
GAUSSIAN PROCESSES FOR ONLINE

LEARNING-BASED MODEL PREDICTIVE

CONTROL

SUMANTA GHOSH

(2019EEY7566)

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY DELHI

JUNE 2022

Gaussian Processes for Online Learning-Based

Model Predictive Control

Thesis submitted by

SUMANTA GHOSH

(2019EEY7566)

under the guidance of

Dr.Shubhendu Bhasin

partial fulfilment of the requirements
for the award of the degree of

Master of Science (Research)

Department of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY

DELHI

June 2022

————————————————————-

Certificate

This is to certify that the thesis entitled “Gaussian Processes for Online Learn-
ing Based Model Predictive Control”, submitted by SUMANTA GHOSH
to the Indian Institute of Technology Delhi, for the award of the degree of Master
of Science (Research) in Electrical Engineering, is a record of the original, bona
fide research work carried out by him under my supervision and guidance. The the-
sis has reached the standards fulfilling the requirements of the regulations related to
the award of the degree.

The results contained in this thesis have not been submitted in part or in full to any
other University or Institute for the award of any degree or diploma to the best of
our knowledge.

Prof. Shubhendu Bhasin
Department of Electrical Engineering,
Indian Institute of Technology Delhi.
Date: May 2022.

Acknowledgements

I would like to thank my thesis supervisor Prof. Shubhendu Bhasin for his guid-

ance, advice, support, encouragement, and patience during my MS(R) studies. I

would highly appreciate the overall guidance, constructive suggestions and recom-

mendations provided my SRC members Prof. Indra Narayan Kar, Prof. Deepak

Patil, Prof. Sivananthan Sampath for different aspects of my MS(R) journey. I am

always grateful to the other faculty and staff members of the IIT Delhi, Control and

Automation group for their help and support.

Sumanta Ghosh

Abstract

Optimal control is a well established field that focuses on finding a control law

that minimizes a certain performance measure. This kind of control methodology

is also known as model driven approach as they relied heavily on the availability

of a suitable system model. Finding a suitable model of the system is not always

possible which limits its application. Learning-based methods are useful when very

little information is available. These methods learn the unknown system model

from the available data, opening up a large potential application of learning-based

approaches.

Model predictive control (MPC) is a very popular approach to solve the optimal

control problem. It can handle constraints on the system states and the inputs

ensuring safety of the system. The performance of MPC depends on the model

of the system, as it uses the model to simulate the future states. Thus, having

an appropriate system model is very critical for the performance of the control

law. Gaussian processes (GPs) are very useful for modelling the system dynamics

from data as it quantify the uncertainty within the learnt model by providing a

probabilistic interpretation of it. The uncertainty in the model is then utilised to

predict the future states in order to improve the performance.

Learning system dynamics in an online setting is very significant since it aids in deal-

ing with changing circumstances. Due to the limitations with streaming data, GPs

are not a popular choice for online learning. This dissertation proposes a learning

based MPC approach that overcomes the barrier of online learning with Gaussian

processes by using kernel interpolation scheme and achieves better performance than

the existing offline learning based MPC.

Contents

Certificate

Acknowledgements

Abstract

Contents

List of Figures

Abbreviations

1 Introduction 1

1.1 Preliminaries . 2

1.1.1 Dynamical Systems . 2

1.1.2 Optimal Control . 3

1.1.3 Model Predictive Control . 4

1.1.4 Reinforcement Learning . 6

1.1.4.1 Elements of Reinforcement Learning 7

1.1.4.2 Model Based Reinforcement Learning 8

1.1.4.3 Uncertainty in Model Learning 9

1.1.5 Learning Based MPC . 10

1.2 Problem Statement . 12

1.3 Literature Survey . 13

1.4 Contribution . 14

1.5 Thesis Organization . 15

2 Gaussian Processes for System Identification 17

2.1 Introduction . 17

2.2 Gaussian Processes . 18

2.3 Gaussian Process Regression . 19

Contents

2.4 Covariance Function . 23

2.5 Hyper-parameter Learning . 25

2.6 Prediction at Uncertain Inputs . 27

2.6.1 Numerical Approximation . 29

2.6.2 Exact Moment Matching . 30

2.6.3 Mean Equivalent Approximation 31

2.6.4 Linearization of the Posterior GP Mean Function 31

2.7 Gaussian Process for Modeling Dynamical System 33

2.7.1 Gaussian Process State-space Model 34

2.7.2 Online Learning and Limitations 38

2.8 Woodbury Inversion for Structured Kernel Interpolation (WISKI) . . 40

2.8.1 Computing the Moments of Posterior Distribution 41

2.9 Summary . 43

3 Online Learning Based MPC 45

3.1 Introduction . 45

3.2 MPC Controller Design . 45

3.2.1 Prediction Model and State Uncertainty Propagation 47

3.2.2 Cost Function . 49

3.2.3 Chance Constraints Formulation 50

3.3 Online Gaussian Process-based MPC 53

4 Simulation Results 55

4.1 Pendulum Problem . 55

5 Conclusion and Scope for Future Work 61

5.1 Future Work . 62

5.1.1 Mathematical Validation . 62

5.1.2 Experimental Validation . 62

A DERIVATIONS 63

A.1 Linearization of Posterior Mean Function 63

A.2 MPC Cost Function . 65

A.3 Chance Constraint Formulation . 66

A.4 Uncertainty Propagation . 67

Bibliography 69

List of Figures

1.1 Schematic diagram of MPC . 5

1.2 The basic reinforcement learning scenario 8

1.3 The schematic diagram of learning-based MPC 11

2.1 An example of Gaussian process prior with zero mean and squared
exponential covariance function. 22

2.2 An example of a Gaussian process posterior distribution using 12 data
points with the same mean and covariance specifications as in Figure
2.1. 23

2.3 Gaussian process regression with SE kernel and Matern kernel. 24

2.4 Gaussian process regression with SE kernel and different length-scales 27

2.5 An example of GP prediction at a Gaussian test input. 28

2.6 GP marginal predictive distribution at a Gaussian test input using
different approximation methods. 33

2.7 Graphical representation of learning dynamical system 34

2.8 Graphical representation of Gaussian process state space model . . . 35

2.9 State trajectory of Van der Pol oscillator: x1(t); left plot: 50 training
data points; right plot: 100 training data points. 37

2.10 State trajectory of Van der Pol oscillator:x2(t); left plot: 50 training
data points; right plot: 100 training data points. 37

2.11 Phase portraits of Van der Pol oscillator; left plot: 50 training data
points; right plot: 100 training data points. 38

4.1 Pendulum System . 56

4.2 State trajectory, angular position (degree); left plot: unconstrained;
right plot: constraint on input.The red dotted line represents the ref-
erence signal (p ref). The blue line represents the result corresponding
to the nominal model based MPC (p nom). The results for GPMPC
with offline learning (p gp) and the proposed approach (p gp online)
is shown by the yellow and green line respectively. 58

4.3 State trajectory, angular velocity (degree/sec.); left plot: unconstrained;
right plot: constraint on input . 58

4.4 Control input, torque (Nm); left plot: unconstrained; right plot: con-
straint on input . 59

List of Figures

4.5 Evaluation of the cost function; left plot: unconstrained; right plot:
constraint on input . 59

Abbreviations

MPC Model Predictive Control

RL Reinforcement Learning

ML Maximum Likelihood

GP Gaussian Process

GPMPC Gaussian Process Model Predictive Control

NN Neural Network

MM Moment Matching

ELF Extended Kalman Filter

Chapter 1

Introduction

Classical optimal control techniques have been successfully applied in several fields,

including process control [1], aerospace [2], robotics [3], economics, and finance [4].

The performance of these techniques depends on the availability of good system

model. Recent developments in computing, communication, and sensing technolo-

gies have opened new potential applications of optimal control. Examples include

autonomous vehicles, physical human-robot interaction, and advanced process con-

trol. The system dynamics corresponding to these applications is often unknown or

partially known with uncertainties. Uncertainties may arise from various sources.

For example, the mass distribution of a payload carried by an unmanned aerial vehi-

cle (UAV) may not be known a priori or the real-time weather may change suddenly

(e.g., snow, rain, and hail). Deriving an accurate analytical model for these sys-

tems is often very difficult, sometimes impossible, depending on the complexity of

the system. As a result, the performance of these techniques becomes unsatisfac-

tory, motivating the necessity of an alternative approach to tackle the problem of

model-driven approach.

Machine learning techniques have become very popular thanks to the availability of

good quality data. Applications of these techniques are widespread, including image

1

Chapter I. Introduction 2

classification [5], computer vision [6], natural language processing [7], time series

analysis [8], autonomous driving [9], and robotics [10]. The supervised learning

paradigm is useful for obtaining a model from labeled data with little or no prior

information about the model. Popular supervised learning models include Linear

regression, Neural networks (NN), and Gaussian processes (GPs). Another popular

machine learning paradigm is reinforcement learning, where an agent learns to map

a sequence of observations to actions to achieve a particular goal by maximizing a

numerical reward function over time.

1.1 Preliminaries

1.1.1 Dynamical Systems

A very important component of control theory is dynamical systems; systems that

evolve over time. Discrete-time dynamical systems where the time variable is treated

as discrete are considered in this work. Throughout this thesis, we consider a deter-

ministic discrete-time dynamical system where the behavior of the system at every

time step k can be completely described by the state xk at that time. Control input

uk is applied at every time step to drive the system to the desired state.

xk+1 = f (xk,uk) (1.1)

Here, f is the system’s transition function, commonly referred to as the system

evaluation function. In our scenario, f is either unknown or only partially known.

In the control literature, the availability of a nominal model derived from the first

principles is a common assumption. For this case, we can divide f into two parts: h ,

which consists of the known component or the nominal model and g , the unknown

Chapter I. Introduction 3

or uncertain part which represents the initially unmodeled dynamics of the system.

These kinds of systems can be represented as,

xk+1 = h(xk,uk) + g(xk,uk) (1.2)

1.1.2 Optimal Control

Optimal control deals with the problem of finding a control law for a dynamical

system that achieves a certain optimality criterion over a period of time. The opti-

mality criterion is usually defined with respect to an objective function, a function

of state and control variables. The goal is to find a control law that achieves a min-

imum value of the objective function over a specified amount of time maintaining

the system constraints.

We consider discrete-time dynamical system defined in Eq. (1.1) with states xk ∈

X ⊂ Rnx and control input uk ∈ U ⊂ Rnu . We assume that the system obeys

the Markov property; that is, given the current state xk, and the current control

input, uk, the next state xk+1 is completely specified by the state transition function

(f). The system dynamics is considered as known and we have direct access to the

noisy measurements of the system states. The objective function J is defined as the

cumulative sum of stage costs, l(xk,uk).

J =
N−1∑
k=0

l(xk,uk) (1.3)

The aim is to find a control sequence (u0,u1, ...,uN−1) and corresponding state

sequence that (x0,x1, ...,xN) that minimizes the objective function. In the next

Chapter I. Introduction 4

section, we will discuss a class of control algorithms that repeatedly solves a finite-

horizon constrained optimal control problem to achieve the desired system perfor-

mance.

1.1.3 Model Predictive Control

Model Predictive Control (MPC), also known as receding horizon control, is one of

the most successful and popular advanced control methods. It has a wide range

of applications, including hybrid electric vehicles [11], smart buildings [12], process

control [13, 14], control of electrical drives [15, 16, 17], flight control [18], etc. The

reason behind the popularity of MPC is its constraint handling capabilities. In real

world systems, the control variables are constrained due to the physical limitations

of actuators. Also constraints can be imposed on the states owing to the safety

reasons. If the system variables satisfies the specified system constraints for all the

time, the system is said to be safe. Suppose for a system with transition function

xk+1 = f(xk,uk), the system constraint set is denoted by X for system variable x

and the control constraint set is denoted by U for control u .Then the system can

be defined as safe if it satisfies the following condition,

∀k ∈ N : f(xk,uk) ∈ X , uk ∈ U

MPC utilizes the system model for iterative prediction of its future states to compute

the objective function. Thus, the performance of a MPC controller depends on avail-

ability of an accurate model of the system, a suitable cost function, and constraints

formulation. At each instant of time an optimal control problem, Eq.(1.4)-Eq.(1.8)

is solved over a finite prediction horizon using the current measurement of the state

as the initial point. Solving the optimization problem results in an optimal sequence

Chapter I. Introduction 5

Figure 1.1: Schematic diagram of MPC

of controls, from which the first control is applied to the system. The dynamical

system changes its state, and new state measurements are obtained. Again, the

optimal control is solved at the next time instant with new initial point shifting

the prediction horizon by one step. This process is repeated continuously as time

progress. A schematic diagram of MPC is shown in Figure 1.1.

