
Lecture 1

1 Real number system

We are familiar with natural numbers and to some extent the rational numbers. While find-

ing roots of algebraic equations we see that rational numbers are not enough to represent roots

which are not rational numbers. For example draw the graph of y = x2−2. We see that it cross

the x-axis twice. The roots are such that their square is 2, but they cannot be rational numbers

according to the following theorem.

Theorem 1.0.1. Suppose that a0, a1, ...., an(n ≥ 1) are integers such that a0 6= 0, an 6= 0 and

that r satisfies the equation

anx
n + an−1x

n−1 + ....+ a1x+ a0 = 0.

If r = p
q where p, q are integers with no common factors and q 6= 0. Then q divides an and p

divides a0.

Proof: Since p
q satisfies the equation, we have

anp
n + an−1p

n−1q + ...+ a0q
n = 0

i.e., anp
n = −q(an−1p

n−1 + ... + a0q
n−1). This means q divides an as p, q have no common

factors. On the other hand we can also write

a0q
n = −p(anpn−1 + an−1p

n−2 + ...+ a1q
n−1).

Thus p divides a0. (Here we used the following: p, q can be expressed as p = p1...pj and

q = q1...qk where each pi, qi are prime numbers. Since p divides a0q
n, the quantity

a0q
n

p
= a0

qn1 ...q
n
k

p1...pj

must be an integer. Since no pi is equal to qj , the prime factorization of a0 must include the

product p1...pj .) ///

Now we see that the possible rational roots of x2−2 = 0 are ±1,±2. But it is easy to check that

±1,±2 does not satisfy x2 − 2 = 0. So the roots of x2 − 2 = 0 are not rational numbers. This

means the set of rational numbers has ”gaps”. So the natural question to ask is: Can we have

a number system without these gaps? The answer is yes and the ”complete number system”

with out these gaps is the real line R. We will not look into the development of R as it is not

easy to define the real numbers. We assume that there is a set R, whose elements are called

real numbers and R is closed with respect to addition and multiplication. That is, given any

a, b ∈ R, the sum a + b and product ab also represent real numbers. Moreover, R has an order
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structure ≤ and has no ”gaps” in the sense that it satisfies the Completeness Axiom(see below).

Let S be a non-empty subset of R. If S contains a largest element s0, then we call s0 the

maximum of S. If S contains a smallest element s0, then we call s0 the minimum of S. If S is

bounded above and S has least upper bound, then we call it the supremum of S. If S is bounded

below and S has greatest lower bound, then we call it as infimum of S.

Unlike maximum and minimum, supS and inf S need not belong to the set S. An important

observation is if α = supS is finite, then for every ε > 0, there exists an element s ∈ S such that

s ≥ α− ε.
Note that any bounded subset of Natural numbers has maximum and minimum.

Completeness Axiom: Every nonempty subset S of R that is bounded above has a least

upper bound. In other words, supS exists and is a real number.

The completeness axiom does not hold for Q. That is, every non-empty subset of Q that is

bounded above by a rational number need not have rational least upper bound. For example

{r ∈ Q : r2 ≤ 2}.

Archimedean property:

Theorem 1.0.2. For each x ∈ R, there exists a natural number N = N(x) such that x < N .

Proof: Assume by contradiction that this is not true. Then there is no N ∈ N such that x < N .

i.e., x is an upper bound for N. Then, by completeness axiom, let u be the smallest such bound

of N in R. That is u ∈ R and so u−m for 2 ≤ m ∈ N is not an upper bound for N. Therefore,

there exists k ∈ N such that u−m < k, but then u < k+m, and k+m ∈ N. a contradiction. ///

Now it is easy to see the following corollary

Corollary 1.0.3. Let S = { 1n : n ∈ N}. Then w = inf S = 0.

Proof: We note that S is bounded below. Let ε > 0 be an arbitrary positive real number. By

above Archimedean property, there exists n ∈ N such that n > 1
ε . Then we have,

0 ≤ w ≤ 1

n
< ε.

Since ε is arbitrary, we have w = 0. (why?)

Corollary 1.0.4. If y > 0 be a real number, then there exists n = n(y) ∈ N such that n− 1 ≤
y < n.

Finally, we have the following density theorem

Theorem 1.0.5. Let x, y are real numbers such that x < y. Then there exists a rational number

q such that x < q < y.
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Proof: Without loss of generality, assume that x > 0. Now let n ∈ N be such that y − x > 1
n

(Archimedean property). Now consider the set

S = {m ∈ N :
m

n
> x}.

Then S is non-empty (by Archimedean property). By well -ordering of N, S has minimal element

say m0. Then x < m0
n . By the minimality of m0, we see that m0−1

n ≤ x. Then,

m0

n
≤ x+

1

n
< x+ (y − x) = y.

Therefore,

x <
m0

n
< y.

Definition 1.0.6. We say a subset E of R is countable if either E is finite or there is a bijection

between N and E.

We can define a map from N to Q following some order. On the otherhand it can be shown

that countable union of finite sets is also countable(easy to see this).

Remark 1.1. Q is countable. Indeed, for each n ∈ N, define the set

En = {0 < r ∈ Q, r =
p

q
, p+ q = n}

For example E2 = {11}, E3 = {21 ,
1
2}, E4 = {13 ,

2
2 ,

3
1}. Each En contains finitely many elements

and Q+ = ∪nEn.
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