Indian Institute of Technology, Delhi EEL 101: Fundamentals of Electrical Engineering Tutorial 4, 29th January, 2008

- 1. What will be the corresponding phasor, V, for $v(t) = 60 \cos(100\pi t 120^{\circ})$?
- 2. What time function is represented by $I = 6 + j9\mu\text{A}$, if the frequency is 400 Hz?
- 3. For the circuit in Fig. (a), solve for v(t) when $i_s(t) = 0.8 \cos(1000t 20^o)$ A.
- 4. Determine the input impedance, \overline{Z} of the circuit shown in Fig. (b), if the frequency is 60 Hz.
- 5. Solve for i(t) in Fig. (c), if $v(t) = 10\cos(1000t)$ Volts.
- 6. Transform the circuit in Fig. (d) to its Norton equivalent form.
- 7. By proper choice of X_C and X_L , the 10 Ω resistor in Fig. (e) can be transformed to "look" like a 50 Ω resistance at a specified frequency. Find X_C and X_L , such that at 1 kHz the input impedance, \overline{Z} , is 50 Ω . What are the corresponding inductance and capacitance values?
- 8. Find $v_{ab}(t)$ in Fig. (f), if $v_1(t) = 100\cos(120\pi t)$ Volts, and $v_2(t) = 80\sin(120\pi t)$ Volts.