The MPC online optimization problem at time instant k is defined in Eq.(1.4) -

Eq.(1.8). As discussed before, some of the essential parts of the optimization problem

are the model of the system Eq.(1.5), state constraints Eq.(1.6), input constraints

Eq.(1.7). The objective function which is the total accumulation of the stage costs

(li) over time plus the terminal cost (lf) is represented in Eq.(1.4). The initial point

Chapter I. Introduction 6

of the optimization problem is updated with new state measurements in Eq.(1.8).

min
u0,u1,..,uN−1

(
lf (xN) +

N−1∑
i=0

li(xi,ui)

)
(1.4)

s.t. xi+1 = f (xi,ui) (1.5)

xi+1 ∈ X (1.6)

ui ∈ U (1.7)

x0 = x(k) (1.8)

The theory of model predictive control has been well developed, mostly for systems

with linear dynamics. As the optimization problem is solved on-line, problems like

stability and recursive feasibility of the optimization problem may need to be ad-

dresses. The issue of stability and recursive feasibility of the on-line optimization

problem is broadly discussed in [19, 20, 21, 22]. The theory related to robust model

predictive control can be found in [23, 24].

1.1.4 Reinforcement Learning

Reinforcement learning [25] is a part of the machine learning paradigm that fo-

cuses on learning to find the control signal that minimizes a mathematical measure

that expresses a long-term objective. The idea of reinforcement learning (RL) is

closely related to optimal control and adaptive control. In the previous section, we

discussed optimal control problems in which the goal is to design controllers to mini-

mize a system-dependent objective function over time. Determining optimal control

policies for nonlinear systems often requires offline computations and knowledge of

the system dynamics. In contrast, adaptive controllers [26] learn online to control

unknown systems using real-time data measured along the trajectories. Usually,

Chapter I. Introduction 7

adaptive controllers are not designed to be optimal in the sense of minimizing a user

defined performance function. In reinforcement learning, ideas from adaptive control

and optimal control are combined. In the context of control systems, RL refers to

a class of methods that enable the design of adaptive controllers with approximate

solutions to the optimal control problem [27].

1.1.4.1 Elements of Reinforcement Learning

Reinforcement learning is a class of algorithms that solves a problem by learning

from interaction. The learner or the decision maker is called an agent. It interacts

with the environment- everything outside the agent. The agent performs actions; the

environment responds to these actions by presenting new situations to the agents.

The environment also emits rewards, special numerical values that the agent tries

to maximize over time. A typical setting for the agent-environment interaction for

the reinforcement learning task is shown in Figure 1.2. In control theory, the agent

and the environment are known as the controller and the plant, respectively. The

reward in reinforcement learning plays a role similar to the stage cost function in

optimal control, but in an opposite sense. Throughout this work, we consider control

system-related terminologies.

Reinforcement learning algorithms can be divided into two groups, model-free re-

inforcement learning algorithms (MFRL) and model-based reinforcement learning

algorithms (MBRL). The model-free reinforcement learning algorithms [28] focuses

on learning the value functions from interaction with the system. This type of al-

gorithm has achieved a large amount of success mostly in computer games and sim-

ulated worlds [29]. The reason behind the limited application of these algorithms

is data inefficiency. On the other hand, model-based reinforcement algorithms [30]

learn a predictive model of the system and then use the learned model for decision

Chapter I. Introduction 8

Figure 1.2: The basic reinforcement learning scenario

making. This kind of algorithms are highly data-efficient and suitable for real-world

applications. In addition, the learned model is reward-independent and can be gen-

eralized to new tasks in the same environment. This enables the application of

MBRL algorithms to a wide variety of fields. In the next section, we will discuss

briefly the model-based reinforcement algorithms.

1.1.4.2 Model Based Reinforcement Learning

In model-based reinforcement learning, the dynamics of the system is learned us-

ing the available data (observations). Learning the dynamics is a task of fitting

an approximation f̃ of the true transition function, given the measurements D =

{(xi,ui),xi+1}ni=1 of the real world. The learned dynamics model f̃ is then used

to predict the distribution over the state trajectories resulting from applying a se-

quence of control inputs. We can compute the total expected cost over a state

Chapter I. Introduction 9

trajectories and this gives different expected long-term cost for different candidate

control sequences. The optimal control sequence gives the solution to the reinforce-

ment learning problem. Mathematically, this can be formulated as follows.

u⋆ = argmin
u

N∑
k=0

Exk,uk
[l(xk,uk)] (1.9)

Where, Ex,u [l(x,u)] represents the expectation of l(x,u) with respect to random

variables x and u. p(x,u) denotes the joint distribution of x and u.

Ex,u [l(x,u)] =

∫
x∈X

∫
u∈U

l(x,u)p(x,u)dxdu

1.1.4.3 Uncertainty in Model Learning

In model-based reinforcement learning, the learned model plays a crucial role in

achieving the desired performance of the system, as it is used to simulate the system

internally to predict the long-term behavior of the system without directly inter-

acting with it. Based on these simulations, the optimal policy is found. Use of a

learned model to speculate on the future behavior of the system often results in poor

performance as any small error in it can accumulate while predicting the long-term

behavior.

State prediction errors can be mitigated largely by properly incorporating uncer-

tainty into the learned dynamical model. There are two distinct classes of uncer-

tainty [31] associated with a learned model. One is aleatoric uncertainty, arises due

to inherent stochasticity of the system. For example, the model may be less certain

about the data because of the high observational noise. The second type is epis-

temic uncertainty, which emphasizes our confidence in the learned model under the

assumption of true data. This kind of uncertainty arises due to limited amount of

Chapter I. Introduction 10

data or the use of a less expressive model class. Isolating epistemic uncertainty is

important in model-based reinforcement learning as it helps in better understanding

of the learned model.

One way to reduce epistemic uncertainty is the use of a large amount of data.

In the limit of infinite data, epistemic uncertainty vanishes, but for data sets of

finite size, this uncertainty remains and induces error while predicting the state

transitions. Another way to reduce the epistemic uncertainty is the use of more

expressive model class. Artificial neural networks (NNs) are a very popular choice for

learning an unknown function from data. NNs are scalable to large data-sets, have

constant inference time, and most importantly have the potential to represent more

complex models. However, NNs suffer from over-fitting on small data sets, resulting

in poor state predictions far in the future at the early stages of learning. Bayesian

non-parametric Gaussian processes are known to work well in low data regimes

[32]. It gives a distribution over the function that quantifies the uncertainty in the

prediction. This measure of uncertainty is used further to make better prediction

of future states. That is why Gaussian processes are more suitable for model-based

reinforcement learning. We will discuss Gaussian processes in great detail in Chapter

2.

1.1.5 Learning Based MPC

Previously we have seen two different approaches to solve the optimal control prob-

lem. One uses a system model to analyze future behavior and the other learns the

model from the available data. Both have their own limitations. MPC requires an

exact system model, well defined objective function, and constraints. For this rea-

son, designing an MPC controller requires expert knowledge of the system. RL uses

Chapter I. Introduction 11

minimal domain knowledge and learns from interactions with the world. MPC solves

the constraint optimization problem online, requiring more computational resources

but it guarantees the constraint satisfaction making it highly useful in safety-critical

task. On the other hand, RL does not guarantee constraint satisfaction.

Learning-based model predictive control (LMPC) combines these two approaches.

It uses a statistical model to learn the unknown dynamics from the measurements,

thereby reducing the dependency on expert knowledge. Then it uses the learned

model to plan the future behaviour to evaluate the objective function and solves

a nonlinear constraint optimization problem at each time instant. So, LMPC per-

forms two important steps, (i) learning the unknown system dynamics and planning

through future states and (ii) determining the control by solving MPC optimization

problem. The first step may be performed offline, where the model of the system is

learned from previously collected data. The work in this thesis is founded on online

learning since it gives flexibility with changing system conditions. We also consider

that the nominal model of the system derived from the first principles is available.

A schematic diagram of LMPC is shown in Figure 1.3.

Figure 1.3: The schematic diagram of learning-based MPC

Chapter I. Introduction 12

1.2 Problem Statement

We consider a deterministic discrete-time dynamical system given by

xk+1 = f (xk,uk) = h(xk,uk) + g(xk,uk) (1.10)

where xk ∈ X ⊂ Rnx and uk ∈ U ⊂ Rnu . We assume that the system dynamics is

partially known with the nominal model h and, the unknown or uncertain part g .

We use a probabilistic model, ĝ to learn the unknown system dynamics from the

available data. The use of a probabilistic model gives us the flexibility to use the

model uncertainty (epistemic uncertainty) in our state prediction. This results in a

stochastic state distribution. We formulate the constrained optimal control problem

as a stochastic MPC problem as given by Eq. (1.11)-(1.15). The constraints are

formulated as chance constraints in Eq. (1.13) and Eq. (1.14) with the probability

of constraint satisfaction px and pu for states and control, respectively. These values

are user-defined and reflects the confidence on the model. At each time instant, the

LMPC solves the following optimization problem.

min
u0,u1,..,uN−1

E

(
lf (xN) +

N−1∑
i=0

li(xi,ui)

)
(1.11)

s.t. xi+1 = h(xi,ui) + ĝ(xi,ui) (1.12)

Pr(xi+1 ∈ Xi+1) ≥ px (1.13)

Pr(ui ∈ Ui) ≥ pu (1.14)

x0 = x(k) (1.15)

Chapter I. Introduction 13

1.3 Literature Survey

System identification based on learning a dynamical model from data has gained sig-

nificant attention in recent years [33, 34, 35]. Learning dynamical system has reduced

the dependency on idealized assumptions about the system [36]. For example, [37]

uses a feedforward neural network for dynamical system identification and control.

Bayesian non-parametric models have become very popular in system identification

due to their learning ability with a smaller data set and quantification of uncertainty

about the model [38, 39]. Planning through the learned system dynamics becomes

challenging with imperfect state information. Efficient methods to evaluate GPs for

Gaussian input have been developed in [40, 41, 42, 43]. A framework for learning

and control using Gaussian process-based modeling and uncertainty propagation is

given in [44, 45].

Efficient Gaussian process model based predictive control was first presented in [46].

Learning time-varying disturbances using GP models to improve MPC controller

performance is shown in [47]. In [48] a learning-based nonlinear model predictive

control algorithm is proposed to achieve tracking performance in challenging off-

road terrain. This highlights the expressiveness of the Gaussian process regression

model for learning complex dynamics from data. [49] developed a data-efficient re-

inforcement learning algorithm with model predictive control policy. This achieves

better data efficiency in performing certain benchmark tasks compared to existing

reinforcement learning algorithms. [50, 51] presented a learning based model pre-

dictive control approach that integrates a nominal system with additive nonlinear

part modeled as GP and developed a probabilistic reachable set [52] based chance

constraint formulation approach. An application of the approach presented in [51]

for data driven control of quad-rotors is demonstrated in [53]. A data driven model

Chapter I. Introduction 14

predictive control for trajectory tracking with robotic arm was shown [54]. This pa-

per developed an approach that combines a GP based model trained offline with an

additive disturbance model estimated online by an extended Kalman filter (EKF).

Application of Gaussian processes in online learning scenario is limited due to its

higher computational cost for prediction and hyperparameter learning. The sparse

approximation technique mentioned in [50, 51] uses the inducing points method [55]

that summarizes the whole data set into a subset of constant size. This approx-

imation achieves better scalability of model to large data sets but with reduced

performance. In addition, online learning typically uses measurements that are

available sequentially. To update the GP with new measurements one has to train

it again on the whole data set augmented with the new data points. That makes

application of GP in online setting more challenging. The approach presented in [56]

uses a fixed-size data set to train the model and discards the oldest data point when

new measurements are available. This gives a local approximation of the function,

forgetting the previous experience.

1.4 Contribution

In learning based MPC the model learning is usually performed offline using the pre-

viously collected data. Then the learned model is used for predicting future states.

Difficulty arises when LMPC is used in online learning scenario when measurements

are available sequentially. Existing approaches for online LMPC use a fixed size data

set to overcome the difficulty of online learning and develop rule to update data set

with new measurements. Use of fixed size data set limits the expressiveness of the

model class. The proposed approach does not consider any constraint on the size of

Chapter I. Introduction 15

the data set and learns an unknown model online. Our contribution lies in devel-

oping an approach that combines kernel interpolation approach for online Gaussian

processes with model predictive control to achieve better performance in an online

learning scenario.

