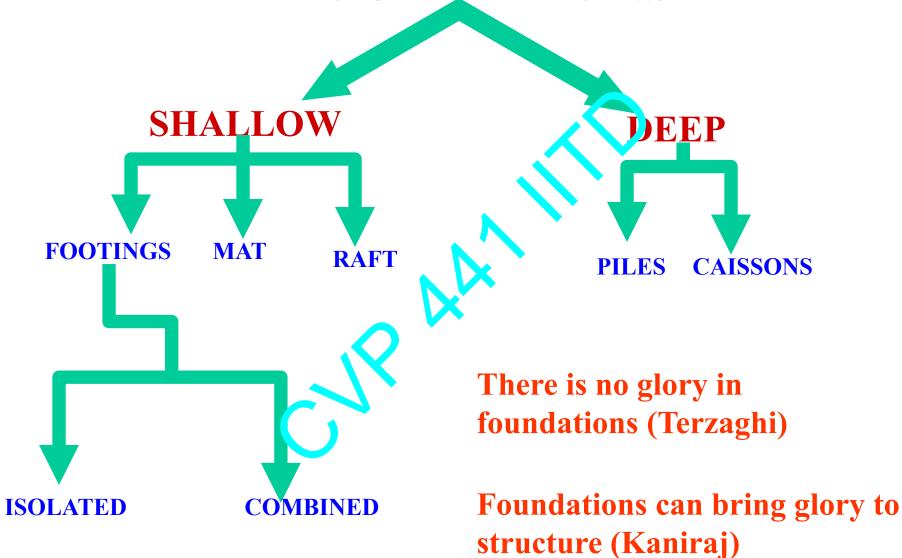
DEPARTMENT OF CIVIL ENGINEERING IIT DELHI

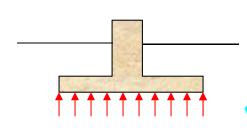


FOOTING SIGN

Dr. Suresh Bhalla
Professor

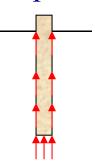
Tel: 2659-1040 Email: Sbhalla@civil.iitd.ac.in

FOUNDATIONS



FOUNDATIONS

SHALLOW


DEEP

Depth to width ratio, $D/B \le 1$

Moderately deep: 1 < D/B <= 15

Deep: D/B > 15

Load transfer through direct sell pressure

Construction: Excavate, construct, cover, compact (small disturbance)

Load transfer through skin friction and end reaction

Driving or boring + casting (Large disturbance)

FOUNDATIONS

Geotechnical Engineer

Location and depth criteria

Bearing capacity criteria-salety against shear failure of soil

Settlement criteria should not settle excessively.

Structural Engineer

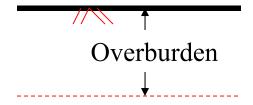
Structural drawings follow location and depth criteria

Soil pressure does not exceed allowable pressure as per soil report

Structurally safe

TERMINOLOGIES

Ultimate bearing capacity, quit


Total gross pressure at base of foundation which causes shear failure.

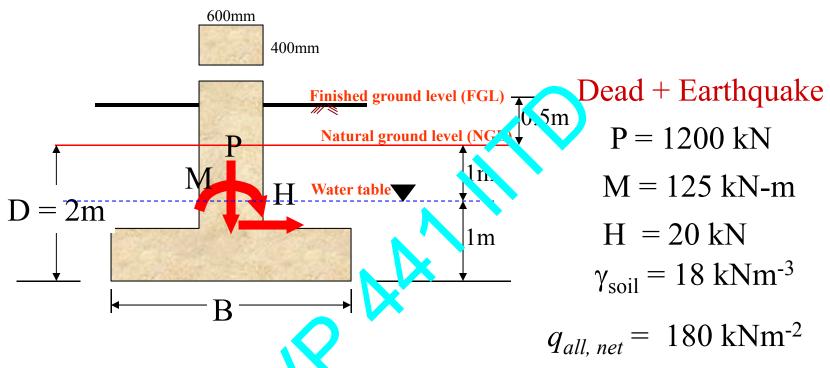
Ultimate net bearing capacity, qult, net

$$q_{ult, net} = q_{ult} - q$$
 (q = Effective soil pressure at foundation base)

Safe net bearing capacity, q_{safe, net}

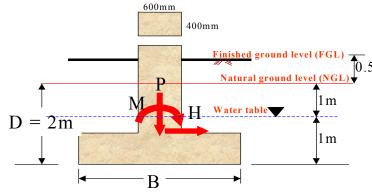
$$q_{\text{safe, net}} = (q_{\text{ult ne}}) / \text{Factor of safety}$$

Safe bearing pressure, q_{sair nr}


Maximum net pressure that foundation can transmit without the settlement exceeding the permissible value.

