GeTe, Mn-doped GeTe, and Mn–Sb co-doped GeTe. The structures

are illustrated in Fig. 7.1). In our calculations, we observed that in the electronic structures

of both cubic and rhombohedral Ge24Te24, the principal valence band (light hole) maximum

(VBM) and the conduction band minimum (CBM) occur at the Γ point due to the folding of

the L point onto Γ. We determined that the band gap (eg) for cubic and rhombohedral Ge24Te24

is 0.22 eV and 0.52 eV, respectively. These values align with earlier theoretical predictions

and experimental findings [334, 359]. It is important to note that pristine GeTe exhibits a

high hole carrier concentration, primarily due to the presence of intrinsic Ge vacancies. In

our electronic structure calculations, we considered this high carrier concentration, which ex-

perimentally ranges from 8 × 1020 to 1.5 × 1021 cm−3 for pure GeTe. This range approxi-

mately corresponds to Ge vacancy concentrations of 4.3% to 8.1% if we assume one hole per

atom [332].

In Fig. 7.2a, the electronic band structure of Ge22Te24 is shown. Additionally, we system-

atically investigated the effects of doping on the band structure: (i) the introduction of one Mn
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Figure 7.1: (a) and (b) are two configurations of Mn–Sb co-doped system with different ener-

gies.

atom (Fig. 7.2b), (ii) the incorporation of one Mn atom and one Sb atom (Fig. 7.2c), and (iii)

the substitution of one Mn atom and two Sb atoms for Ge in the GeTe supercell (Fig. 7.2d).

The introduction of Mn in Mn-doped GeTe gives rise to a new impurity/donor band attributed

to the Mn state [358]. This impurity band results in a reduction of the band gap in GeTe. In the

case of Mn–Sb co-doping, we assessed the energies of two distinct configurations: (i) where

Mn and Sb atoms are in close proximity and (ii) where they are located farther apart as shown

in Fig. 7.1. It was determined that the latter configuration, where Mn and Sb atoms are further

apart, is more energetically favorable, thus making it the more stable configuration. As such,

our calculations focused on this second configuration [334]. In the context of co-doping Mn

and Sb in GeTe (specifically, Ge19MnSb2Te24), the energy separation between the two valence

bands, denoted as ∆EΓ, is further reduced to 0.09 eV. Consequently, the carrier transport in

this system is notably influenced by heavy holes. Therefore, our calculations confirm that Mn–

Sb co-doping in GeTe leads to enhanced valence band convergence and validates the observed

increase in the α.

Next, we computed DOS for all the compositions: pristine Ge24Te24, Ge22Te24 (with Ge

vacancies), Ge21MnTe24 (Mn-doped), Ge20MnSbTe24, and Ge19MnSb2Te24, as depicted in

Fig. 7.2e. The positioning of the Fermi level plays a critical role in optimizing the thermoelec-

tric (TE) performance of any material. In the case of GeTe, its high hole carrier concentration

due to intrinsic Ge vacancies results in a deep positioning of the Fermi level within the valence
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Figure 7.2: Electronic band structures of rhombohedral (a) Ge22Te24, (b) Ge21MnTe24, (c)

Ge20MnSbTe24, and (d) Ge19MnSb2Te24. The Ge vacancies are considered during the calcula-

tion to attest to the high carrier concentration. The band gap appears at the Γ point in a 2×2×2

supercell containing 48 atoms. The VBM and CBM occur at the L point in the pristine GeTe

fold onto the Γ point in the supercell. (e) Density of states of pristine GeTe (Ge24Te24), GeTe

with Ge vacancies (Ge22Te24), Mn-doped GeTe (Ge21MnSb24), and Mn–Sb co-doped GeTe

(Ge20MnSbTe24, Ge19MnSb2Te24) samples.

band. Consequently, the charge carriers below the Fermi level contribute energy transport that

compensates for the charge carriers above the Fermi level, leading to a lower α [315]. The DOS

plot illustrates that the Fermi level resides at the center of the band gap in pristine Ge24Te24.

However, with the introduction of Ge vacancies, the Fermi level shifts deep into the valence

band, aligning with the high carrier concentration characteristic of GeTe. Mn doping in GeTe

also leads to an increase in carrier concentration, which drives the Fermi level even deeper into

the valence band. This decrease in the energy offset between the edges of the valence band,

as revealed by band-structure calculations, results in band convergence. Hence, the combined

effects of band convergence and the deeper positioning of the Fermi level explain the observed

rise in the α with increasing carrier concentration in Mn-doped GeTe. Sb doping introduces

donor states below the conduction band of pure GeTe, causing the Fermi level to shift towards
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the valence band edge and, consequently, a reduction in hole carrier concentration is observed.