1.5 Thesis Organization

The thesis is organised into five chapters. Each chapter is composed in a self-

consistent manner. The summary of the work presented in each chapter is briefly

outlined as follows:

Chapter 1: This is an introductory chapter that elaborates the motivation of the

research, problem formulation, literature review, contribution, and an outline of the

thesis.

Chapter 2: In this chapter we introduce Gaussian processes for system identifi-

cation. This contains an overview of Gaussian process regression, hyperparameter

tuning, prediction with uncertain input (Gaussian), Gaussian process state-space

model (GPSS), and online structured kernel interpolation for online Gaussian pro-

cess regression (WISKI).

Chapter 3: In this chapter we discuss our approach to online learning based model

predictive control. We discuss model learning and uncertainty propagation, selection

of cost function and chance constraint formulation.

Chapter 4: Simulation results are presented in this chapter with a detailed analysis.

Chapter 5: This chapter presents the conclusion of the thesis and a brief discussion

of the future work.

Chapter 2

Gaussian Processes for System

Identification

2.1 Introduction

Learning from data has become a very powerful tool to understand system with

complex dynamics. Having a suitable dynamical model of the system is very cru-

cial for designing controllers, as the model is used to make predictions about the

evolution of the system under a control effort. Data-driven approaches are often

termed “black box modelling” as they allow us to model complex dynamics without

understanding the underlying mathematics. In the data-driven approach, a class

of models is typically chosen in advance, and the observations are then utilised to

select a model from that particular model class. This procedure is referred to as

model selection in machine learning paradigm [57]. For nonlinear systems, selecting

a suitable class of models to fit the data is usually very challenging. If the model

17

Chapter II. Gaussian Processes 18

class is too simplistic, then the resulting model will be a poor approximate (under-

fit the data) of the real system. Use of a more expressive model class on a small

data set suffers from the over-fitting problem. The approximate model of the system

performs well on the previous observations (training data) but generalizes poorly to

unseen data points.

Bayesian non-parametric models are very useful for learning complex dynamical

systems from data. These are a class of models that are parameterised directly by

observations. As a result, they can adapt their model complexities to the data.

A very popular Bayesian non-parametric model class is Gaussian processes (GPs).

GPs give a probabilistic interpretation of the data that allows us to quantify the

uncertainty within the model. This is very important for learning with limited

amounts of data, as we can always find a large number of models within a model class

that can possibly fit the data. This type of model uncertainty is known as epistemic

uncertainty. Gaussian processes are capable of capturing epistemic uncertainty and

reflects its confidence on the model by providing a probabilistic interpretation of

data. Deterministic models offer model confidence even when there are few or no

data points since they only provide one explanation for the data. This will have an

adverse effect on systems with safety-critical application. In the following section,

we will discuss Gaussian processes in great detail.

2.2 Gaussian Processes

Gaussian process(GP)[58] is a generalization of the Gaussian probability distribution

over functions. It is formally defined as a collection of random variables, any finite

number of which have a joint Gaussian distribution. Although a GP is of infinite

dimension, we are interested in a finite subset of it. It can be completely specified by

Chapter II. Gaussian Processes 19

its mean function m(x) and its covariance function k(x,x′). For a random process

f(x), these two are defined as,

m(x) = E[f(x)] (2.1)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′)] (2.2)

In the previous expressions the random variables are the function values at location

x. For GPs, any finite subset of the function values is distributed jointly as Gaussian.

The argument x of the random function plays the role of index of the random process.

GPs are formally represented as,

f(x) ∼ GP(m(x), k(x,x′)) (2.3)

Usually, the mean function is defined to be zero. But one can choose other mean

functions such as constant, polynomial, etc, depending on the data. Covariance

function plays an important role in Gaussian process as it encodes our assumptions

about the function to be learned. Notice that in Eq. (2.2), the covariance between

the function values depends on the corresponding input locations, not on the actual

values of the function. For GPs, the covariance function defines similarity or nearness

of the function values, which means that two input points that are close to each

other are likely to have similar function values. We will talk more about covariance

function in context of regression problem in section 2.4.

2.3 Gaussian Process Regression

Supervised learning is a class of machine learning algorithms that uses labeled train-

ing data to learn an unknown mapping from feature space to target space. It can

Chapter II. Gaussian Processes 20

be divided into regression and classification problems. In the regression problem, we

are interested in the prediction of continuous quantities, whereas in the classifica-

tion problem, the outputs are a discrete class of labels. In this literature, we mainly

focus on regression problems using Gaussian process models. Here, we consider an

unknown function f(x), that maps a D-dimensional input x to a scalar function f .

Further, we assume that we have access to noisy observations, {yi}ni=1 of the latent

function corresponding to a set of n input points, {xi}ni=1. The input data points

are stacked vertically to construct the input data matrix X of dimension n × D.

Similarly, we can construct the n-dimensional target vector, y and the tuple of them

is formally known as training data set, D = (X,y). We are interested in making an

inference between the inputs and targets by finding the posterior distribution on the

unknown function values given the observed data and a GP prior of the function.

We consider that the true function values are corrupted by additive independent

and identically distributed zero mean Gaussian noise ϵ, with noise variance σ2
ϵ .

yi = f(xi) + ϵi (2.4)

The above assumption results in Gaussian likelihood of the data. For a data set of

n points, the likelihood of the data can be computed as

p(y|f,X) = N (y; f, σ2
ϵ I) =

n∏
i=1

N (yi; fi, σ
2
ϵ) (2.5)

where, N (µ, σ2) represents a Gaussian distribution with mean µ and variance σ2.

Finding the posterior distribution of the Gaussian Process on function values at new

input points (test inputs) is our subject of interest. From the definition of GP, these

function values, f⋆ at test inputs, X⋆ will be jointly Gaussian with the observations

Chapter II. Gaussian Processes 21

y, y
f⋆

 ∼ N


m(X)

m(X⋆)

 ,

K(X,X) + σ2
ϵ I K(X,X⋆)

K(X⋆,X) K(X⋆,X⋆)


 (2.6)

In the above equation, K(X⋆,X) denotes a n⋆×nmatrix of the covariances evaluated

at all pairs of test and train inputs points. Other matrices, K(X,X), K(X,X⋆),

K(X⋆,X⋆) are represented in similar manner. Conditioning the joint distribution

in (2.6) on the observations, we obtain the predictive distribution for the Gaussian

process regression,

p(f⋆|y,X,X⋆) = N (m̄, K̄) (2.7)

with posterior mean function,

m̄ = m(X⋆) +K(X⋆,X)[K(X,X) + σ2
ϵ I]

−1(y−m(X) (2.8)

Assuming the prior mean function as zero, we can rewrite the predictive posterior

mean as

m̄ = K(X⋆,X)[K(X,X) + σ2
ϵ I]

−1y (2.9)

The expression for covariance of the posterior GP is,

K̄ = K(X⋆,X⋆)−K(X⋆,X)[K(X,X) + σ2
ϵ I]

−1K(X,X⋆) (2.10)

An example Gaussian process prior is shown in Figure 2.1. We have used zero-mean

and squared exponential covariance function to specify the Gaussian process. The

signal variance of the SE kernel is taken as 1.2 and the value lengthscale hyperpa-

rameter is 0.3. The noise variance used in this example is 0.01. The blue line in

the middle is the specified mean, and the blue-shaded region shows two standard

deviations on either side of the mean. The faded “wiggly” lines are functions drawn

from the prior distribution. In figure 2.2, the posterior distribution of the Gaussian

Chapter II. Gaussian Processes 22

process with 12 data points is shown. We have used the same mean and covariance

function specifications as before. The posterior mean function changes according

to the data points as seen in the figure. The uncertainty region collapses around

the data points and expands in the region as we move away from them. Similarly,

functions drawn from the posterior distribution converges near to the data points,

showing the confidence of the model at the data points.

Until now, we have discussed the Gaussian process regression for a scalar unknown

function. But in practice it may happen that the underlying function is vector-

valued, or more formally we want to make prediction for multivariate targets. In

this case, we assign independent Gaussian processes to each target dimension. For

example, if the latent vector-valued function has dimension E, we perform E in-

dependent GP regressions given the train inputs for each dimension based on the

data.

Figure 2.1: An example of Gaussian process prior with zero mean and squared
exponential covariance function.

Chapter II. Gaussian Processes 23

Figure 2.2: An example of a Gaussian process posterior distribution using 12
data points with the same mean and covariance specifications as in Figure 2.1.

2.4 Covariance Function

The choice of covariance function significantly determines the mathematical proper-

ties (e.g., differentiability, boundedness) of the function. Not every arbitrary func-

tion of the input pair x, x′ is a valid covariance function. A covariance function (also

known as kernel) is said to be valid if it is positive semidefinite. A popular choice

for the covariance function is the squared exponential (SE) kernel due to its suitable

mathematical properties. SE kernel is infinitely differentiable, leading to a GP that

has mean-square derivatives1 of all orders. As a result the approximate function is

smooth. SE kernel has the form,

kSE(x,x
′) = σ2

SE exp

(
−1

2
(x− x′)⊺Λ−1(x− x′)

)
(2.11)

1Chapter 4, Gaussian Processes in Machine Learning [58]

Chapter II. Gaussian Processes 24

The above covariance function has two parameters, a scale term σ2
SE, usually known

as signal variance and a set of length-scales, described in terms of matrix Λ which

determines the smoothness of the function. Informally we can say length-scales de-

termines the length of the “wiggles” in the function. The signal variance determines

the variation of the function from the mean. The assumption of smoothness for SE

kernel sometimes becomes unrealistic for real-world problems. Though a more suit-

able covariance function is the Matern [59] class of kernels for its realistic smoothness

assumption, throughout this literature, we will consider the SE kernel only.

Figure 2.3: Gaussian process regression with SE kernel and Matern kernel.

The smoothness of a modelled function can be viewed as the quantification of simi-

larity among neighbouring points, x and x′ which provides a measure of similarity

between the function values, f(x) and f(x′). If the neighbouring points are similar

then the conditional probability of one of the points f(x′) given x, x′, f(x) will

have less uncertainty. On the other hand if the neighbouring points are not similar

then the same conditional probability will try to revert back to the prior probability,

resulting high uncertainty around the points. In Figure 2.3 Gaussian process regres-

sion with the SE kernel and the Matern kernel on same training data set with zero

prior mean function is shown. Compared to the functions drawn from the Gaussian

Chapter II. Gaussian Processes 25

Process posterior with Matern kernel (“wiggly” lines on the right plot), the func-

tions drawn from the Gaussian Process posterior (“wiggly” lines on the left plot)

with SE kernel appeared to be smooth. This can be easily seen from the ripples in

the sampled function from the posterior of the GP with Matern kernel.

2.5 Hyper-parameter Learning

In the above section, we have seen that the prediction of the Gaussian process

regression depends on the choice of a covariance function from different families

of it. Also, a particular class of covariance functions usually has a number of free

parameters, and the shape of the latent function is highly influenced by them. These

parameters are commonly known as “hyperparameters” as they parameterise the

distribution of the function rather than the function itself. In Bayesian learning,

choosing a covariance function for a particular application consists of selecting a

setting of hyperparameters within a class and comparing across different classes.

This process is usually known as “model selection” [58] in Bayesian learning. In most

cases, a particular family of covariance functions is chosen beforehand, depending

on the availability of prior information and desired mathematical property of the

function to approximate. Then the model selection lies in finding a suitable set of

hyperparameters that satisfies some predefined criterion. This process is known as

the training of a GP.

We can take care of hyperparameters by finding the posterior distribution on the

function values by averaging over the hyperparameters θ,

p(f|y,X) =

∫
p(f|y,X,θ)p(θ)dθ (2.12)

Chapter II. Gaussian Processes 26

where p(θ) is the prior distribution over the hyperparameters. Solving the inte-

gration in Eq. (2.12) is complex and may not be analytically tractable. One can

use an approximate inference method like Markov Chain Monte Carlo (MCMC) or

variational inference or can maximize the marginal likelihood of the data as given

below with respect to the hyperparameters θ,

p(y|θ,X) =

∫
p(y|f,X,θ)p(f|X,θ)df (2.13)

This approximation approach is known as type-II maximum likelihood (ML) method

for model selection. Eq. (2.13) is analytically solvable with Gaussian noise assump-

tion that gives a Gaussian likelihood of the data. The log-marginal likelihood can

then be written as,

log p(y|θ,X) = −1

2
(y−m(X))⊺[K(X,X) + σ2

ϵ I]
−1(y−m(X))

+
1

2
| K(X,X) + σ2

ϵ I | −N

2
log 2π (2.14)

In Eq. (2.14) the first term is known as data fit term as it contains the observations,

the second term is known as the model complexity term, and the last term is a nor-

malizing constant. The model complexity term penalizes the optimization objective

depending upon the covariance function. Partial derivatives of the log-marginal like-

lihood w.r.t. the hyperparameters can be found easily. We can use gradient based

optimization method to find the optimal value of them, though global optima is not

guaranteed. One can argue that ML-II optimization may lead to over-fitting of the

data, causing generalization error, but it is not a big problem as we are optimizing

w.r.t. the hyperparameters to adapt the distribution over the function rather than

finding the best fit of the function.