Allowable net bearing pressue, q_{all, net}

Lower of
$$(q_{safe, net} \text{ and } q_{safe, pr})$$


ISOLATED FOOTING

Design Steps:

- (1) Size of footing to satisfy base pressure requirements
- (2) Design of base for bending
- (3) Check for one-way shear
- (4) Check for two-way shear
- (5) stability against sliding and overturning

(1) SIZE OF FOOTING TO SATISFY BASE PRESSURE REQUIREMENTS

Dead + Earthquake

P = 1200 kN

M = 125 kN-m

H = 20 kN

 $\gamma_{\text{soil}} = 18 \text{ kNm}^{-3}$

 $q_{all, net} = 180 \text{ kNm}^{-2}$

Try 2.5x2.5x0.4m thick footing

NGL

2m

Design Steps:

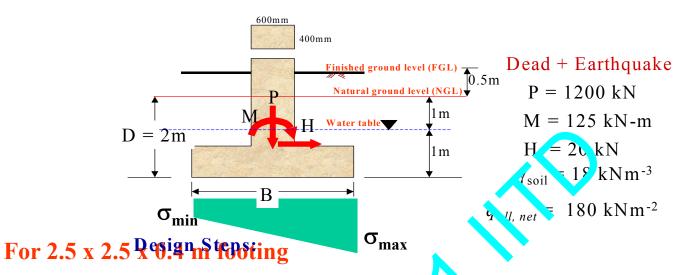
Under normal conditions

$$q_{all, gross} = q_{all, net} + q = 180 + 18 x1 + (18 - 10)x_1 = 207 \text{ kNm}^{-2}$$

Subn er ad density

Submerged density

Under wind/ earthquake


$$q_{all, gross} = 1.25 \ q_{all, net} + q = 1.25 \ x \ 180 + 18 \ x1 + (18-10)x1 = 251 \ kNm^{-2}$$

$$P (total) = P_t = P + Overburgen = 1200 + 2.5x2.5x0.4x (25-10)$$
 Footing base $+ (2.5x2.5-0.4x0.6) (0.6 x8 + 1.5 x 18)$ = 1428.61 kN

$$M \text{ (total)} = M_t = M + H*(Footing thickness) = 125 + 20 x 0.4 = 133 kN-m$$

$$08/10/2019$$

(1) SIZE OF FOOTING TO SATISFY BASE PRESSURE REQUIREMENTS

Area $A = B^2 = 6.25 \text{ m}^2$

Section modulus $Z = (B^3/6) = 6.25 \text{ m}^3$

$$\sigma_{\text{max}} = \frac{P_t}{A} + \frac{M_t}{Z}$$

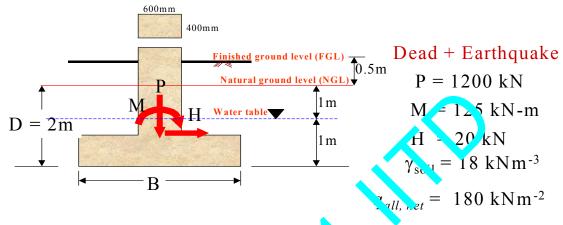
 $279.65 \text{ kN/m}^2 > q_{all, gross} = 25 \text{ kN/m}^2$