A similar density of states behavior is noted for Sb–Bi co-doped GeTe [334]. Furthermore,

Mn–Sb co-doping accentuates the steepness of the DOS, particularly in the vicinity of the va-

lence band edge. This heightened DOS characteristic indicates a higher effective mass and

holds promise for enhancing the α [341]. The Fermi level, influenced by the theoretical con-

sideration of larger Ge vacancies, is positioned within the valence band in both Mn and Sb

co-doping cases [332].

The DFT results closely align with the experimental measurements of the α. In the case

of pristine GeTe, the heavy hole band is situated approximately 0.21 eV deeper than the light

hole band. Even at high carrier concentrations, reaching up to 1021 cm−3, the light hole band

predominantly governs carrier transport, as indicated by the Fermi level’s estimated position

being only approximately 0.091 eV (rendering the effect of the heavy hole band negligible).

Upon introducing Mn doping, the energy offset between the valence band edges (heavy and

light bands) diminishes concomitantly with an increase in carrier concentration. This shift

results in the joint transport of heavy and light holes, logically leading to an increase in effective

mass and an enhancement of the α. The introduction of Sb in co-doping causes a shift of the

Fermi level toward the conduction band, facilitated by the self-compensation effect of holes

through the introduction of electrons. Finally, in the Mn–Sb co-doped GeTe system, we observe

a significant enhancement of the α. As such, the synergistic effects of Mn and Sb co-doping

yield an overall improvement in the thermoelectric performance of GeTe.

Figure 7.3: Phonon dispersion curve for (a) Ge24Te24 and (b) Ge21MnSb2Te24 in a rhombohe-

dral structure.
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7.1.3.2 Lattice thermal conductivity (κph)

Subsequently, the reason behind the reduction in lattice thermal conductivity in Mn–Sb co-

doped GeTe can be illuminated by examining the phonon dispersion curve. We conducted

phonon dispersion calculations for both pristine GeTe and Mn–Sb co-doped GeTe. Fig. 7.3a

and 7.3b show the phonon dispersion plots for Ge24Te24 and Ge21MnSb2Te24, respectively, both

within the rhombohedral structure. The phonon dispersion curve for pristine GeTe is consistent

with prior research findings [341, 342]. Importantly, the introduction of Mn through doping

in GeTe (specifically, Ge23MnTe24) does not significantly alter the phonon dispersion curve,

encompassing both acoustic and optical modes at lower frequencies. This outcome is in line

with the findings reported by Liu et al. [341]. However, a noteworthy departure is observed

in the phonon dispersion curve for Mn–Sb co-doped GeTe (Ge21MnSb2Te24), as illustrated in

Fig. 7.3b. In general, the phonon dispersion is elucidated by the ω vs k plot, where the gradient

Figure 7.4: Charge density plot for a plane with Miller indices (001) at a distance of 13Åfrom

the origin for (a) Ge24Te24 showing all Ge atoms and (b) Ge21MnSb2Te24 showing Ge and Sb

atoms.

of the ω vs k curve provides the phonon group velocity (vg), defined as vg = dω/dk. As Fig. 7.3b

illustrates, the gradient or slope of the phonon curve for the Mn–Sb co-doped system is notably

lower than that of pristine GeTe. This phenomenon indicates a decrease in the mean phonon

group velocity for Mn–Sb co-doped samples compared to pristine GeTe, consequently leading

to a reduction in lattice thermal conductivity. The observed decrease in the slope of the phonon

dispersion curve associated with Sb doping can be attributed to the relatively large mass (M) of

Sb, as the phonon frequency ω scales inversely with the square root of mass, ω ∝ M−1/2. To

gain insights into charge transfer effects, we examined the charge density contours for Ge24Te24

and Ge21MnSb2Te24, depicted in Fig. 7.4. It is evident that charge transfer occurs between Sb
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and Ge atoms, strengthening the chemical bonds between them. This reinforced bond, resulting

from charge transfer, restricts the free vibrations of atoms, consequently reducing the phonon

group velocity.

7.1.4 Conclusions

In summary, this investigation highlights the improved thermoelectric characteristics observed

in GeTe doped with both Mn and Sb, elucidating the underlying mechanisms of electronic

structure manipulation and lattice dynamics. The DFT calculations indicate that Mn–Sb co-

doping sharpens the density of states and enhances band convergence, while also optimizing

the Fermi level position, thereby contributing to the observed increase in α. As a result, the

power factor of all samples increases with temperature, predominantly due to the amplified α

values. Additionally, the investigation reveals a decrease in the κ at 300 K and with increasing

temperature for Mn–Sb-doped samples. Analysis of phonon thermal conductivity (κph) at 300

