Lecture 10

1 Test for convergence ctd..
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Theorem 1.0.1 (Ratio test). Let > a, be a series of real numbers. Let
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Then
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a) > an converges absolutely if A < 1;
1
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b) > |an| diverges if a > 1;
1

c) the test fails in all other cases.

Proof. a) If A < 1, choose B such thata A < B < 1. Then there ezists an € > 0 such that B = A+ ¢
and also N € N such that ‘a(’;—:l < B for alln > N. Further, for any k € N,
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Thus |an+k| < B¥lan|, k € N. But Y |an|B* < oo as B < 1. Thus by comparison test, the series
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> an converges.
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b) If a > 1, choose b such that 1 < b < a. There exits N € N such that
Further, for any k € N,
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>b for alln > N.
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Thus lan+k| > lan|, k¥ € N. But, as b > 1, > anbF diverges. Thus, again, by the comparison test,
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the series Y a, diverges.
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c) Casel: a = A =1 Consider the series Y, —. Here lim I+l _ 1. But > — diverges. For the
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Case 2: A > 1 If we consider the series > 2" then A =2 > 1 and the series diverges. If we take

series »
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Then it is easy to see that the series converges as
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But A = 2. Similarly one can construct examples when a < 1. ///

Examples 1.0.2.
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a) Consider the series ) — . Here
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which is greater than 1. So a = A = e > 1. Thus the given series diverges.
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b) Consider the series 3 ,— x € R. Here
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Therefore a = A =0 < 1. Thus, for all x € R, the given series converges.
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Theorem 1.0.3 (Root test). Let Y ay be a series of real numbers. Let A = limsup ¥/|ay|. Then
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a) the series converges absolutely if A < 1;
b) the series diverges if A > 1;
c¢) the test fails if A=1.

Proof. a) If A < 1, choose B such that A < B < 1. Then there exists N € N such that W < B for
all n > N. This implies |ay| < B™ for alln > N. As B < 1, the series converges by comparison test.
b) If A > 1, there ezists infinitely many n € N such that W > 1. But this implies that |a,| > 1
for infinitely many values of n and hence ay - 0, i.e., > a, diverges.
c) Consider the series > % Here A =1 and the series diverges. On the other hand, for the series
>, again A =1, but the series converges. ///

Examples 1.0.4.
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1) Consider the series Y ,—,x € R. Here a,, = —. Therefore, }
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- ‘ — |z|. Thus the
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series converges for |x| < 1 and diverges for |z| > 1.
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2) Consider the series ) ,—, x € R. Here a, = —. Then, {/|an| = ‘—) — 0. Thus the series
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converges for any x € R.



— n is odd
3) Consider the series Y a,, where a, = 41n . Then limsup ¥a,, = % Therefore the
on n 1S even n—00
series converges.
4) The series .37~ V". Then it is not difficult to see that lim sup \an\% = 1/3. Howewver ratio

test fails in this case.
Remark 1.1. We note that the root test is stronger than the ratio test. for example, take the series
> ap where
2= n odd
an =
2772 even
Then it is easy to see that
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|an|

lim sup

So the root test implies that the series converges but ratio test is inconclusive.