$$\sigma_{\min} = \frac{P_t}{A} - \frac{M_t}{Z}$$

 177.51 kN/m^2

8

Try 2.7 x 2.7 x 0.4 m footing
$$A = 7.29 \text{ m}^2$$


$$\sigma_{\text{max}} = 241.05 \text{ kN/m}^2$$

$$< q_{all, gross} = 251 \,\mathrm{kN/m^2}$$

$$Z = 3.28 \text{ m}^3$$
 $P_t = 1461.7 \text{ kN}$

$$\sigma_{min} = 159.96 \text{ kN/m}^2$$

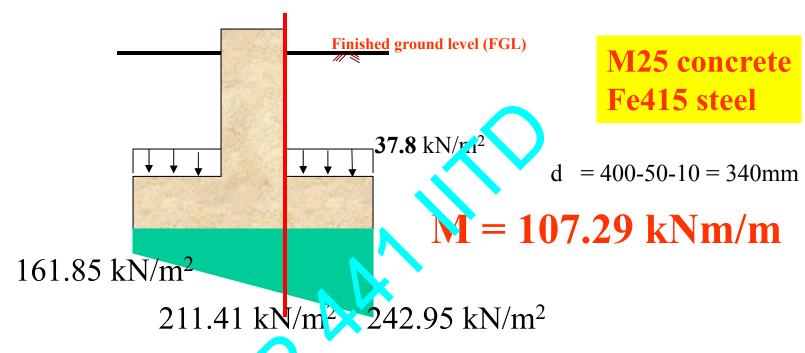
(1) SIZE OF FOOTING TO SATISFY BASE PRESSURE REQUIREMENTS

Design Steps:

$$P(total) = P_t = P + Overburo o$$

$$\sigma_{1,2} = \frac{P_t}{A} \pm \frac{M_t}{Z} = \frac{P}{A} \pm \frac{M_t}{Z} + \frac{P_{overburden}}{A}$$

Overburden pressur(= $0.4x(25-10) + 0.6 \times (18-10) + 1.5 \times 18 = 37.8 \text{ kN/m}^2$

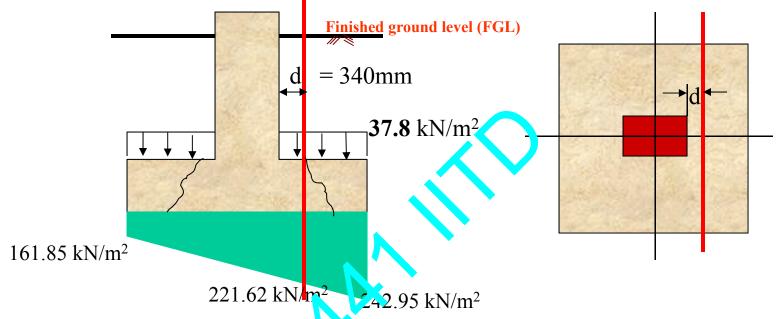

$$\sigma_{max} = 242.95 \text{ kN/m}^2$$

$$\sigma_{min} = 161.85 \text{ kN/m}^2$$

Slightly higher since additional soil considered at col. location

$$\sigma_{\text{max}} = 241.05 \text{ kN/m}^2$$
 \rightleftharpoons Exact $\Longrightarrow \sigma_{\text{min}} = 159.96 \text{ kN/m}^2$

(2) DESIGN OF BASE FOR BENDING



$$M_{u} = 1.5 \times 107.29 = 160.94 \text{ kNm/m}$$

$$M_{u} / \text{bd}^{2} = \frac{160.94 \times 10^{6} \text{ Nmm}}{1000 \text{mm} \times (340)^{2} \text{ mm}^{2}} = 1.39 \text{ Nmm}^{-2}$$

 $A_{st} = 0.417\% = 14.2 \text{ cm}^2/\text{m}$. Provide 16ϕ @ 140 mm c/c = 14.36 cm²/m = 0.42% 08/10/2019

(3) CHECK FOR ONE-WAY SHEAR

V = 138.1 kNm/m

 $\sqrt{\ }$ = 1.5 x 138.1 = 207.13 kN/m

Nominal shear stress
$$\tau_{v} = \frac{207.13 \times 10^{3} \text{ N}}{1000 \text{mm} \times (340) \text{ mm}} = 0.609 \text{ Nmm}^{-2}$$

Shear strength of concrete (for 0.42% steel) $\tau_c = 0.448 \text{ Nmm}^{-2} < \tau_v$