Examples of Gaussian process regression with varying length-scale hyperparameter

Chapter II. Gaussian Processes 27

Figure 2.4: Gaussian process regression with SE kernel and different length-
scales

of SE kernel is shown in Figure 2.4. We have considered three cases. In all of

these cases the values of other two hyperparameters (signal variance =1.2 and noise

variance 2=0.3) are kept fixed. The values of the lengthscale hyperparameter for

the three plots from left to right are l = 0.05, l = 0.09, l = 0.16, respectively. As

we move from left to right the correlation between functional values decreases. The

right most plot corresponds to the optimized lengthscale hyperparameter.

2.6 Prediction at Uncertain Inputs

In section 2.3 we have seen the expression for the predictive mean and variance of

the GP posterior distribution at known input points x⋆. However it may happen

that the test inputs are uncertain, we only know the distribution of it. For this case,

the predictive distribution can be found by averaging over the uncertainty in the

input point,

p(f ⋆|y,X) =

∫
p(f ⋆|y,X,x⋆)p(x⋆)dx⋆ (2.15)

2Sometimes the noise variance, σ2
ϵ is not considered is a hyperparameter, though it plays an

analogous role and can be treated as a hyperparameter. For more details check [58]

Chapter II. Gaussian Processes 28

This new predictive distribution, p(f ⋆|y,X) is known as the marginal predictive dis-

tribution, as it is obtained by marginalizing the predictive distribution with respect

to the test input x⋆.

A common assumption about the uncertain test inputs is that they are distributed

as Gaussian with known mean and variance, x⋆ ∼ N (µ⋆,Σ⋆). As a Gaussian input,

x⋆ is mapped through a nonlinear function, the resulting predictive distribution will

not be Gaussian as shown in Figure 2.5. Computing the analytical integration of

Eq. (2.15) becomes impossible as it can not be easily parameterized in terms of any

Figure 2.5: An example of GP prediction at a Gaussian test input.

Chapter II. Gaussian Processes 29

standard distributions. There are different approaches to approximate the posterior

distribution. We will discuss some of them in the following sections.

2.6.1 Numerical Approximation

The predictive distribution can be found by performing a numerical approximation

of the integral in Eq. (2.15) using simple Monte Carlo approach [60],

p(f ⋆|y,X) ≃ 1

T

T∑
t=1

p(f ⋆|y,X,x⋆t) (2.16)

where, x⋆t are independent samples drawn from p(x⋆). In Figure 2.5 prediction of

a Gaussian process regression at a test input distributed according to the bottom

plot is shown. The top right plot shows a GP posterior based on the training data.

The blue histogram at top left shows the true marginal predictive distribution. To

generate the true marginal predictive distribution, 100,000 samples are drawn from

the input distribution. These input samples are then propagated through the model

trained with the available data. These 100,000 predicted values are used to estimate

the marginal predictive density.

Even though the integration of Eq.(2.15) may be calculated using sampling-based

techniques, it might be beneficial to identify a parametric expression for the posterior

distribution. Also, sampling based techniques are usually time consuming and not

suitable for fast systems. To find an approximate analytic solution of the integration,

the marginal predictive distribution is approximated with a Gaussian distribution.

For this case, the problem becomes the computation of the mean and variance of

the approximated Gaussian distribution.

Chapter II. Gaussian Processes 30

2.6.2 Exact Moment Matching

In exact moment matching [42, 61] method the predictive distribution is approxi-

mated by a Gaussian that possesses the same mean and variance of the true predic-

tive distribution, thus known as exact moment matching. The predictive mean can

be found by the law of iterated expectation,

E[f ⋆|y,X] = Ex⋆∼p(x⋆)

[
Ef⋆∼p(f⋆|y,X,x⋆)[f

⋆|x⋆]|µ⋆,Σ⋆
]

= Ex⋆ [m(x⋆)|µ⋆,Σ⋆] + Ex⋆ [m̄(x⋆)|µ⋆,Σ⋆]

= Ex⋆ [m(x⋆)|µ⋆,Σ⋆] + Ex⋆ [k(x⋆,X)|µ⋆,Σ⋆]β

(2.17)

where β = [K(X,X)+σ2
ϵ I]

−1(y−m(X)). In the above expression, the expectation

over the covariance function can be computed in closed form for squared exponential

kernel. Similarly, predictive variance can be found using the law of total variance,

V[f ⋆|y,X]

= Vx⋆∼p(x⋆)

[
Ef⋆∼p(f⋆|y,X,x⋆)[f

⋆]|µ⋆,Σ⋆
]
+ Ex∼p(x⋆)

[
Vf⋆∼p(f⋆|y,X,x⋆)[f

⋆]|µ⋆,Σ⋆
]

= Vx⋆ [m(x⋆)|µ⋆,Σ⋆] + 2C [m(x⋆),k(x⋆,X)]β + β⊺Vx⋆ [k(x⋆,X)]β+

E [k(x⋆,x⋆)]− E
[
k(x⋆,X)

[
K+ σ2

ϵ I
]−1

k(X,x⋆)
]

(2.18)

In Eq. (2.18) the variance and covariance terms can be computed in closed form

for the squared exponential kernel. The above expressions are derived for a one-

dimensional regression problem. An extension to the multivariate regression problem

is given in [32].

Chapter II. Gaussian Processes 31

2.6.3 Mean Equivalent Approximation

It is a simple and computationally cheap method to compute the marginal predictive

distribution. In this method we only consider the mean of the input distribution

and make prediction with respect to it.

E[f ⋆|y,X] = m̄(µ⋆) (2.19)

V[f ⋆|y,X] = K̄(µ⋆) (2.20)

Mean equivalent approximation neglects the uncertainty in the input distribution

which induces model error. This leads to poor approximations for iterative multiple

step ahead prediction. In [42] it was demonstrated that with increase in prediction

horizon model errors will accumulate to give larger error for later stage of prediction.

2.6.4 Linearization of the Posterior GP Mean Function

An alternative way to find the predictive distribution is to linearize the posterior

GP mean function [43] in Eq.(2.9) around the mean of the test input distribution.

Using results for mapping a Gaussian distribution through linear models, we get the

moments of the approximated posterior Gaussian distribution. The predictive mean

is computed by evaluating the posterior GP mean in Eq.(2.9) at µ⋆, i.e.,

E[f ⋆|y,X] = m̄(µ⋆) (2.21)

The expression for predictive variance is given by,

V[f ⋆|y,X] = K̄(µ⋆) +∇x⋆m̄(µ⋆)Σ⋆∇x⋆m̄(µ⋆)⊺ (2.22)

Chapter II. Gaussian Processes 32

The derivation of the above expression is shown in A.1. Though the moment match-

ing method gives better approximation of the mean and variance of the marginal

predictive distribution, its application is limited due to the requirement of some

expensive computations. The computational complexity of moment matching for a

single time step is O(n2E2D), where n is the number of GP training points, D is

the input dimension and E is the dimension of the latent function. On the other

hand the computational complexity of linearizing the posterior GP mean function

is O(n2ED) for a single time step. As we can see, linearizing the posterior mean

function is relatively computationally cheaper as the number of output dimensions

increases, resulting in faster computation. Sometimes, moment matching may also

induce model error as the true predictive distribution may not be Gaussian or uni-

modal. Both approaches scale directly with input and output dimensions, as well as

with the number of training data points, making them computationally expensive

in high-dimensional spaces.

In Figure 2.6 the predictive distribution of Gaussian process regression with Gaussian

test input (bottom plot) using different approximation methods is shown (top left).

With all three methods, we are approximating the true predictive distribution with

a Gaussian, although the true predictive distribution may not be unimodal. As

we can see, the first and second moments of the predictive distribution computed

using the moment matching method matched closely with the true distribution.

These two still differ in shape that induces prediction error. On the other hand,

linearizing the posterior GP mean method works well locally and tends to capture

the characteristics near the mean of input test point but underestimate the variance

when the true predictive distribution is not unimodal as shown in the figure.

Chapter II. Gaussian Processes 33

Figure 2.6: GP marginal predictive distribution at a Gaussian test input using
different approximation methods.

2.7 Gaussian Process for Modeling Dynamical Sys-

tem

In section 1.1.1 we have seen that dynamical systems play a key role in control.

Depending on the complexity, analytical model of the system may or may not be

available. Gaussian process regression can be used to model the unknown dynamics

of the system from available data. We consider a discrete-time, continuous-state

dynamical system with latent state xt at time t. We consider that we have access

Chapter II. Gaussian Processes 34

to a sequence of noisy measurements {y1,y2,yT}. In addition, we assume that

control input ut can be applied to drive the system to a desired state. This control

input may be a function of noisy measurement yt. We wish to learn a model of the

system using these information.

Figure 2.7: Graphical representation of learning dynamical system

Fig. 2.7 shows a graphical representation of the above-mentioned problem [61]. At

every time step we make observations y of the latent variable x through a function

g that may be unknown. The control input u depends on the observation through

a policy π. The transition dynamics between the hidden states is represented by a

nonlinear unknown function f which depends on both the previous state and the

control.

2.7.1 Gaussian Process State-space Model

As discussed in section 2.3, GP regression models can be used to learn an unknown

function from data with little prior knowledge of the system. It captures the un-

certainty within the model class by returning a probability distribution over the

Chapter II. Gaussian Processes 35

unknown function rather than a point estimate. In our case we place a GP prior on

the unknown transition function f(xt).

f ∼ GP (m, k) (2.23)

As mentioned before, zero-mean GP prior with squared exponential kernel is our

choice for the regression problem. We introduce a random variable ft+1 to represent

the GP function evaluated at xt,

ft+1 = f (xt) (2.24)

yt = xt + ϵt (2.25)

For a system with control input, f(xt, ut), we use augmented state control vector x̂t

to represent the feature vector in our regression problem.

x̂t = [x⊺
t u⊺

t]
⊺ (2.26)

Figure 2.8: Graphical representation of Gaussian process state space model

Figure 2.8 shows the graphical representation of Gaussian process state space model

Chapter II. Gaussian Processes 36

where the random variables f represent GP functions. Notice that the GP functions

are connected fully to each other as represented by the black thick line. For the

D dimensional state space, we use D independent GPs to model the mapping from

current states and control inputs to each state at the next time instant.

f 1 ∼ GP
(
m1(x̂t), k1(x̂

i
t, x̂

j
t)
)

(2.27)

f 2 ∼ GP
(
m2(x̂t), k2(x̂

i
t, x̂

j
t)
)

...

fD ∼ GP
(
mD(x̂t), kD(x̂

i
t, x̂

j
t)
)

Notice that in the above expressions (2.27) each independent GP model has a sep-

arate set of hyperparameters for the covariance function, although their training

features are the same. Next we will see an example of Gaussian process regression

for learning transition dynamics of a system. We consider the Van der Pole equation

given in [62] with the parameter value, ε = 1. We use Gaussian process state space

model to learn the unknown dynamics from the data. n = data points are generated

using the true dynamics with additive Gaussian noise. The learned model is used

to predict the function in future. The state trajectories and phase plots are shown

in Figure 2.9, 2.10 and 2.11 respectively. We used two independent GPs to model

the transition dynamics of the two states.

For the first case (left plots) we used n = 50 noisy data points along the trajectory

for training the GPs, while for the second case (right plots) we used n = 100 noisy

data points along the trajectory. The blue-shaded region in the state trajectory plots

shows the uncertainty in the model. For the first case, the GP model produces good

result near the data points. It induces errors while predicting in the region beyond

Chapter II. Gaussian Processes 37

the current data points, delivering higher uncertainty. This uncertainty measure is

very useful for learning system dynamics as it reflects our confidence on the model.

As we collect more data model uncertainty reduces improving the performance of

the model which can be seen from the right plots. The phase plot for two different

cases is shown in Figure 2.11. As we can see there is a significant deviation from the

true trajectory at the region with no data points. For the right plot the deviation

reduces converging to the true trajectory, which shows that GP regression models

are capable of capturing complex nonlinear patterns within the data.

Figure 2.9: State trajectory of Van der Pol oscillator: x1(t); left plot: 50 training
data points; right plot: 100 training data points.

