Indian Institute of Technology, Delhi EEL 101: Fundamentals of Electrical Engineering Practice Problems, 25th April, 2008

- 1. Consider a solenoid with 500 turns of copper winding, and a core of silicon sheet steel. The radius of the core is 1 cm, and the solenoid is 10 cm long.
 - (a) Find the mmf generated across the solenoid for a current of 1 A.
 - (b) Silicon sheet steel has a magnetization characteristic given approximately by:

$$B = B_0 \cdot (1 - e^{-H/H_0})$$

where $B_0 = 1.35$ Tesla, and $H_0 = 169$ Amp-turns/meter. Find the magnetic flux density through the solenoid as a function of the current.

- (c) Apply Faraday's Law and find the back emf generated across the solenoid as a result of a changing current through the solenoid.
- (d) Find the inductance of the solenoid as a function of the current.
- (e) Consider a series R-L circuit as shown in Fig. (a). Write out a differential equation relating $v_R(t)$ and v(t). Re-write the equation if the inductor is the solenoid, whose inductance is as derived in part (d). How will you solve this equation?
- (f) Suppose v(t) is a sinusoid, given by $v(t) = v_0 \cos(\omega t)$. As ω increases, the impedance offered by the inductor increases. As a result, the amplitude of i(t) decreases. Make approximations to the above equation, when the amplitude of i(t) is small. you observed in the laboratory?
- 2. A certain three-terminal device has been invented. The three terminals of this device are named A, B, and C. The device behaves in the following fashion:

$$I_A = \alpha \cdot V_{AC}^2 \cdot (1 + \beta / I_B)$$
$$V_{BC} = \gamma \cdot e^{V_{AC} / \delta} \cdot I_B$$

- (a) What are the units of α , β , γ , δ , respectively?
- (b) What kind of controlled-sources are in this device? (VCVS/CCCS etc.)
- (c) Draw the small signal model for this device, and find the expressions for the small signal parameters that you need.

- 3. Consider the two wattmeter method of power measurement for a three phase balanced load. The star-connected load has an inductor, L, in parallel with a resistor, R. The voltages $|V_{RN} = |V_{YN}| = |V_{BN}| = V_0$.
 - (a) Find $\overline{I_R}$. Find $\overline{I_Y}$, $\overline{I_B}$ assuming that the Y phase lags the R phase by 120^0 .
 - (b) Assume that the Y phase lags the R phase by 120⁰. Find $\overline{V_{RY}}$ and $\overline{V_{BY}}$.
 - (c) Find an expression for the readings of each of the two wattmeters.
 - (d) If $V_0=220$ Volts, $R = 100\Omega$, and the frequency of the power supply is 50 Hz, plot the wattmeter readings as a function of the inductance, L.
 - (e) Repeat the last four steps, assuming that the Y phase leads the R phase by 120^{0} .
- 4. (a) In Fig. (b), first find the impedance offered by the network shown in the dashed region, as a function of ω .
 - (b) Find the gain, $V_{out}(j\omega)/V_{in}(j\omega)$ for the opamp circuit.
 - (c) Plot the magnitude of the gain as a function of ω . For the plot, assume $R = 1k\Omega$, $C = 1\mu$ Farad.
 - (d) What kind of filtering does this circuit offer? Explain intuitively why the plot you have drawn is correct.