Pg 73, IS 456

(4) CHECK FOR TWO-WAY (PUNCHING) SHEAR

$$V = 1200 - (0.9 \times 0.74)(201.26 - 37.8) = 1086.23 \text{ kN}$$

$$V_u = 1.5 \times 1086.23 = 1629.34 \text{ kN}$$


$$\tau_{\rm v} = \frac{1629.34 \text{ x } 16^3 \text{ N}}{2(940+740) \text{ mm x } (340) \text{ mm}} = 1.426 \text{ Nmm}^{-2}$$

$$\beta_{\rm c} = (0.4/0.6)$$

Shear strength of concrete $= k_s \tau_c = 1.11 \text{ Nmm}^{-2} < \tau_v$ (Pg. 59, IS 456)

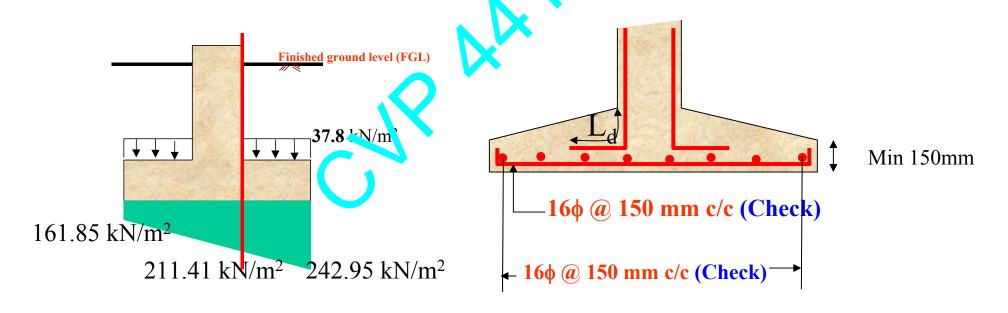
$$\tau_{c} = 0.25 / f_{ck} = 1.11 \text{ Nmm}^{-2} \text{ k}_{s} = 0.5 + \beta_{c} = 1.0 (<=1.0)$$

(4) CHECK FOR TWO-WAY (PUNCHING) SHEAR

 $\tau_{\rm v} = 1.426 \, \rm Nmm^{-2} > 11 \, Nmm^{-2} \, (k_{\rm s} \tau_{\rm c})$

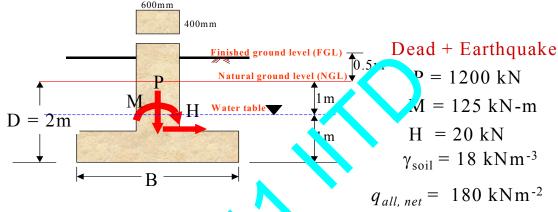
Increase thickness to 500mm => d = 440mm

$$V = 1200 - (1.04 \times 0.84)(201.36-37.8) = 1057.1 \text{ kN}$$


$$V_{ij} = 1.5 \times 1057.1 = 1585.65 \text{ kN}$$

$$\tau_{v} = \frac{1585.65 \times 10^{3} \text{ N}}{2(1040+840) \text{mm} \times (440) \text{ mm}} = 0.958 \text{ Nmm}^{-2} < k_{s} \tau_{c}$$

$$08/10/2019 \text{ OK}$$


*REDESIGN FOOTING FOR BENDING AND 1-WAY SHEAR

REINFORCEMENT DETAILING

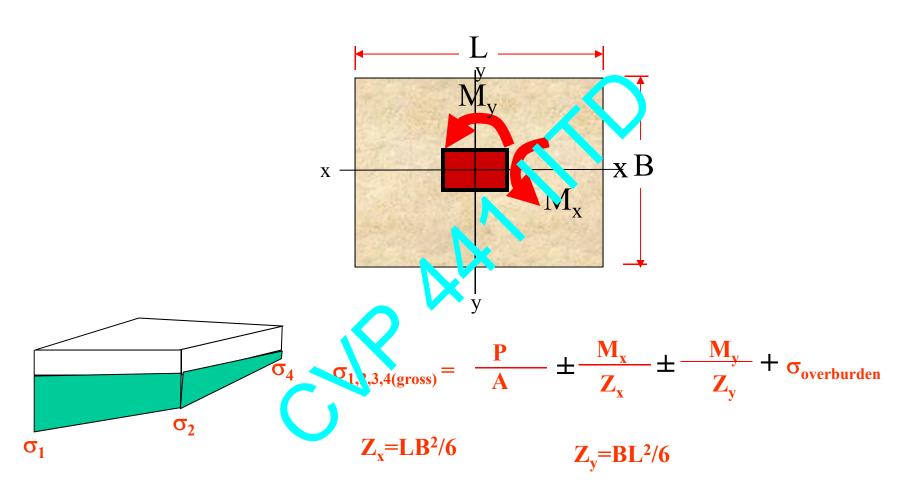
(5) SAFETY AGAINST SLIDING AND OVERTURNING

