Indian Institute of Technology, Delhi

EEL 101: Fundamentals of Electrical Engineering Tutorial 4, 29th January, 2008

1. What will be the corresponding phasor, V, for $v(t)=60 \cos (100 \pi t-$ 120°)?
2. What time function is represented by $I=6+j 9 \mu \mathrm{~A}$, if the frequency is 400 Hz ?
3. For the circuit in Fig. (a), solve for $v(t)$ when $i_{s}(t)=0.8 \cos (1000 t-$ 20°) A.
4. Determine the input impedance, \bar{Z} of the circuit shown in Fig. (b), if the frequency is 60 Hz .
5. Solve for $i(t)$ in Fig. (c), if $v(t)=10 \cos (1000 t)$ Volts.
6. Transform the circuit in Fig. (d) to its Norton equivalent form.
7. By proper choice of X_{C} and X_{L}, the 10Ω resistor in Fig. (e) can be transformed to "look" like a 50Ω resistance at a specified frequency. Find X_{C} and X_{L}, such that at 1 kHz the input impedance, \bar{Z}, is 50Ω. What are the corresponding inductance and capacitance values?
8. Find $v_{a b}(t)$ in Fig. (f), if $v_{1}(t)=100 \cos (120 \pi t)$ Volts, and $v_{2}(t)=$ $80 \sin (120 \pi t)$ Volts.