K indicates strong phonon scattering, aligning with reduced phonon group velocity as observed

in phonon dispersion curves. These reductions in κ and enhancements in α collectively lead to

a superior thermoelectric figure of merit (zT ) in Mn–Sb co-doped GeTe.
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7.2 Effect of crystal field engineering and Fermi level opti-

mization on thermoelectric properties of Ge1.01Te

7.2.1 Introduction

Thermoelectric (TE) materials play a significant role in power generation and solid-state cool-

ing due to their ability to convert heat into electricity and vice versa without the need for

any moving parts. They have emerged as viable solutions for addressing thermal manage-

ment and enhancing energy efficiency, in response to the increasing prevalence of waste heat

in modern technology [241, 310]. The performance of a TE device is typically evaluated

using a dimensionless parameter known as the figure of merit, denoted as zT . This met-

ric depends on several key physical parameters, including the Seebeck coefficient (α), elec-

trical conductivity (σ), total thermal conductivity (κ, which consists of electronic (κe) and

lattice (κph) contributions), and temperature (T ). Mathematically, zT is expressed as zT =

α2σT /(κ = κe+κph). Achieving a high zT in a TE material is a challenging task due to the

intricate relationships between these TE parameters. To address this challenge, numerous in-

novative strategies have been employed to decouple the transport of electrons and phonons

within materials, thereby enhancing zT . These strategies encompass approaches such as band-

structure engineering [311, 312, 313, 314, 315], nanostructuring [316], composite materi-

als [317, 318, 319, 320], and the utilization of the high-entropy concept [321, 322]. In essence,

the simultaneous improvement of electronic transport and the inhibition of phonon propaga-

tion are crucial criteria for the development of high-performance TE materials, as evidenced in

materials like PbTe [323], SnSe [258], skutterudites [324], and half-Heusler compounds [325].

Doped semiconductor holds the potential to improve TE properties due to their favorable

electronic structure. GeTe-based materials serve as a notable example, demonstrating their

suitability for mid-temperature applications. However, the high p-type carrier concentration

(∼1021 cm−3) at 300 K in GeTe, primarily arising from intrinsic Ge, leads to a low α and

a high κe. These factors collectively result in inferior TE performance [326]. Additionally,

the large energy gap (∆E) between the light and heavy valence bands places constraints on

increasing α. Furthermore, the room temperature κph for pristine GeTe (∼ 3 W·m−1·K−1)

exceeds the theoretically predicted minimum value (0.44 W·m−1·K−1) estimated using Cahill’s

model [327].
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As the absolute value of the α decreases while σ and κe increase with carrier concentra-

tion (n), optimizing carrier concentration becomes a critical initial step. This optimization

is followed by engineering electronic and phonon band structures to achieve the desired TE

parameters. Strategies for reducing κph include hierarchical architecture engineering [328],

defect engineering [329], composite approaches [257], and the integration of multiscale scat-

tering center techniques [245, 330]. To address the challenge of high hole carrier concentration

and to enhance α in GeTe, several innovative strategies have been employed, such as alloying

and band structure modifications [331, 332, 333]. Aliovalent doping with ions like Bi3+ and

Sb3+ at the Ge2+ site has been utilized to decrease the carrier concentration and reduce κph

through phonon scattering by solid-solution point defects [334]. This type of aliovalent dop-

ing also leads to a convergence of the energy gap (∆E) between the light and heavy bands,

thereby improving α. However, it’s worth noting that extensive aliovalent doping can signif-

icantly reduce σ. Alternatively, transition metal doping, including elements like Ti, Zn, Mn,

and others, has been explored in the literature to achieve ∆E convergence and, consequently,

enhance α [335, 336, 337].

As previously mentioned, optimizing the Fermi level (carrier concentration), is of

paramount importance in achieving higher zT values in TE materials [255]. In the case of

pristine GeTe, the exceptionally high n, mainly due to intrinsic Ge vacancies, results in the

Fermi level sinking deep into the valence band. Shuai et al. achieved an enhanced zT within

the Ge-rich GeTe system through the manipulation of Ge vacancies [338]. In this study, we em-

ploy a combination of strategies to significantly enhance zT (1.75 at 773 K). This improvement

is achieved by systematically doping Ti and Bi into vacancy-engineered Ge1.01Te, leveraging

the synergistic effects of crystal field engineering, valence band convergence, and point-defect

scattering. Excess Ge manipulation adjusts n, enhancing α and reducing κe at 300 K. The intro-

duction of Ti doping further enhances α through crystal field engineering, achieved by reducing

the c/a ratio. Ti–Bi co-doping further improves the band convergence and increases α, and re-

duces κph through point-defect scattering. Additionally, theoretical insights into crystal field

and band structure engineering for electronic transport, followed by the calculation of TE pa-

rameters using the Boltzmann transport equation are provided. Phonon dispersion calculations

support the engineered reduction in lattice thermal conductivity, demonstrating the impact of

phonon engineering.
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7.2.2 Computational methods

