Indian Institute of Technology, Delhi EEL 782: Analog Integrated Circuits Practice Problem Set 1

1. In Fig. 1, R is $1.3 \text{ k}\Omega$, VDD is 2.5 V, I_0 is $10 \mu \text{A}$. Both M1 and M2 are of equal size, and in strong inversion and saturation, their characteristics are given by:

$$I_D = K(V_{GS} - V_T)^2$$

where K is 1 mA/V^2 and V_T is 0.5 V.

- (a) Compute all the bias voltages and currents in the circuit.
- (b) Compute the small signal g_m of M1 and M2.
- (c) What is the effective input impedance of this circuit looking in from V_{in} ?
- 2. For the circuit in Fig. 2, calculate the small signal differential gain given by $(v_{o_1} v_{o_2})/(v_{i_1} v_{i_2})$, and the small signal common mode gain given by $(v_{o_1} + v_{o_2})/(v_{i_1} + v_{i_2})$. Clearly define any symbols that you use in your computations. Assume Vb1 and Vb2 are DC bias voltages.
- 3. Assume the device equation and parameters as given in question 1. For the circuit in Fig. 3, sketch I_{out}, V_X, V_A, and V_B, as a function of (a) I_{ref} and (b) V_b. What is the impedance looking into the drain of M3? What is the impedance looking into X?
- 4. Assuming all MOSFETs are in saturation, calculate the small signal voltage gain of each circuit in Fig. 4. Assume all devices have a g_m of 1 mS, g_{ds} of 50 μ S, and g_{mb} of 0 S.

Figure 1: Figure for Question 1

Figure 2: Figure for Question 2

Figure 3: Figure for Question 3

Figure 4: Figure for Question 4