Figure 2.10: State trajectory of Van der Pol oscillator:x2(t); left plot: 50 training
data points; right plot: 100 training data points.

Chapter II. Gaussian Processes 38

Figure 2.11: Phase portraits of Van der Pol oscillator; left plot: 50 training data
points; right plot: 100 training data points.

2.7.2 Online Learning and Limitations

As a non-parametric model, Gaussian processes use the whole data set while making

a prediction. With a larger data set, the computational complexities of GP training

and prediction becomes high, limiting its application to smaller data sets. For a data

set of size n, training a GP using gradient-based evidence maximization (Eq.2.14)

requires O(n3) computations. The reason behind it is that at each step we have

to find the inversion of covariance matrix Knn. With E target dimensions, the

complexity becomes O(En3) for GP training.

For prediction at uncertain input with linearization of posterior mean function, with

D input dimensions and E target dimensions the computational complexity becomes

O(n2ED) for a single time step (for exact moment matching it is O(n2E2D)). For

online learning we update the training data set with new measurements. Thus, the

size of training data set grows with time. Every time, a new measurement comes we

have to train the GP model on the entire data set (the new data point is augmented

to the old data set) making the use of GP models prohibitive in online learning

scenario.

Chapter II. Gaussian Processes 39

In the scalable GP literature, there are two main approaches for addressing this issue.

One approximates the kernel matrix globally by removing unnecessary information

from the data set and kernel matrix. This kind of global approximations can be

achieved by (i) forming a subset of training data with m ≪ n points [63]. This gives

a smaller, but constant, size kernel matrix Kmm; (ii) forming a sparse kernel matrix

[64] by removing the uncorrelated entries of Knn; (iii) Using inducing point methods

resulting in Nystrom approximation of the kernel matrix Knn ≈ KnmKmmKmn [55,

65]. Similar to the regression data matrixX defined in 2.3, the inducing point matrix

is defined and denoted as U. The other approach uses the divide-and-conquer rule

to find a local approximate of the training data [66, 67]. Global approximations are

capable of capturing global patterns, though they often filter out local information

because of the limited global inducing set. Local approximations give better results

by focusing on the local patterns of the data set, but sometime suffer from local over-

fitting and risk of discontinuous prediction. A detailed discussion of these methods

can be found in [68].

Some of the sparse approximation methods mentioned above can be applied to the

online learning scenario. The model should be able to adapt to the real time data

arriving sequentially. Also, it has to be scalable to large data sets as new data

comes continuously. [69, 70] extends the sparse GP using induction points approach

to online learning but sacrifices some performance by fixing hyperparameters to get

constant time update. A framework for deploying Gaussian process probabilistic

models in streaming data setting was developed in [71]. This presented two prob-

abilistic approaches (O-SVGP and O-SGPR) to update posterior distribution and

the hyperparameters in online manner. However, as shown in [72] these approaches

suffer from generalization error. [72] presented an approach using structured kernel

interpolation [73] to achieve constant time online update with respect to the size

Chapter II. Gaussian Processes 40

of the data set n. We will discuss online structured kernel interpolation [72] in the

next section.

2.8 Woodbury Inversion for Structured Kernel In-

terpolation (WISKI)

Structured kernel interpolation (SKI) generalizes the inducing point methods for

scalable Gaussian processes. It provides a unified way for fast kernel approximation

through kernel interpolation. WISKI [72] combines SKI and the Woodbury identity

to provide online learning with a constant time update in N . SKI approximates

the N ×M cross-covariance matrix (KXU) evaluated at each of N training and M

inducing point pairs [55] by interpolating the M ×M covariance matrix KUU .

KXU ≈ WKUU (2.28)

where W is a N ×M sparse matrix of interpolation weights. Similarly, KXX can be

approximated as

KXX + σ2
ϵ I ≈ K̃XX + σ2

ϵ I ≈ KXUKUUKUX + σ2
ϵ I ≈ WKUUW

⊺ + σ2
ϵ I (2.29)

The above expression is the building block of the online Gaussian process approxi-

mation. Though Eq.(2.29) offers a fast approximation of the kernel matrix, we are

more interested in finding the inverse. Using the Woodbury matrix identity (a spe-

cial case of matrix inversion lemma) to the inverse of the above expression, the SKI

Chapter II. Gaussian Processes 41

kernel inverse can be written as

(
K̃XX + σ2

ϵ I
)−1

=
1

σ2
ϵ

I− 1

σ2
ϵ

WMW⊺ (2.30)

where M = (σ−2
ϵ KUU +W⊺W)

−1
. If we consider that the above information is

available after t data points, then after observing (t + 1)th data point M can be

updated by a rank one update,

M−1
t+1 = M−1

t +wt+1w
⊺
t+1 (2.31)

where, wt+1 is the interpolation vector for the (t+ 1)th data point.

2.8.1 Computing the Moments of Posterior Distribution

Substituting Eq.(2.30) in Eq.(2.9), Eq.(2.10) and Eq.(2.14) we get the following

expression for posterior mean (Eq.(2.32)), posterior covariance function (Eq.(2.33))

and marginal log-likelihood (Eq.(2.34)).

m̄ = w⊺
x⋆
MW⊺y (2.32)

k̄(x⋆i ,x⋆j) = σ2
ϵw

⊺
x⋆i

Mwx⋆j
(2.33)

log(p(y|x,θ)) = − 1

2σ2
ϵ

(y⊺y− y⊺WMW⊺y)

− 1

2

(
log(KUU)− log(|M|) + (N −M) log σ2

ϵ

)
(2.34)

In the above expression, wx⋆ represents the interpolation vector corresponding to

the test input. Computing Eq.(2.31) requires computation of K−1
UU . But sometimes

Chapter II. Gaussian Processes 42

the inverse of KUU will be ill-conditioned. For this case we need an approach that

uses KUU directly in the predictions. The above interpolation matrix can be ap-

proximated as W⊺W = LL⊺ as shown in [72]. Substituting this in Eq.(2.30) we get

the following equations.

M = σ−2
ϵ KUU − σ−2

ϵ KUULQ
−1L⊺σ−2

ϵ KUU (2.35)

Q = I+ L⊺σ−2
ϵ KUUL (2.36)

Using the above expressions the predictive mean, variance and the marginal likeli-

hood can be formulated as,

m̄ = w⊺
x⋆

(
σ−2
ϵ KUU(W

⊺y− Lb)
)
W⊺y (2.37)

k̄(x⋆i ,x⋆j) = σ2
ϵw

⊺
x⋆i

(
KUU(wx⋆j

− Lb)
)

(2.38)

log(p(y|x,θ)) = − 1

2σ2
ϵ

(
y⊺y− y⊺WKUUW

⊺y+ a⊺Q−1a
)

− 1

2

(
− log |Q|+ (N −M) log σ2

ϵ

)
(2.39)

In the above expression we can cache W⊺y, W⊺y and L. When new data arrives a

single updation step step can be perform to update these values. In the following

expressions (xt+1, yt+1) is the new data point available at time t+1. Similarly, wt+1

represents the weight vector corresponding to new data point.

(W⊺y)t+1 = (W⊺y)t + yt+1wxt+1 (2.40)

(y⊺y)t+1 = (y⊺y)t + y2t+1 (2.41)

Chapter II. Gaussian Processes 43

(W⊺W)t+1 = (W⊺W)t +wxt+1w
⊺
xt+1

(2.42)

2.9 Summary

Machine learning techniques are very useful for learning a model of the system from

data when few or no prior information of the system is available. The learned

model converges to the true system model in presence of infinite amount of data. In

smaller data region, these methods suffer from model generalization error. Bayesian

machine learning techniques work well in smaller data region as it quantifies the un-

certainty within the model. Gaussian processes are very popular in Bayesian learning

paradigm for learning a model with limited amount of data. It gives a probabilistic

interpretation of the data and quantifies the uncertainty within the prediction. A

Gaussian process can be fully specified by its mean and covariance functions. Usu-

ally, the mean function of a Gaussian Process is considered zero. Covariance function

provides a measure of similarity between two points. Squared exponential kernel is a

very popular choice for covariance function as functions modelled with this are very

smooth. Finding a closed form expression for predictive mean and covariance func-

tion of Gaussian Process posterior at uncertain test point (which can be represented

with probability distribution) is not possible. Moreover, the predictive distribution

may not be unimodal. A very effective approach to find the predictive mean and

variance is to approximate the posterior distribution by a Gaussian distribution.

Linearization of the posterior mean function around the mean of the uncertain test

point gives a good approximation of the true posterior distribution. This approach

is computationally cheap also.

Chapter II. Gaussian Processes 44

Though Gaussian Processes are very powerful in presence of limited amount of data,

it suffers when the number of training data points increases as it involves the com-

putation of the inverse of the covariance matrix. For learning a GP model from

sequential data, it has to be trained every time when a new data point is available.

This is computationally expensive as the size of the data set increases with time.

Structured kernel interpolation technique with Woodbury inversion gives us the free-

dom to update the posterior mean and variance of the predictive distribution, when

a new data point is available.

Chapter 3

Online Learning Based MPC

3.1 Introduction

In online learning-based model predictive control, we learn the unknown part of sys-

tem dynamics from the streaming data (noisy measurements) and use the learned

model to plan the future behavior. We use the structured kernel interpolation

method for online Gaussian process regression as discussed in Section 2.8 for ef-

ficient and online update of the model with new measurements. We use some of the

theory discussed in Section 2 in this section.

3.2 MPC Controller Design

We can divide this approach into three parts. The first part is learning a Gaussian

process prediction model from the streaming data. The model has to be updated

every time when a new measurement is available. The next step is the selection of a

suitable cost function and the last step lies in the formulation of chance constraints

45

Chapter III. Online Learning Based MPC 46

for tractable MPC optimization. In this section, we use k to denote an instant of

time and i = 0, 1, 2, ... represents future state starting at a particular time instant k.

We consider the design of model predictive controller for dynamical system discussed

in section 1.1.1. We assume that the nominal model of the system is known and

the system dynamics can be represented by Eq.(1.2). Further we consider that

the unknown part of the dynamical system g lies in a subspace spanned by Bd as

described below.

xk+1 = h(xk,uk) +Bd (g(xk,uk) + ϵk) (3.1)

with states x ∈ Rnx and control u ∈ Rnu . This is a common assumption for control

system design, and later we will see that this assumption significantly reduces the

computational burden by giving us the flexibility to select a subset of state space

that is assumed to be affected by uncertainty, as shown in [51]. The dimension of

Bd depends on our choice of uncertain states. For example, if we want to learn nd

states then dimension of Bd will be nx×nd. In the above equation, ϵ represents the

measurement noise as we are interested in estimating the unknown function g from

noisy, sequential observations of states and control. For this, we apply structured

kernel interpolation for online Gaussian process regression (WISKI) discussed in

section 2.8 to learn a statistical model of the unknown function g from available

data. At each time instant, the learned GP model is used to simulate the future

behavior of the system using iterative one-step ahead predictions. This results in

stochastic distributions of the simulated states. We formulate the optimal control

Chapter III. Online Learning Based MPC 47

problem in the stochastic MPC framework as proposed in [50].

min
{ui}

E

(
lf (xN) +

N−1∑
i=0

li(xi,ui)

)
(3.2)

s.t. xi+1 = h(xi,ui) +Bd (g(xi,ui) + ϵi) (3.3)

Pr(xi+1 ∈ Xi+1) ≥ px (3.4)

Pr(ui ∈ Ui) ≥ pu (3.5)

x0 = x(k) (3.6)

The optimization problem is solved over a sequence of control inputs. We use the

concept of probabilistic reachable set as discussed in [52, 50] to reformulate the

chance constraints deterministically.

3.2.1 Prediction Model and State Uncertainty Propagation

We apply structured kernel interpolation for online Gaussian process regression

(WISKI) discussed in [72] to estimate the unknown function g from sequential ob-

servations of states. We consider that the measurements are corrupted with i.i.d.

zero mean Gaussian noise with variance σ2
ϵ . Then we generate the regression targets

from the nominal model and the noisy measurements of states using the following

expression,

yk = g(xk,uk) + ϵk = B†
d (xk+1 − h(xk,uk)) (3.7)

In the above equation B†
d represents the Moore-Penrose pseudo-inverse of Bd. Often,

we know the linear model (xk+1 = Axk + Buk) of the dynamical system derived

from the first principles. Using this we can rewrite our regression data generation

Chapter III. Online Learning Based MPC 48

equation as,

yk = B†
d (xk+1 −Axk −Buk) (3.8)

= B†
d

(
xk+1 − Ãzk

)
(3.9)

where, Ã = [A B], and z⊺i = [x⊺
k u⊺

k]
⊺. The input feature vector of the regression

problem is the augmented state control vector zk ∈ Rnx+nu and at each time instant

k we have new measurements, Dk = {zk,yk}. We use Dk to update our model at

each time step k. This results in a stochastic distribution of the approximation of g .