The density functional theory (DFT) [14, 15] calculations were carried out using the plane-

wave-based pseudopotential approach, as implemented in the Vienna Ab initio Simula-

tion Package (VASP) [169, 170]. The structural optimization of all the modeled struc-

tures was performed using generalized gradient approximation (GGA) expressed by the

Perdew–Burke–Ernzerhof (PBE) [217] exchange-correlation (εxc) functional. The self-

consistency loop was converged with a total energy threshold of 0.01 meV by conjugate gradi-

ent (CG) minimization. The structures were fully relaxed until the Heymann–Feynman forces

on each atom were less than 10−5 eV/Å for both pure and doped configurations. The effects of

doping were considered by substituting Ti and Bi atoms at the specific sites of Ge atoms in a

2 × 2 × 2 supercell consisting of 48 atoms. All the structures were visualized through VESTA

(Visualization for Electronic and STructural Analysis) [339] software. Spin–orbit coupling

(SOC) interactions owing to heavy atoms were included when calculating the electronic band

structures and density of states. A 6 × 6 × 2 k-mesh was used for Brillouin zone sampling. The

electron wave function was expanded in a plane-wave basis set with an energy cutoff of 600

eV. Phonon calculations were obtained within the harmonic approximation and using a finite

displacement method [340]. The phonon dispersion plots and group velocities were calculated

using the PHONOPY package [222, 221]. A 2 × 2 × 2 supercell was set for the cubic GeTe

containing 64 atoms, whereas, for the rhombohedral phase, a 3 × 3 × 1 supercell containing 54

atoms was built. In the Ti–Bi co-doped rhombohedral system, we used a 2 × 2 × 2 supercell

consisting of 96 atoms. The BoltzTrap Code [275], based on Boltzmann transport theory, was

used to evaluate thermoelectric properties. The starting parameters for the calculations were

the values obtained from the refinement.

7.2.3 Results and discussion

7.2.3.1 Electronic properties

First, we modeled Ge1.01Te with excess Ge at interstitial sites in the pristine GeTe system.

Subsequently, we introduced Ti and Bi doping at Ge sites in Ge1.01Te. Dopants were sub-

stituted at various sites, and the total energies of the respective systems were computed

(see Fig. 7.5). The configuration with the lowest energy was selected for further analy-

sis. Additionally, we theoretically induced Ge vacancies during the calculations to match



7.2. Effect of crystal field engineering and Fermi level optimization on thermoelectric
properties of Ge1.01Te 134

the experimentally observed high carrier concentration. Therefore, Ge23Te24, Ge22TiTe24,

Ge21TiBiTe24, and Ge20TiBi2Te24 corresponds to Ge1.01Te, Ge0.99Ti0.02Te, Ge0.97Ti0.02Bi0.02Te,

and Ge0.91Ti0.02Bi0.08Te in Ge1.01−x−yTixBiyTe (0.00 ≤ x ≤ 0.02, 0.00 ≤ y ≤ 0.08). The lat-

tice parameters are listed in Table 7.1. To gain a deeper understanding of the electronic

Figure 7.5: (a) and (b) represent two configurations of Ge20TiBi2Te24 with different relative

energies, calculated using PBE exchange-correlation functional.

Table 7.1: Lattice parameters (a, c), c/a for Ge1.01−x−yTixBiyTe (0.00 ≤ x ≤ 0.02, 0.00 ≤

y ≤ 0.08) at 300 K.

sample a c c/a

x, y (Å) (Å)

0.00, 0.00 4.1624 10.6762 2.5649

0.02, 0.00 4.1627 10.6718 2.5636

0.02, 0.02 4.1642 10.6502 2.5575

0.02, 0.08 4.1696 10.5816 2.5377

transport within the Ti–Bi co-doped GeTe system, we conducted DFT calculations to analyze

the electronic band structures and density of states (DOS) for pristine GeTe, Ti-doped GeTe,

and Ti–Bi co-doped GeTe. A systematic approach was employed, involving the doping of Ge,

Ti, and Ti–Bi within the GeTe system to generate all required configurations. Our calcula-

tions revealed that the principal valence band (light hole) maximum (VBM) and conduction
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band minimum (CBM) are situated at the Γ point due to the folding of the L point onto Γ (see

Fig. 7.6). Pristine GeTe exhibits a high hole carrier concentration due to intrinsic Ge vacan-

Figure 7.6: (a) Band structure of Ge25Te24 supercell, where the principal valence band (light

hole) maximum (VBM) and conduction band minimum (CBM) occur at the Γ point due to the

folding of the L point onto Γ. (b) The unfolded band structure of Ge25Te24 supercell showing

VBM and CBM at L point.