(for a stand alone footing) Sec 20 (p33): IS 456:2000

Restoring moment > $\frac{1.2}{1.2}$ $\frac{M_0'(\text{due to DL}) + 1.4}{1.4}$ $\frac{M_0(\text{due to IL})}{1.4}$ Consider a DL = $\frac{90\%}{1.4}$ $\frac{M_0'(\text{due to DL}) + 1.4}{1.4}$ $\frac{M_0'(\text{due to IL})}{1.4}$

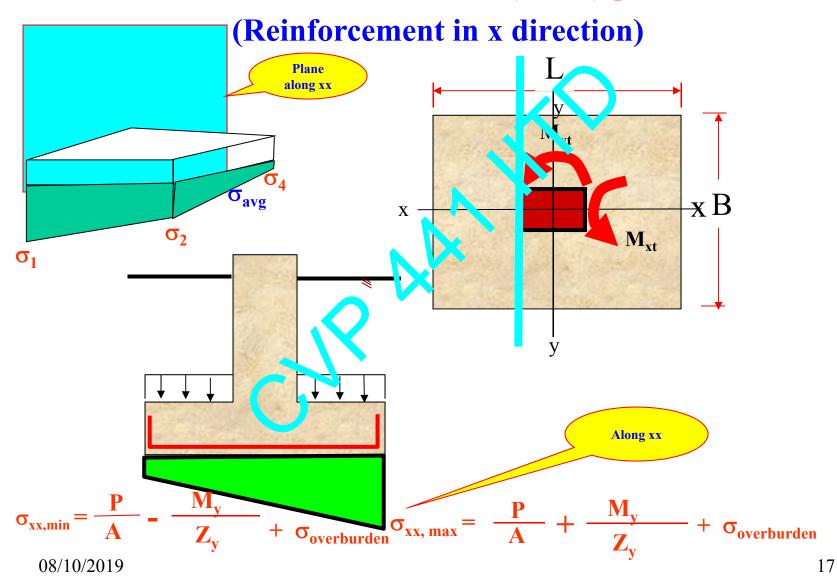
restoring moment calculation

Pg. 33, IS 456

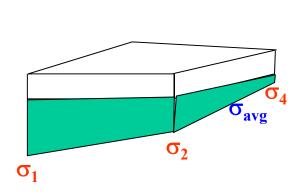

Restoring force > 1.4 H

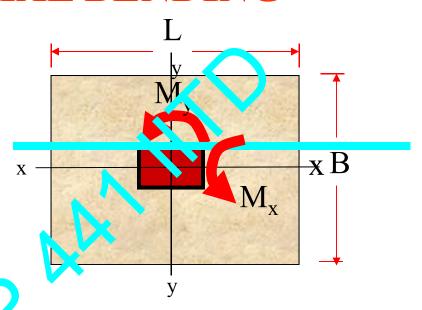
Consider a DL = 90% IL = 0

DL = Dead load


IL = Imposed load

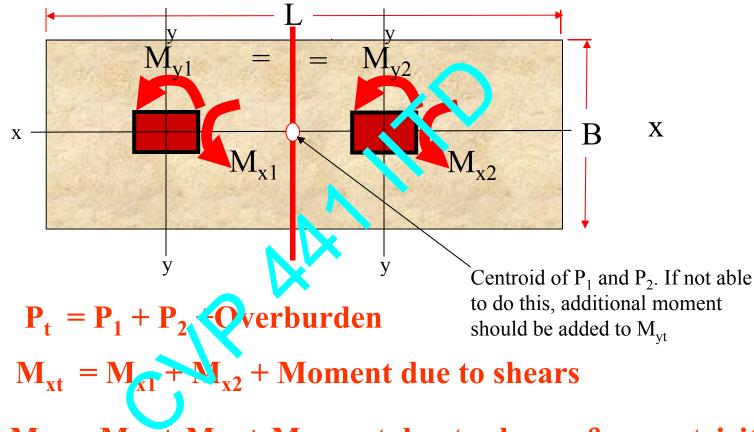
ISOLATED FOOTING UNDER BIAXIAL BENDING




M_x, M_y: TOTAL MOMENTS ABOUT THE BASE OF FOOTING

ISOLATED FOOTING UNDER BIAXIAL BENDING

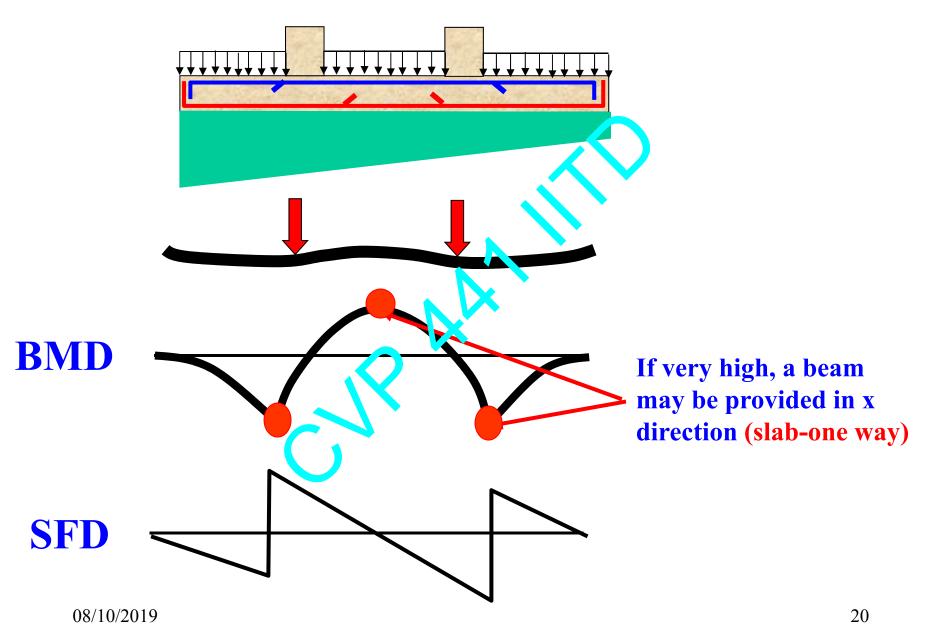
ISOLATED FOOTING UNDER BIAXIAL BENDING



Similarly,
Reinforcement in y direction
can be determined

Design Steps:

- (1) Size of footing to satisfy base pressure requirements
- (2) Design of base for bending
- (3) Check for one-way shear
