EEL 301 Homework \#1 Solution

Shaunak Sen

Question 1. (Ogata, Table A-1 on Pg. 864 \#20) Find the Laplace transform of $f(t)=$ $e^{-a t} \sin \omega t$.

Solution. We note that $\mathcal{L}(\sin \omega t)=\omega /\left(s^{2}+\omega^{2}\right)$ and that $\mathcal{L}(f(t))=F(s) \Longrightarrow \mathcal{L}\left(e^{-a t} f(t)\right)=$ $F(s+a)$. Combining these two together, the required Laplace transform is $\omega /\left((s+a)^{2}+\right.$ $\left.\omega^{2}\right)$.

Question 2. Using the Laplace transform method, solve the differential equation,

$$
\ddot{x}+2 \dot{x}+2 x=0, x(0)=0, \dot{x}(0)=10 .
$$

Solution. Laplace transform of this equation is,

$$
\begin{array}{r}
s^{2} X(s)-s x(0)-\dot{x}(0)+2 s X(s)+2 X(s)=0 \\
\Longrightarrow \quad\left(s^{2}+2 s+2\right) X(s)=10 \\
\Longrightarrow X(s)=\frac{10}{s^{2}+2 s+2} \\
\Longrightarrow X(s)=\frac{10}{(s+1)^{2}+1}
\end{array}
$$

From Solution to Question 1, the required solution is, $x(t)=10 e^{-t} \sin t$.