cies, which was taken into account in our DFT calculations. The electronic band structure for

Ge23Te24 is depicted in Fig. 7.7(a). (i) For the Ti-doped case [Fig. 7.7(b)], (ii) one Ti and one

Bi atom [Fig. 7.7(c)], and (iii) one Ti and two Bi atoms were substituted in place of Ge within

the GeTe supercell. In the case of Ti–Bi co-doping, the energies of two configurations were

computed, with the results showing that (i) Ti and Bi atoms are close to each other and (ii) they

are farther apart. The latter configuration displayed lower energy, signifying greater stability,

and was consequently selected for all subsequent calculations (see Fig. 7.5). Fig. 7.7(b) illus-

trates the emergence of new impurity bands resulting from Ti states near the conduction band,

which reduces the band gap. These resonant levels manifest below the conduction band due to

the high-energy Ti d orbitals, consistent with prior studies [338]. The co-doping of Ti and Bi

at Ge sites in GeTe (Ge21TiBiTe24) further reduces the energy separation between the valence

bands (∆EΓ), from 0.21 to 0.13 eV, which is further decreased to 0.08 eV in Ge20TiBi2Te24,

ultimately leading to band convergence in GeTe. This implies that heavy holes significantly

influence carrier transport, and Ti–Bi co-doping in GeTe enhances valence band convergence,

confirming the observed increase in the Seebeck coefficient. Furthermore, we computed density

of states (DOS) plots for Ge25Te24 (with excess Ge), followed by Ge23Te24 (with Ge vacancies),
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Figure 7.7: Electronic band structures of (a) Ge23Te24, (b) Ge22TiTe24, (c) Ge21TiBiTe24, and

(d) Ge20TiBi2Te24. The Ge vacancies are theoretically induced during the calculation to attest

to the large experimental value of carrier concentration. The band gap appears at the Γ point

in a 2 × 2 × 2 supercell containing 48 atoms. The VBM and CBM occur at the L point in the

pristine GeTe fold onto the Γ point in the supercell. (e) Density of states of GeTe with excess

Ge (Ge25Te24), GeTe with Ge vacancies (Ge23Te24), Ti-doped GeTe (Ge22TiTe24), and Ti–Bi

co-doped GeTe (Ge21TiBiTe24, Ge20TiBi2Te24) samples.

Ge22TiTe24 (Ti-doped), and Ge21TiBiTe24 and Ge20TiBi2Te24 (Ti–Bi co-doped). The position

of the Fermi level plays a crucial role in optimizing the thermoelectric (TE) performance of

any system. In the presence of a high hole carrier concentration in GeTe, the Fermi level is

positioned deep within the valence band. However, the DOS plot indicates that the Fermi level

falls in the middle of the band gap for pristine Ge24Te24 [255]. To align with the experimen-

tally observed high carrier concentration in GeTe, we introduced Ge vacancies theoretically,

causing the Fermi level to reside deep within the valence band. With excess Ge (Ge25Te24), the

Fermi level tends to shift towards the conduction band. Ti doping in GeTe (with excess Ge)

increases the carrier concentration, causing the Fermi level (EF ) to shift deeper into the valence

band. Bi doping, on the other hand, reduces the hole carrier concentration due to the donor
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properties of Bi. This reduction in the energy offset between the valence band edges results in

band convergence in the co-doped system, as demonstrated in the band structure calculations.

Hence, the combination of both band convergence and the position of the Fermi level indicates

an increased Seebeck coefficient in co-doped samples. Furthermore, Ti–Bi co-doping results

in a steeper DOS, particularly near the valence band edge. This sharper DOS feature signifies

a higher effective mass and contributes to the enhancement of the Seebeck coefficient [341].

The Fermi level lies within the valence band in the case of Ti and Bi co-doping, primarily due

to the consideration of larger Ge vacancies during the theoretical calculations.

7.2.3.2 Thermoelectric properties

Subsequently, to investigate the thermoelectric properties, we conducted calculations for elec-

trical conductivity (σ), Seebeck coefficient (α), thermal conductivity (κ), power factor (α2σ),

and thermoelectric figure of merit (zT ) for the Ge23Te24, Ge22TiTe24, Ge21TiBiTe24 and

Ge20TiBi2Te24 systems while varying the chemical potential (µ). It’s important to note that all

transport properties dependent on µ were calculated by keeping the temperature constant and

allowing the carrier concentration (n) to change. This implies that, for a fixed temperature (in

this case, 300 K), µ is a function of n, providing insight into the doping of carriers by illustrat-

ing the addition or removal of electrons from the system. The position of µ, in turn, determines

the fraction of electrons in the conduction or valence band, influencing transport properties.

