Indian Institute of Technology, Delhi
 EEL 782: Analog Integrated Circuits
 Practice Problem Set 1

1. In Fig. $1, \mathrm{R}$ is $1.3 \mathrm{k} \Omega$, VDD is $2.5 \mathrm{~V}, I_{0}$ is $10 \mu \mathrm{~A}$. Both M 1 and M 2 are of equal size, and in strong inversion and saturation, their characteristics are given by:

$$
I_{D}=K\left(V_{G S}-V_{T}\right)^{2}
$$

where K is $1 \mathrm{~mA} / \mathrm{V}^{2}$ and V_{T} is 0.5 V .
(a) Compute all the bias voltages and currents in the circuit.
(b) Compute the small signal g_{m} of M1 and M2.
(c) What is the effective input impedance of this circuit looking in from $V_{i n}$?
2. For the circuit in Fig. 2, calculate the small signal differential gain given by $\left(v_{o_{1}}-v_{o_{2}}\right) /\left(v_{i_{1}}-v_{i_{2}}\right)$, and the small signal common mode gain given by $\left(v_{o_{1}}+v_{o_{2}}\right) /\left(v_{i_{1}}+v_{i_{2}}\right)$. Clearly define any symbols that you use in your computations. Assume Vb1 and Vb2 are DC bias voltages.
3. Assume the device equation and parameters as given in question 1. For the circuit in Fig. 3, sketch $I_{o u t}, V_{X}, V_{A}$, and V_{B}, as a function of (a) $I_{\text {ref }}$ and (b) V_{b}. What is the impedance looking into the drain of M3? What is the impedance looking into X ?
4. Assuming all MOSFETs are in saturation, calculate the small signal voltage gain of each circuit in Fig. 4. Assume all devices have a g_{m} of $1 \mathrm{mS}, g_{d s}$ of $50 \mu \mathrm{~S}$, and $g_{m b}$ of 0 S .

Figure 1: Figure for Question 1

Figure 2: Figure for Question 2

Figure 3: Figure for Question 3

Figure 4: Figure for Question 4