We denote the Gaussian process approximate of unknown dynamics g from noisy

measurements as d. Being an affine transformation of Gaussian vector dk−1, xk

will also be a Gaussian vector. Then, xk and dk can be approximated as a jointly

Gaussian distribution at each step k as shown below.

xk

dk

 ∼ N (µk,Σk) = N


µx

k

µd
k

 ,

Σx
k Σxd

k

Σdx
k Σd

k


 (3.10)

The predicted mean µx
i+1 and the covariance Σx

i+1 can then be computed by using

approach similar to extended Kalman filtering. Derivations are shown in A.4.

µx
k+1 = h(µx

k,uk) +Bdµ
d
k (3.11)

=

[
A Bd

]
µx

k +Buk (3.12)

Σx
k+1 =

[
∇h(µx

k,uk) Bd

]
Σk

[
∇h(µx

k,uk) Bd

]⊺
(3.13)

=

[
A Bd

]Σx
k Σxd

k

Σdx
k Σd

k


A⊺

B⊺
d

 (3.14)

Chapter III. Online Learning Based MPC 49

The mean µd
k and the covariance matrix Σd

k of GP approximation, dk and the cross

covariance between states, xk and GP approximation, dk, Σ
xd
k can be computed at

each time instant using linearization of posterior mean of the Gaussian process with

respect to the mean of predicting input (section 2.6.4). The resulting equations can

be written as,

µd
k = µd(µx

k,uk) (3.15)

Σxd
k = Σx

k

(
∇xµ

d(µx
k,uk)

)⊺
(3.16)

Σd
k = Σd(µx

k,uk)+∇xµ
d(µx

k,uk)Σ
x
k

(
∇xµ

d(µx
k,uk)

)⊺
(3.17)

In the above discussion we consider that the control inputs are deterministic. The

extension to stochastic case is straightforward and can be computed by finding the

joint distribution of states, control and the GP approximation of unknown function.

3.2.2 Cost Function

In model predictive control, the most popular example of cost function function is a

quadratic cost on states and control. With the appropriate choice of weight matrices

Q ⪰ 0 and R ≻ 0 we can write the expression for quadratic cost as

l(xi − xr
i ,ui − ur

i) = ∥xi − xr
i∥

2
Q + ∥ui − ur

i∥
2
R (3.18)

where, xr and ur represents the reference signal. In our problem, the states are

distributed as Gaussian. This makes the cost function stochastic in nature. There

are two main approaches for selecting a cost function. One is to take certainty

equivalence approach, and use a quadratic cost function evaluated at the mean of

our state distribution. [53, 54] uses this approach where the cost function is given

Chapter III. Online Learning Based MPC 50

by

l(xi − xr
i ,ui − ur

i) = ∥µx
i − xr

i∥
2
Q + ∥ui − ur

i∥
2
R (3.19)

The other approach is to make use of the first and second moments of the states and

compute the expected value of the quadratic cost given in Eq.(3.18) with respect to

the state distribution [50].

E (l(xi − xr
i ,ui − ur

i)) = ∥µx
i − xr

i∥
2
Q + ∥ui − ur

i∥
2
R + tr (QΣx

i) (3.20)

The derivation of the expected quadratic cost function is given in A.2. We denote

the evaluation of the expected quadratic cost in terms of mean and variance as

E (l(xi − xr
i ,ui − ur

i)) = ci (µ
x
i − xr

i ,ui − ur
i ,Σ

x
i). In a similar way, we can compute

the terminal cost cN (µx
N − xr

N ,Σ
x
N).

3.2.3 Chance Constraints Formulation

In the problem formulation, we assumed that the system’s dynamics are unknown or

partially known. The unknown function is learned from the measurement data using

the probabilistic Gaussian process regression model. This results in a stochastic

belief about the state, which expresses the uncertainty in the system dynamics based

on the evidence. Due to the stochastic character of the problem, constraint fulfilment

in the traditional sense cannot be guaranteed. A naive approach will be the direct

use of expected state prediction for constraint satisfaction ignoring the uncertainty

in the prediction. A more sophisticated way of handling the constraints is the

construction of confidence sets,

Pr(x ∈ X) ≥ p (3.21)

Chapter III. Online Learning Based MPC 51

with the probability of constraint satisfaction p. This type of probabilistic represen-

tation of constraints is also known as chance constraint formulation.

In [50] probabilistic reachable sets are used to reformulate the chance constraints on

state using constraint tightening based on error exi = µx
i −xi. A probabilistic i -step

reachable set is defined in [52] as an extension of the concept of reachable sets to

stochastic systems.

Definition 3.1 (Probabilistic i -step Reachable Set). A set R is said to be a prob-

abilistic i -step reachable set (i -step PRS) of probability level p if

Pr(ei ∈ R|e0 = 0) ≥ p (3.22)

Given the i -step PRS Rx
i of probability level px for the state error exi tightened

constraints on the state can be defined with respect to the mean µx
i .

µx
i ∈ Zi = Xi ⊖Rx

i (3.23)

where ⊖ represents the Pontryagin set difference. The Pontryagin’s set difference

for two set P and Q is defined as, P ⊖ Q = {x ∈ Rn : x + q ∈ P ,∀q ∈ Q}.

With Gaussian state xi the uncertainty in each step i can be fully specified by the

covariance matrices Σx
i . Then i-step PRS sets can be computed as a function of

these covariance matrices [52]. Here, we consider the constrained set Xi given by a

single half-space constraint.

X hs
i =

{
x ∈ Rn | a⊺

ix ≤ bi

}
ai ∈ Rn, bi ∈ R+ (3.24)

Then the i-step PRS can be computed as a function of Σx
i using the quantile function

ϕ−1(px) of a standard Gaussian random variable at the probability of constraint

Chapter III. Online Learning Based MPC 52

satisfaction, px.

Rx (Σx
i) =

{
e ∈ Rn

∣∣∣∣a⊺
i e ≤ ϕ−1 (px)

√
a⊺
iΣ

x
i ai

}
(3.25)

The tightened state constraint can be computed as,

Zhs
i (Σx

i) =

{
z ∈ Rn

∣∣∣∣a⊺
i z ≤ b− ϕ−1 (px)

√
a⊺
iΣ

x
i ai

}
(3.26)

The tightening of the slab constraints can be derived in a similar way, X sl
i =

{
x |

|a⊺
ix| ≤ bi

}
, ai ∈ Rn, bi ∈ R+

Zihs (Σx
i) =

{
z ∈ Rn

∣∣∣∣a⊺
i z ≤ bi − ϕ−1

(
px + 1

2

)√
a⊺
iΣ

x
i ai

}
(3.27)

A derivation of tightened state constraints is shown in A.3. For stochastic control

input, we can similarly compute the tightened constraints using the i-step PRS.

Chapter III. Online Learning Based MPC 53

3.3 Online Gaussian Process-based MPC

Using the approximations discussed above, the learning-based MPC problem can be

reformulated as

min
{ui}

(
cf (µ

x
N − xr

N ,Σ
x
N) +

N−1∑
i=0

ci(µ
x
i − xr

i ,ui − ur
i ,Σ

x
i)

)
(3.28)

s.t. µx
i+1 = h(µx

i ,ui) +Bdµ
d(µx

i ,ui) (3.29)

Σx
i+1 = [∇h(µx

N ,Σ
x
N) Bd]Σi [∇h(µx

N ,Σ
x
N) Bd]

T (3.30)

µx
i+1 ∈ Zhs

(
Σx

i+1

)
(3.31)

ui ∈ U (3.32)

µx
0 = x(k), Σx

0 = 0 (3.33)

for i = 0, 1, ..., N − 1. At each instant of time, the solution of the optimal control

problem results in a sequence of optimal control u⋆
0,,u

⋆
N−1. The MPC control law

is obtained in a receding fashion by applying the first element u⋆
0 of the control se-

quence. The above non-linear MPC formulation results in a non-convex optimization

problem due to the computation of the predictive second moment of the state distri-

bution and finding a global optima is not guaranteed. We use Sequential Quadratic

Programming to solve this problem. Also, at every optimization step the function

evaluation depends on the prediction of GP. This makes solving the optimization

problem time-consuming. We applied our approach to the pendulum problem. In

the next chapter, we will show our results.

Chapter 4

Simulation Results

4.1 Pendulum Problem

We consider the problem of simple pendulum control as shown in Figure 4.1. The

aim is to position the pendulum arm vertically upward starting from a known initial

position. The system dynamics is described by a non-linear continuous-time model

of the system (for simulation purposes) [32]. The states and the control input of

the system are the angular position (rad) x1, the angular velocity (rad/sec) x2 and

the torque (N-m) applied to the system u. We consider that the approximate linear

model of the system is known. Euler’s method is used to discretize the linear part

of the system dynamics with sampling time, Ts = 50 ms. We assume that the

non-linearity only affects the angular velocity and we are interested in learning this

only. Then we can write, Bd = [0 1]⊺. Then the system dynamics becomes the

following.

xk+1 = Axk +Buk +Bdg(xk,uk) (4.1)

Matrix A and matrix B can be found in [32]. For simulating the true system g is

55

Chapter IV. Simulation Results 56

Figure 4.1: Pendulum System

computed using the values given in [32]. We use kernel interpolation-based online

Gaussian process regression discussed in section 2.8 to learn the unknown function

g . Initially, we do not have any data point. As time progresses we collect data and

the update the model at every time step. We considered the squared exponential

kernel, and the hyperparameters of the kernel are learned at every step. Initially,

the inducing points are taken on a three dimensional grid of 0.01× 0.01× 0.01. The

signal variance and the length-scale parameters are initialized randomly at small

values.

We considered quadratic cost function with Q = diag([5.0, 0.1]⊺) and R = 0.01.

The prediction horizon is chosen to be N = 12. We consider two cases for our

problem, one without any constraints on the system and the other with constraint

on control input (−3 ≤ u ≤ 3). For every case, we consider three scenarios for

future state prediction, (i) using only the nominal model, (ii) using the sparse GP

Chapter IV. Simulation Results 57

model learned offline with the nominal model, and (iii) using the proposed approach

of online learning with the nominal model. The results are shown in Figure (4.2)-

Figure (4.5). In every figure, the left plot shows the results without any constraints

on the system and case two shows the results with control constraints.

Figure 4.2 shows the angular position of the pendulum arm. The learning-based ap-

proaches, GPMPC with offline learning (yellow), and the proposed approach (green)

outperform the nominal model-based MPC which is not surprising. Initially, the

offline GPMPC performs well as compared to the proposed approach due to less un-

certainty in the learned model. The proposed approach starts with an empty data

set; thus,the uncertainty in the model remains high at the initial stage of learning.

As we collect more, the uncertainty reduces and the proposed algorithm works well,

eventually outperforming the offline GPMPC approach after some time. Similar

results can be seen for angular velocity also as shown in Figure 4.3. The plots for

control input is shown in Figure 4.4. In Figure 4.5, the plots for the MPC cost

function are shown. For offline GPMPC and nominal MPC we can see a monotonic

decrease in the cost function, but for the proposed approach it is not true due to

the initial uncertainty in the model.

Chapter IV. Simulation Results 58

Figure 4.2: State trajectory, angular position (degree); left plot: unconstrained;
right plot: constraint on input.The red dotted line represents the reference signal
(p ref). The blue line represents the result corresponding to the nominal model
based MPC (p nom). The results for GPMPC with offline learning (p gp) and
the proposed approach (p gp online) is shown by the yellow and green line respec-

tively.

Figure 4.3: State trajectory, angular velocity (degree/sec.); left plot: uncon-
strained; right plot: constraint on input

Chapter IV. Simulation Results 59

Figure 4.4: Control input, torque (Nm); left plot: unconstrained; right plot:
constraint on input

Figure 4.5: Evaluation of the cost function; left plot: unconstrained; right plot:
constraint on input

Chapter 5

Conclusion and Scope for Future

Work

This dissertation focuses on developing an approach that solves the optimal control

problem to achieve certain performance measure corresponding to a system with

partially known dynamics. This work comprises two parts. The first part includes

the identification of the unknown part of system dynamics from measurement data.