Consequently, we determined the thermoelectric parameters as a function of µ. Fig. 7.8(b) il-

lustrates the change in the α with respect to µ. The α quantifies the induced thermoelectric

voltage (∆V) in response to a temperature difference (∆T) in the material and is mathemat-

ically expressed as α = ∆V/∆T. When µ = 0, it coincides with the top of the valence band

in semiconductors, indicating that at µ = 0, the sign of α determines the semiconductor type.

Fig. 7.8(b) demonstrates that at µ = 0, α is positive for all GeTe systems, indicating their p-type

semiconductor nature. Additionally, α is depicted as a function of temperature for the GeTe

systems (see Fig. 7.9). Since the calculation of κph for all doped configurations using state-of-

the-art advanced methods is computationally expensive, we opted to use the experimental κph

value at 300 K to calculate zT , following the equation: zT=α2σT /(κ=κe+κph). Fig. 7.8(a) and

7.8(c) reveal that electrical conductivity and thermal conductivity decrease with Ti–Bi dop-

ing, consistent with experimental findings. The increase in α due to doping results in higher

power factor values when compared to the pristine system (see Fig. 7.8(d)). Notably, resonant
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Figure 7.8: (a) Electrical conductivity (σ), (b) Seebeck coefficient (α), (c) electronic thermal

conductivity (κe), (d) power factor (α2σ), and (e) figure of merit (zT ) as a function of chemical

potential (µ) are calculated at 300 K for different GeTe compositions: Ge23Te24, Ge22TiTe24,

Ge21TiBiTe24 and Ge20TiBi2Te24. Electrical conductivity, Seebeck coefficient, thermal con-

ductivity, power factor, and figure of merit are reported by scaling them with τ .

Figure 7.9: (a) Calculated Seebeck coefficient (α) as a function of chemical potential (µ) for

different GeTe compositions at (a) 300 K, (b) 500 K, and (c) 800 K.
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peaks are observed near the Fermi level in the positive "µ" region. Furthermore, zT values

(Fig. 7.8(e)) are higher in the negative "µ" region compared to the positive region, indicating

that p-type doping yields higher zT values. This observation underscores the potential of the

considered co-doped systems as promising p-type thermoelectric materials.

7.2.3.3 Phonon dispersion calculation

Low thermal conductivity is desirable for efficient TE materials. To investigate the lattice ther-

mal conductivity in Ti–Bi co-doped GeTe, we performed phonon dispersion calculations for

both GeTe (Ge24Te24) and Ti–Bi co-doped (Ge21TiBi2Te24). Notably, we did not consider va-

cancies when calculating the phonon dispersion curves due to technical complexities related

to accommodating numerous defects within a supercell [255]. The objective of these calcula-

tions was to assess the dynamical stability of the materials. Fig. 7.10(a) and 7.10(b) illustrate

Figure 7.10: Phonon dispersion curve for (a) Ge24Te24 and (b) Ge21TiBi2Te24 in a rhombohe-

dral structure.

the phonon dispersion plots for Ge24Te24 and Ge21TiBi2Te24, in their rhombohedral structure.

The phonon dispersion curve for pure GeTe aligns with previous studies [342]. However, the

phonon dispersion curve for Ti–Bi co-doping exhibits a significant reduction in slope, as de-

picted in Fig. 7.10(b). Typically, the phonon dispersion is represented as a plot of ω vs k, and

the gradient of this curve corresponds to the phonon group velocity (vg), where vg = dω/dk. In

Fig. 7.10(b), it’s evident that the gradient of the phonon curve for the Ti–Bi co-doped system

is lower than that of GeTe at the point shown in Fig. 7.10(a). This indicates a decrease in the

average phonon group velocity for the Ti–Bi co-doped sample compared to GeTe, resulting in

reduced lattice thermal conductivity. The decrease in the gradient of the dispersion curve for
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Bi doping can be attributed to the relatively large atomic mass (M) of Bi, as indicated by the

relationship ω ∝ M−1/2. Additionally, we conducted an analysis of charge density contours

for Ge24Te24 and Ge21TiBi2Te24, shown in Fig. 7.11. This analysis revealed a charge transfer

between the Bi and Ge atoms, further enhancing the stability of chemical bonds. This increased

bond stability restricts the free vibrations of atoms, resulting in a decrease in the phonon group

velocity, which, in turn, contributes to the lower lattice thermal conductivity. Therefore, the

lower thermal conductivity and higher zT values result in potential thermoelectric properties

in these doped GeTe systems.

Figure 7.11: Charge density plot of a plane with Miller indices (001) at a distance of 9.5

Å from the origin for (a) Ge25Te24 supercell showing all Ge atoms, and (b) Ge20TiBi2Te24

supercell showing Ge and Bi atoms.

