
Lecture 10

1 Test for convergence ctd..

Theorem 1.0.1 (Ratio test). Let
∞∑
1
an be a series of real numbers. Let

a = lim inf
n→∞

∣∣∣∣an+1

an

∣∣∣∣ and A = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Then

a)
∞∑
1
an converges absolutely if A < 1;

b)
∞∑
1
|an| diverges if a > 1;

c) the test fails in all other cases.

Proof. a) If A < 1, choose B such thata A < B < 1. Then there exists an ε > 0 such that B = A+ ε

and also N ∈ N such that
∣∣∣an+1

an

∣∣∣ ≤ B for all n ≥ N. Further, for any k ∈ N,

∣∣∣∣aN+k

aN

∣∣∣∣ = k∏
i=1

∣∣∣∣ aN+i

aN+i−1

∣∣∣∣ ≤ k∏
i=1

B = Bk.

Thus |aN+k| ≤ Bk|aN |, k ∈ N. But
∞∑
k=0

|aN |Bk < ∞ as B < 1. Thus by comparison test, the series

∞∑
1
an converges.

b) If a > 1, choose b such that 1 < b < a. There exits N ∈ N such that
∣∣∣an+1

an

∣∣∣ ≥ b for all n ≥ N.

Further, for any k ∈ N, ∣∣∣∣aN+k

aN

∣∣∣∣ = k∏
i=1

∣∣∣∣ aN+i

aN+i−1

∣∣∣∣ ≥ k∏
i=1

b = bk.

Thus |aN+k| ≥ |aN |, k ∈ N. But, as b > 1,
∞∑
k=0

aNb
k diverges. Thus, again, by the comparison test,

the series
∞∑
1
an diverges.

c) Case1: a = A = 1 Consider the series
∑ 1

n
. Here lim

n→∞

an+1

an
= 1. But

∑ 1

n
diverges. For the

series
∑ 1

n2
, which converges, again lim

n→∞

an+1

an
= 1.

Case 2: A > 1 If we consider the series
∑

2n then A = 2 > 1 and the series diverges. If we take

s = 1 + 2 +
1

5
+

2

5
+ (

1

5
)2 + 2(

1

5
)2 + (

1

5
)3 + ....

1



Then it is easy to see that the series converges as

s = 1 + (
1

5
) + (

1

5
)3 + .....+ 2 + 2(

1

5
) + 2(

1

5
)2 + 2(

1

5
)3 + ...

But A = 2. Similarly one can construct examples when a < 1. ///

Examples 1.0.2.

a) Consider the series
∞∑
1

nn

n!
. Here

an+1

an
=

(n+ 1)n+1

(n+ 1)!

n!

nn
=

(
n+ 1

n

)n

=

(
1 +

1

n

)n

→ e,

which is greater than 1. So a = A = e > 1. Thus the given series diverges.

b) Consider the series
∞∑
0

xn

n!
, x ∈ R. Here

an+1

an
=

xn+1

(n+ 1)!

n!

xn
=

x

n+ 1
→ 0.

Therefore a = A = 0 < 1. Thus, for all x ∈ R, the given series converges.

Theorem 1.0.3 (Root test). Let
∞∑
1
an be a series of real numbers. Let A = lim sup

n→∞
n
√
|an|. Then

a) the series converges absolutely if A < 1;

b) the series diverges if A > 1;

c) the test fails if A = 1.

Proof. a) If A < 1, choose B such that A < B < 1. Then there exists N ∈ N such that n
√
|an| < B for

all n ≥ N. This implies |an| < Bn for all n ≥ N. As B < 1, the series converges by comparison test.

b) If A > 1, there exists infinitely many n ∈ N such that n
√
|an| > 1. But this implies that |an| > 1

for infinitely many values of n and hence aN 9 0, i.e.,
∑
an diverges.

c) Consider the series
∑ 1

n . Here A = 1 and the series diverges. On the other hand, for the series∑ 1
n2 , again A = 1, but the series converges. ///

Examples 1.0.4.

1) Consider the series
∞∑
1

xn

n
, x ∈ R. Here an =

xn

n
. Therefore, n

√∣∣∣∣xnn
∣∣∣∣ = ∣∣∣∣ xn√n

∣∣∣∣ → |x|. Thus the

series converges for |x| < 1 and diverges for |x| > 1.

2) Consider the series
∞∑
1

xn

nn
, x ∈ R. Here an =

xn

nn
. Then, n

√
|an| =

∣∣∣x
n

∣∣∣ → 0. Thus the series

converges for any x ∈ R.
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3) Consider the series
∑
an, where an =


n

4n
n is odd

1

2n
n is even

. Then lim sup
n→∞

n
√
an = 1

2 . Therefore the

series converges.

4) The series
∑

3−n−(−1)
n

. Then it is not difficult to see that lim sup |an|
1
n = 1/3. However ratio

test fails in this case.

Remark 1.1. We note that the root test is stronger than the ratio test. for example, take the series∑
an where

an =

{
2−n n odd

2−n+2 n even

Then it is easy to see that

lim sup
|an+1|
|an|

= 2, but lim sup |an|1/n = 1/2.

So the root test implies that the series converges but ratio test is inconclusive.
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