The concept of Bayesian supervised learning is used to learn the unknown part of

the transition function and quantify the uncertainty within the learned model. The

kernel interpolation-based method is used to overcome the difficulties of Gaussian

process regression with streaming data. In the second part, the model predictive

control technique is used to solve the optimal control problem that has the ability

to handle the system constraints ensuring the safety of the system. The learned

dynamics together with the nominal model is used to simulate the future behaviour

of the system. The uncertainty in the learned model is used for planning and chance

constraint formulation. The proposed approach achieves better performance than

the Gaussian process model predictive control approach with offline learning.

61

Chapter V. Conclusion 62

5.1 Future Work

Though the online learning based model predictive control with Gaussian processes

approach works well in the simulated environment, several open problem exists for

this approach.

5.1.1 Mathematical Validation

Gaussian processes with inducing point approximation generally works as black box

modelling. In this approach the information contained in the data set is summa-

rized by a set of pseudo input points. Showing mathematical analysis of recursive

feasibility and stability of the proposed MPC scheme is difficult. Future work lies in

developing a mathematical framework for the proposed approach ensuring stability

and recursive feasibility.

5.1.2 Experimental Validation

The main motivation behind online learning of the unknown system is that it be-

comes capable of working with a changing environment. Also, learning the unknown

dynamics of the system with Gaussian process model results in a nonlinear MPC

problem making its application difficult for a fast moving system. Though we have

applied the proposed approach in simulated environment to a simple pendulum prob-

lem, a successful test of the algorithm to a practical system will work as a proof of

concept. —————————————————

Appendix A

DERIVATIONS

A.1 Linearization of Posterior Mean Function

In linearization of the posterior mean function method [42], the posterior mean func-

tion is linearized using 1st order Taylor series expansion around µ⋆ to approximate

the mean of marginal predictive distribution.

E[f ⋆|y,X] = Ex⋆∼p(x⋆) [m̄(x⋆)]

≈ E [m̄(µ⋆) + (∇x⋆m̄(µ⋆))⊺ (x⋆ − µ⋆)] +O(2)

= m̄(µ⋆)

(A.1)

Marginal predictive variance is computed similarly,

V[f ⋆|y,X] = Vx⋆∼p(x⋆) [m̄(x⋆)] + Ex⋆∼p(x⋆)

[
K̄(x⋆)

]
= ∇x⋆m̄(µ⋆)Σ⋆∇x⋆m̄(µ⋆)⊺ + K̄(µ⋆)

(A.2)

63

Appendix A. APPENDIX CHAPTER TITLE 64

The first term can be computed as,

V [m̄(x⋆)] = V [m̄(µ⋆) +∇x⋆m̄(µ⋆) (x⋆ − µ⋆)]

= V [∇x⋆m̄(µ⋆) (x⋆ − µ⋆)]

= ∇x⋆m̄(µ⋆)V [(x⋆ − µ⋆)]∇x⋆m̄(µ⋆)⊺

= ∇x⋆m̄(µ⋆)Σ⋆∇x⋆m̄(µ⋆)⊺

(A.3)

The second term is be computed using Taylor series expansion of K̄ around µ⋆

E
[
K̄(x⋆)

]
= E

[
K̄(µ⋆) +

(
∇x⋆K̄(µ⋆)

)⊺
(x⋆ − µ⋆)

]
= K̄(µ⋆)

(A.4)

Then the mean of the predictive distribution at test input x⋆ becomes,

m̄ = k (x⋆,X)
(
K (X,X) + σ2

ϵ I
)−1

y

= k (x⋆,X)α

(A.5)

In the above expression, α = (K (X,X) + σ2
ϵ I)

−1
y, is independent of x⋆, therefore

to calculate the derivative of the posterior mean function we only have to differentiate

the kernel. For the squared exponential covariance function, the derivative of the

kernel between x⋆ and a training point xi is

∂k(x⋆,xi)

∂x⋆
=

∂

∂x⋆

{
σ2
SE exp

(
−1

2
(x⋆ − xi)

⊺Λ−1(x⋆ − xi)

)}
= k(x⋆,xi)

∂

∂x⋆

{
−1

2
(x⋆ − xi)

⊺Λ−1(x⋆ − xi)

}
= Λ−1(x⋆ − xi)k(x

⋆,xi)

(A.6)

Appendix A. APPENDIX CHAPTER TITLE 65

which is a D × 1 vector. Differentiating (A.5) with respect to x⋆ and substituting

(A.6) we get the expression of the derivative of the posterior mean function

∂m̄

∂x⋆
=

∂k(x⋆,X)

∂X
α

= −Λ−1X̃
⋆ (

k(x⋆,X)T ⊙α
) (A.7)

where, X̃
⋆
= [x⋆ − x1,x

⋆ − xN] is a D×N matrix. The derivative ∂m̄
∂x⋆ in (A.7) is

a vector of D× 1 dimension. ⊙ in the above expression represents the element-wise

product.

A.2 MPC Cost Function

The expression of the expected quadratic stage cost can be derived as follows.

E [l (xi − xr,ui − ur)] = E
[
(xi − xr)T Q (xi − xr) + (ui − ur)T R (ui − ur)

]
=

∫ ∫ [
(xi − xr)T Q (xi − xr) + (ui − ur)T R (ui − ur)

]
p(x,u)dxdu

=

∫ ∫ [
(xi − xr)T Q (xi − xr)

]
p(x,u)dxdu

+

∫ ∫ [
(ui − ur)T R (ui − ur)

]
p(x,u)dxdu

(A.8)

In (A.8) we will derive the first expression of right-hand side. The other expression

can be derived in a similar manner.

∫ ∫ [
(xi − xr)T Q (xi − xr)

]
p(x,u)dxdu (A.9)

Appendix A. APPENDIX CHAPTER TITLE 66

=

∫ ∫ [
(xi − xr)T Q (xi − xr)

]
p(u|x)p(x)dxdu

=

∫ [
(xi − xr)T Q (xi − xr)

]
p(x)dx

= xr⊺Qxr − 2

∫
xr⊺Qxip(x)dx+

∫
xi

⊺Qxip(x)dx

= xr⊺Qxr − 2xr⊺Qµx
i + µx

i
⊺ +

∫
(xi

⊺Qxi − µx
i
⊺Qµx

i) p(x)dx

=
[
(µx

i − xr)T Q (µx
i − xr)

]
+

∫
tr (Q (xix

⊺
i − µx

iµ
x
i
⊺))

=
[
(µx

i − xr)T Q (µx
i − xr)

]
+ tr (QΣx

i)

Similarly, we can derive the expression for the terminal cost.

A.3 Chance Constraint Formulation

The tightened state and control input constraints with respect to their mean can be

written as

µx
i ∈ Zi = Xi ⊖Rx

i (A.10)

µu
i ∈ Vi = Ui ⊖Ru

i (A.11)

From Eq. (A.10) we can say that,

µx
i ∈ Zi ⇒ Pr(xi = µx

i + exi ∈ X) ≥ Pr(exi ∈ Rx) ≥ px

Here we only consider the half-space constraints given by,

X hs
i =

{
x | h⊺

ix ≤ bi

}
hi ∈ Rn, bi ∈ R+ (A.12)

Appendix A. APPENDIX CHAPTER TITLE 67

We are interested in finding the marginal distribution of the error in the direction

of half space, h⊺
i e

x
i . With Gaussian state distribution the error distribution will also

be a Gaussian with mean and variance computed as below,

E [h⊺
i e

x
i] = E [h⊺

i (µ
x
i − xi)]

= 0

V [h⊺
i e

x
i] = E [(h⊺

i e
x
i)(h

⊺
i e

x
i)

⊺]

= h⊺
iE [(exi)(e

x
i)

⊺]hi

= h⊺
iE [(µx

i − xi)(µ
x
i − xi)

⊺]hi

= h⊺
iΣ

x
i hi

Using the quantile function of a standard Gaussian random variable ϕ−1 at the

probability of constraint satisfaction px, i -step PRS can be written as

Rx (Σx
i) =

{
e

∣∣∣∣h⊺
i e ≤ ϕ−1 (px)

√
h⊺
iΣ

x
i hi

}
(A.13)

A.4 Uncertainty Propagation

The state update equation can be written as,

xk+1 = h(xk,uk) +Bdd (A.14)

At k = 0, x0 is deterministic (known from the measurement). Then, x1 becomes

Gaussian.

x1 = h(x0,u0) +Bdµ
d
0 (A.15)

Appendix A. APPENDIX CHAPTER TITLE 68

For the next states, we use linearization of posterior mean approach to predict at

a Gaussian state. Similarly we can linearize h around µx
k to find our new update

equation for mean,

µx
k+1 = h(µx

k,uk) +Bdµ
d
k (A.16)

For variance updation we follow similar steps, that gives

Σx
k+1 = V [h(xk,uk) +Bdd]

= V [h(µx
k,uk) +∇xh(µ

x
k,uk)(xk − µx

k) +Bdd]

= ∇xh(µ
x
k,uk)Σ

x
k (∇xh(µ

x
k,uk))

⊺

+∇xh(µ
x
k,uk)Σ

xd
k B⊺

d +BdΣ
dx
k (∇xh(µ

x
k,uk))

⊺ +BdΣ
d
kB

⊺
d

=

[
∇xh(µ

x
k,uk) Bd

]Σx
k Σxd

k

Σdx
k Σd

k


∇xh(µ

x
k,uk)

⊺

B⊺
d


=

[
∇xh(µ

x
k,uk) Bd

]
Σk

[
∇xh(µ

x
k,uk) Bd

]⊺

(A.17)

References

[1] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation,

2004.

[2] I Michael Ross and Mark Karpenko. A review of pseudospectral optimal control:

From theory to flight. Annual Reviews in Control, 36(2):182–197, 2012.

[3] James E Bobrow, Steven Dubowsky, and John S Gibson. Time-optimal control

of robotic manipulators along specified paths. The international journal of

robotics research, 4(3):3–17, 1985.

[4] Robert Dorfman. An economic interpretation of optimal control theory. The

American Economic Review, 59(5):817–831, 1969.

[5] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard

Howard, Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition

with a back-propagation network. Advances in neural information processing

systems, 2, 1989.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521

(7553):436–444, 2015.

[7] Erik Cambria and Bebo White. Jumping nlp curves: A review of natural

language processing research. IEEE Computational intelligence magazine, 9(2):

48–57, 2014.

69

References 70

[8] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny.

An empirical comparison of machine learning models for time series forecasting.

Econometric reviews, 29(5-6):594–621, 2010.

[9] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and ma-

chine learning, volume 4. Springer, 2006.

[10] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-

thony Bharath. A brief survey of deep reinforcement learning. arXiv preprint

arXiv:1708.05866, 2017.

[11] Hoseinali Borhan, Ardalan Vahidi, Anthony M Phillips, Ming L Kuang, Ilya V

Kolmanovsky, and Stefano Di Cairano. Mpc-based energy management of a

power-split hybrid electric vehicle. IEEE Transactions on Control Systems

Technology, 20(3):593–603, 2011.

[12] Gianni Bianchini, Marco Casini, Daniele Pepe, Antonio Vicino, and Gio-

vanni Gino Zanvettor. An integrated mpc approach for demand-response heat-

ing and energy storage operation in smart buildings. In 2017 IEEE 56th Annual

Conference on Decision and Control (CDC), pages 3865–3870. IEEE, 2017.

[13] Xianzhong Chen, Mohsen Heidarinejad, Jinfeng Liu, and Panagiotis D

Christofides. Distributed economic mpc: Application to a nonlinear chemical

process network. Journal of Process Control, 22(4):689–699, 2012.

[14] B Holenda, E Domokos, A Redey, and J Fazakas. Dissolved oxygen control

of the activated sludge wastewater treatment process using model predictive

control. Computers & Chemical Engineering, 32(6):1270–1278, 2008.

References 71

[15] Arne Linder and Ralph Kennel. Model predictive control for electrical drives.

In 2005 IEEE 36th Power Electronics Specialists Conference, pages 1793–1799.

IEEE, 2005.

[16] Saverio Bolognani, Silverio Bolognani, Luca Peretti, and Mauro Zigliotto. De-

sign and implementation of model predictive control for electrical motor drives.

IEEE Transactions on industrial electronics, 56(6):1925–1936, 2008.

[17] Piotr J Serkies and Krzysztof Szabat. Application of the mpc to the posi-

tion control of the two-mass drive system. IEEE Transactions on Industrial

Electronics, 60(9):3679–3688, 2012.

[18] MM Kale and AJ Chipperfield. Stabilized mpc formulations for robust recon-

figurable flight control. Control Engineering Practice, 13(6):771–788, 2005.

[19] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM

Scokaert. Constrained model predictive control: Stability and optimality. Au-

tomatica, 36(6):789–814, 2000.