7.2.4 Conclusions

In summary, this density functional theory study has demonstrated the enhancement of ther-

moelectric properties in Ge1.01Te through Ti–Bi co-doping in conjunction with vacancy engi-

neering. The introduction of excess Ge plays a pivotal role in reducing carrier concentration

(n) and thereby adjusting the Fermi level position, ultimately enhancing the thermoelectric per-

formance of Ge1.01Te. Moreover, Ti doping contributes to the improvement in α by means of

crystal field engineering, facilitated by a decreased c/a ratio. This effect is further amplified

by the reduction in carrier concentration through Bi doping. The Ti–Bi co-doped Ge1.01Te

showcases increased band degeneracy, further enhancing α. Phonon dispersion calculations

indicated a decrease in phonon group velocity in the Ti–Bi co-doped system, attributed to the

larger atomic mass of Bi and the charge transfer occurring between Bi and Ge atoms. The com-

bined effects of optimizing carrier concentration, enhancing band degeneracy, and reducing
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phonon thermal conductivity (κph) culminated in a high zT value for Ge21TiBi2Te24, making it

promising for thermoelectric applications.



CHAPTER 8

Epilogue and outlook

Energy materials include a broad spectrum of materials with pivotal roles in numerous energy-

related processes, such as energy generation, storage, and conversion. These materials serve

as fundamental components for harnessing and controlling energy across various applications.

In line with this, we have explored the domains of catalysis, optoelectronics, and thermoelec-

tricity, offering promising pathways to address the global energy crisis. Particularly, we have

studied energy materials viz., catalysts for methane activation and hydrogen production, as well

as perovskites utilized in solar cells and thermoelectric devices.

Methane, a primary component of natural gas, is a plentiful, cost-effective, and eco-friendly

energy source. However, it is also a notable greenhouse gas, making its conversion into valuable

products crucial. One key route for this conversion is the generation of synthesis gas (syngas)

from methane. Syngas serves as a precursor for producing various valuable chemicals, includ-

ing methanol, liquid hydrocarbons, ammonia, and dimethyl ether. Despite its abundance, the

efficient activation of methane presents a significant challenge due to its strong C-H bonds (4.5

eV), low polarizability, and negligible electron affinity. To overcome this challenge, a suitable

catalyst is essential. Transition metal (TM) clusters, in particular, are well-known for their

efficient catalytic activity, both in homogeneous and heterogeneous settings. This can be at-

tributed to the presence of partially occupied d-shells in transition metals, enabling them to

exhibit multiple oxidation states in their complexes. In our study, we have focused on a repre-

sentative model system: nickel (Ni4), which has already been experimentally synthesized and

exhibits high selectivity. We considered its behavior in a reactive atmosphere consisting of O2

and CH4 gas molecules under realistic conditions. In the presence of such an atmosphere, clus-

ters adsorb surrounding gas molecules and form intermediate phases [Ni4Ox(CH4)y], which

are generally active materials for applications in heterogeneous catalysis. Our investigation re-

vealed the influence of environmental factors, specifically temperature (T ), partial pressure of
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oxygen (pO2), and partial pressure of methane (pCH4), on the thermodynamic stability of these

Ni4Ox(CH4)y (0≤ x≤ 8, 0≤ y ≤ 3) clusters. Additionally, to account for anharmonicity in the

vibrational free energy contribution to the configurational entropy, we numerically assessed the

excess free energy of the clusters. We employed the thermodynamic integration method with

ab initio molecular dynamics (aiMD) simulation inputs. While seeking precise thermodynamic

stability, we observed that accounting for anharmonicity revealed new stable phases that were

previously overlooked by DFT and DFT+Fharmonic methods. This inclusion significantly im-

pacted our ability to detect the activation of the C-H bond, where the harmonic IR approach

failed to capture the correct vibrational modes

Lead halide perovskites have gained considerable attention in the field of optoelectronics

due to their unique characteristics, including an appropriate optical band gap, high absorption

coefficient, low trap density, and cost-effectiveness. Notably, the inclusion of heavy elements

like Pb in these materials results in strong spin-orbit coupling (SOC), a pivotal factor influ-

encing their electronic properties. In the absence of inversion symmetry, these crystals experi-

ence an effective magnetic field due to SOC. This magnetic field, coupled with spin moments,

gives rise to a momentum-dependent splitting of bands, referred to as Rashba-Dresselhaus (RD)

splitting. The presence of Pb and ferroelectricity in the non-centrosymmetric phase of CsPbF3

indicates the potential for the RD effect in this material. We have studied the Pm3 m and R3c

phases of CsPbF3, employing the perturbative k.p formalism alongside first-principles calcu-

lations. Initially, we assessed the dynamical stability of these phases, identifying the lack of

dynamical stability in the Pm3 m phase due to the presence of negative frequencies in the

phonon bandstructure. Subsequently, we determined the band gap of these phases using first-

principles-based methodologies in conjunction with SOC. This involved DFT with semilocal

exchange-correlation (εxc) functional (PBE), hybrid DFT with HSE06, and single-shot GW

(G0W0) within the many-body perturbation theory (MBPT). Our examination of the electronic

band structure of the R3c phase unveiled the presence of Rashba splitting and distinctive spin

textures. We also explored the impact of strain on the band gap and Rashba parameters, ob-

serving significant modulation of Rashba spin splitting through the application of uniaxial strain

(±5%). Additionally, our investigation revealed reversible spin textures in CsPbF3 perovskite,

enhancing its potential for perovskite-based spintronic applications.