- (4) Check for two-way shear
- (5) stability against sliding and overturning


COMBINED FOOTING

 $M_{vt} = M_{v1} + M_{y2} + Moment due to shears & eccentricity$

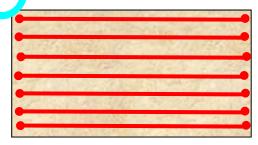
 $\sigma_{1,2,3,4}$ = To be determined as in the case of isolated footing (assumption: Combined footing behaves as a rigid base)

COMBINED FOOTING

DISTRIBUTION OF TENSILE REINFORCEMENT

(Section 34, pg. 65, IS 456:2000)

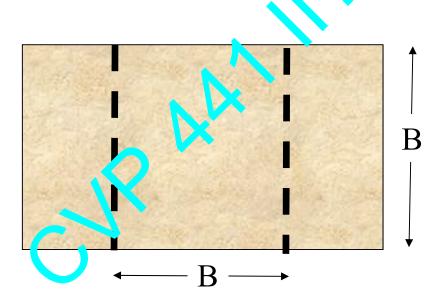
One way footing:


Should be uniformly distributed across entire width

Two way square footing:

Should be uniformly distributed across entire width in each direction

Two way rectangular footing:


Reinforcement in longer direction should be uniformly distributed across entire width

DISTRIBUTION OF TENSILE REINFORCEMENT

Two way rectangular footing:

Reinforcement in shorter direction should be distributed in three strips

$$A_{centre} = \frac{A_{total}}{1+(L/B)}$$

Balance steel to be uniformly distributed in exterior strips