[20] Robert R Bitmead, Michel Gevers, and Vincent Wertz. Adaptive optimal con-

trol the thinking man’s gpc. 1990.

[21] R Berber. Control of batch reactors-a review (reprinted from methods of model

based process control, 1995). Chemical engineering research & design, 74(1):

3–20, 1996.

[22] James B Rawlings and Kenneth R Muske. The stability of constrained receding

horizon control. IEEE transactions on automatic control, 38(10):1512–1516,

1993.

References 72

[23] Alberto Bemporad and Manfred Morari. Robust model predictive control: A

survey. In Robustness in identification and control, pages 207–226. Springer,

1999.

[24] Pierre OM Scokaert and James B Rawlings. Constrained linear quadratic reg-

ulation. IEEE Transactions on automatic control, 43(8):1163–1169, 1998.

[25] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press, 2018.

[26] Shankar Sastry, Marc Bodson, and James F Bartram. Adaptive control: sta-

bility, convergence, and robustness, 1990.

[27] Frank L Lewis, Draguna Vrabie, and Kyriakos G Vamvoudakis. Reinforcement

learning and feedback control: Using natural decision methods to design optimal

adaptive controllers. IEEE Control Systems Magazine, 32(6):76–105, 2012.

[28] Sinan Çalışır and Meltem Kurt Pehlivanoğlu. Model-free reinforcement learning

algorithms: A survey. In 2019 27th Signal Processing and Communications

Applications Conference (SIU), pages 1–4. IEEE, 2019.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. 2013. URL http://arxiv.org/abs/1312.5602. cite

arxiv:1312.5602Comment: NIPS Deep Learning Workshop 2013.

[30] Thomas M Moerland, Joost Broekens, and Catholijn M Jonker. Model-based

reinforcement learning: A survey. arXiv preprint arXiv:2006.16712, 2020.

[31] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it

matter? Structural safety, 31(2):105–112, 2009.

http://arxiv.org/abs/1312.5602

References 73

[32] Marc Peter Deisenroth. Efficient reinforcement learning using Gaussian pro-

cesses, volume 9. KIT Scientific Publishing, 2010.

[33] Kenneth J Hunt, D Sbarbaro, R Żbikowski, and Peter J Gawthrop. Neural

networks for control systems—a survey. Automatica, 28(6):1083–1112, 1992.

[34] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey.

Cognitive processing, 12(4):319–340, 2011.

[35] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based rein-

forcement learning: Applications on robotics. Journal of Intelligent & Robotic

Systems, 86(2):153–173, 2017.

[36] Christopher G Atkeson, Andrew WMoore, and Stefan Schaal. Locally weighted

learning for control. Lazy learning, pages 75–113, 1997.

[37] John G Kuschewski, Stefen Hui, and Stanislaw H Zak. Application of feed-

forward neural networks to dynamical system identification and control. IEEE

Transactions on Control Systems Technology, 1(1):37–49, 1993.

[38] Gianluigi Pillonetto and Giuseppe De Nicolao. A new kernel-based approach

for linear system identification. Automatica, 46(1):81–93, 2010.

[39] Girish Chowdhary, Hassan A Kingravi, Jonathan P How, and Patricio A Vela.

Bayesian nonparametric adaptive control using gaussian processes. IEEE trans-

actions on neural networks and learning systems, 26(3):537–550, 2014.

[40] Joaquin Quinonero Candela, Agathe Girard, Jan Larsen, and Carl Edward

Rasmussen. Propagation of uncertainty in bayesian kernel models-application

to multiple-step ahead forecasting. In 2003 IEEE International Conference

on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).,

volume 2, pages II–701. IEEE, 2003.

References 74

[41] J Quinonero Candela. Learning with uncertainty-gaussian processes and rele-

vance vector machines. Technical University of Denmark, Copenhagen, 2004.

[42] Agathe Girard, Carl Rasmussen, Joaquin Q Candela, and Roderick Murray-

Smith. Gaussian process priors with uncertain inputs application to multiple-

step ahead time series forecasting. Advances in neural information processing

systems, 15, 2002.

[43] Agathe Girard, Carl Edward Rasmussen, J Quinonero-Candela, R Murray-

Smith, O Winther, and J Larsen. Multiple-step ahead prediction for non linear

dynamic systems–a gaussian process treatment with propagation of the uncer-

tainty. Advances in neural information processing systems, 15:529–536, 2002.

[44] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning

to control a low-cost manipulator using data-efficient reinforcement learning.

Robotics: Science and Systems VII, 7:57–64, 2011.

[45] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-

efficient approach to policy search. In Proceedings of the 28th International

Conference on machine learning (ICML-11), pages 465–472. Citeseer, 2011.

[46] Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, and Agathe

Girard. Gaussian process model based predictive control. In Proceedings of the

2004 American control conference, volume 3, pages 2214–2219. IEEE, 2004.

[47] Edgar D Klenske, Melanie N Zeilinger, Bernhard Schölkopf, and Philipp Hennig.

Gaussian process-based predictive control for periodic error correction. IEEE

Transactions on Control Systems Technology, 24(1):110–121, 2015.

References 75

[48] Chris J Ostafew, Angela P Schoellig, Timothy D Barfoot, and Jack Collier.

Learning-based nonlinear model predictive control to improve vision-based mo-

bile robot path tracking. Journal of Field Robotics, 33(1):133–152, 2016.

[49] Sanket Kamthe and Marc Deisenroth. Data-efficient reinforcement learning

with probabilistic model predictive control. In International conference on ar-

tificial intelligence and statistics, pages 1701–1710. PMLR, 2018.

[50] Lukas Hewing, Alexander Liniger, and Melanie N Zeilinger. Cautious nmpc

with gaussian process dynamics for autonomous miniature race cars. In 2018

European Control Conference (ECC), pages 1341–1348. IEEE, 2018.

[51] Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. Cautious model predic-

tive control using gaussian process regression. IEEE Transactions on Control

Systems Technology, 28(6):2736–2743, 2019.

[52] Lukas Hewing and Melanie N Zeilinger. Stochastic model predictive control for

linear systems using probabilistic reachable sets. In 2018 IEEE Conference on

Decision and Control (CDC), pages 5182–5188. IEEE, 2018.

[53] Guillem Torrente, Elia Kaufmann, Philipp Föhn, and Davide Scaramuzza.

Data-driven mpc for quadrotors. IEEE Robotics and Automation Letters, 6

(2):3769–3776, 2021.

[54] Andrea Carron, Elena Arcari, Martin Wermelinger, Lukas Hewing, Marco Hut-

ter, and Melanie N Zeilinger. Data-driven model predictive control for trajec-

tory tracking with a robotic arm. IEEE Robotics and Automation Letters, 4(4):

3758–3765, 2019.

References 76

[55] Joaquin Quinonero-Candela and Carl Edward Rasmussen. A unifying view

of sparse approximate gaussian process regression. The Journal of Machine

Learning Research, 6:1939–1959, 2005.

[56] Michael Maiworm, Daniel Limon, and Rolf Findeisen. Online learning-based

model predictive control with gaussian process models and stability guarantees.

International Journal of Robust and Nonlinear Control, 31(18):8785–8812, 2021.

[57] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge university press, 2014.

[58] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer

school on machine learning, pages 63–71. Springer, 2003.

[59] Marc G Genton. Classes of kernels for machine learning: a statistics perspective.

Journal of machine learning research, 2(Dec):299–312, 2001.

[60] Joaquin Quinonero-Candela. Learning with uncertainty: Gaussian processes

and relevance vector machines. PhD thesis, Technical University of Denmark

Lyngby, Denmark, 2004.

[61] Andrew James McHutchon et al. Nonlinear modelling and control using Gaus-

sian processes. PhD thesis, Citeseer, 2015.

[62] Hassan K Khalil. Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle

River, NJ, 2002. URL https://cds.cern.ch/record/1173048. The book can

be consulted by contacting: PH-AID: Wallet, Lionel.

[63] Krzysztof Chalupka, Christopher KI Williams, and Iain Murray. A framework

for evaluating approximation methods for gaussian process regression. Journal

of Machine Learning Research, 14:333–350, 2013.

https://cds.cern.ch/record/1173048

References 77

[64] Tilmann Gneiting. Compactly supported correlation functions. Journal of

Multivariate Analysis, 83(2):493–508, 2002.

[65] Michalis Titsias. Variational learning of inducing variables in sparse gaussian

processes. In Artificial intelligence and statistics, pages 567–574. PMLR, 2009.

[66] Robert B Gramacy and Herbert K H Lee. Bayesian treed gaussian process

models with an application to computer modeling. Journal of the American

Statistical Association, 103(483):1119–1130, 2008.

[67] Robert B Gramacy. lagp: large-scale spatial modeling via local approximate

gaussian processes in r. Journal of Statistical Software, 72:1–46, 2016.

[68] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When gaussian

process meets big data: A review of scalable gps. IEEE transactions on neural

networks and learning systems, 31(11):4405–4423, 2020.

[69] Marco F Huber. Recursive gaussian process: On-line regression and learning.

Pattern Recognition Letters, 45:85–91, 2014.

[70] Hildo Bijl, Jan-Willem van Wingerden, Thomas B Schön, and Michel Verhae-

gen. Online sparse gaussian process regression using fitc and pitc approxima-

tions. IFAC-PapersOnLine, 48(28):703–708, 2015.

[71] Thang D Bui, Cuong Nguyen, and Richard E Turner. Streaming sparse gaussian

process approximations. Advances in Neural Information Processing Systems,

30, 2017.

[72] Samuel Stanton, Wesley Maddox, Ian Delbridge, and Andrew Gordon Wilson.

Kernel interpolation for scalable online gaussian processes. In International

Conference on Artificial Intelligence and Statistics, pages 3133–3141. PMLR,

2021.

References 78

[73] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable struc-

tured gaussian processes (kiss-gp). In International conference on machine

learning, pages 1775–1784. PMLR, 2015.

[74] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,

Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,

Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[75] Matteo Saveriano, Yuchao Yin, Pietro Falco, and Dongheui Lee. Data-efficient

control policy search using residual dynamics learning. In 2017 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 4709–

4715. IEEE, 2017.

[76] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep

reinforcement learning in a handful of trials using probabilistic dynamics mod-

els. Advances in neural information processing systems, 31, 2018.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[78] Petros Drineas, Michael W Mahoney, and Nello Cristianini. On the nyström

method for approximating a gram matrix for improved kernel-based learning.

journal of machine learning research, 6(12), 2005.

[79] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control

for linear and hybrid systems. Cambridge University Press, 2017.

	Certificate
	Acknowledgements
	Abstract
	Contents
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Preliminaries
	1.1.1 Dynamical Systems
	1.1.2 Optimal Control
	1.1.3 Model Predictive Control
	1.1.4 Reinforcement Learning
	1.1.4.1 Elements of Reinforcement Learning
	1.1.4.2 Model Based Reinforcement Learning
	1.1.4.3 Uncertainty in Model Learning

	1.1.5 Learning Based MPC

	1.2 Problem Statement
	1.3 Literature Survey
	1.4 Contribution
	1.5 Thesis Organization

	2 Gaussian Processes for System Identification
	2.1 Introduction
	2.2 Gaussian Processes
	2.3 Gaussian Process Regression
	2.4 Covariance Function
	2.5 Hyper-parameter Learning
	2.6 Prediction at Uncertain Inputs
	2.6.1 Numerical Approximation
	2.6.2 Exact Moment Matching
	2.6.3 Mean Equivalent Approximation
	2.6.4 Linearization of the Posterior GP Mean Function

	2.7 Gaussian Process for Modeling Dynamical System
	2.7.1 Gaussian Process State-space Model
	2.7.2 Online Learning and Limitations

	2.8 Woodbury Inversion for Structured Kernel Interpolation (WISKI)
	2.8.1 Computing the Moments of Posterior Distribution

	2.9 Summary

	3 Online Learning Based MPC
	3.1 Introduction
	3.2 MPC Controller Design
	3.2.1 Prediction Model and State Uncertainty Propagation
	3.2.2 Cost Function
	3.2.3 Chance Constraints Formulation

	3.3 Online Gaussian Process-based MPC

	4 Simulation Results
	4.1 Pendulum Problem

	5 Conclusion and Scope for Future Work
	5.1 Future Work
	5.1.1 Mathematical Validation
	5.1.2 Experimental Validation

	A DERIVATIONS
	A.1 Linearization of Posterior Mean Function
	A.2 MPC Cost Function
	A.3 Chance Constraint Formulation
	A.4 Uncertainty Propagation

	Bibliography