Howerver, the issues of lead toxicity and long-term stability have limited the promising

prospects of lead halide perovskites. These concerns have prompted researchers to seek out
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alternative compositions and structural configurations. One such promising avenue is the ex-

ploration of inorganic lead-free double perovskites, often referred to as vacancy-ordered double

perovskites (VODPs) and denoted by the general formula A2BX6. VODPs are a defect variant

of halide perovskites, resulting from the duplication of the ABX3 unit cell along all three crys-

tallographic axes, with the removal of every alternate B-site cation. In our investigation, our ini-

tial focus revolved around assessing the stability of these materials, a paramount consideration

for their potential in high-performance device applications. To gauge their structural stability,

we calculated the Goldschmidt tolerance factor (t) and octahedral factor (µ). Our computations

revealed that these perovskites exhibit structural stability in cubic phases. Furthermore, we

delved into the evaluation of their thermodynamic and mechanical stability. Thermodynamic

stability was assessed through the calculation of Gibbs free energies (∆G), which consistently

yielded negative values, signifying the thermodynamic stability of these materials. The evalu-

ation of mechanical stability involved determining the elastic constants using the finite strain

theory, and they met the criteria for mechanical stability. With the stability of these materi-

als confirmed, we proceeded to compute their electronic band gaps, both with and without the

inclusion of spin-orbit coupling (SOC). The obtained band gap values for Cs2PtI6, Cs2PdI6,

Cs2TeI6, and Cs2SnI6 were found to be 1.35 eV, 1.43 eV, 1.49 eV, and 1.23 eV, respectively.

These band gap values indicate that all of these perovskites possess band gaps within the vis-

ible spectrum, which holds great promise for energy-harvesting applications. Notably, these

calculated band gap values align well with experimental observations.

Lately, VODPs have garnered attention in the field of thermoelectrics due to their excep-

tionally low lattice thermal conductivity, attributed to their highly anharmonic lattice dynamics.

To ascertain the dynamical stability, we plotted the phonon dispersion band structures for all

Cs2BI6 perovskites using the density functional perturbation theory (DFPT), and the absence

of negative frequencies affirmed their dynamical stability. The existence of anharmonicity in

these materials was examined by computing the Electron Localization Function (ELF), which

confirmed the presence of anharmonicity in this class of systems. To quantify the anharmonic

energy (Uah) in Cs2BI6 VODPs, we conducted ab initio molecular dynamics (aiMD) simu-

lations at varying temperatures, employing the Nose-Hoover thermostat. Subsequently, we

calculated the thermoelectric properties of these perovskites using the BoltzTraP code, leading

to the computation of average zT values for Cs2PtI6, Cs2PdI6, Cs2TeI6, and Cs2SnI6, which

were found to be 0.88, 0.85, 0.95, and 0.78, respectively. These values underscore the potential
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of these materials in thermoelectric applications.

In addition, we have explored the thermoelectric properties (TE) of GeTe semiconductor.

GeTe is characterized by the presence of intrinsic Ge vacancies, which leads to high hole carrier

concentration (1021 cm−3), a significant electrical conductivity (approximately 8000 S/cm), and

a relatively low Seebeck coefficient (around 28 µV/K at 300 K). These properties collectively

result in inferior TE properties. To overcome these issues, we have explored the Mn-Sb and

Ti-Bi co-doping at cation sites in GeTe. DFT simulations have revealed that the introduction

of doping leads to improved band convergence and fine-tuning of the Fermi level position.

Consequently, this adjustment aids in the enhancement of the Seebeck coefficient (α). The

optimized α, combined with an increase in electrical conductivity (σ), results in a significantly

improved power factor (α2σ) for the co-doped GeTe system. This, in turn, leads to high zT

values, which suggest the promising TE properties of the system.

Overall, energy materials present a wide array of prospects for energy-related applications,

paving the way for more efficient and stable catalysts, photovoltaic and thermoelectric devices.

The insights into various parameters and the theoretical framework discussed in this thesis

can serve as valuable guidance for future endeavors in exploring and creating energy materials

tailored for thermoelectric and photovoltaic applications.
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