Lecture 11

1 Alternating series

Definition 1.0.1. An alternating series is an infinite series whose terms alternate in sign.
Theorem 1.0.2. Suppose $\left\{a_{n}\right\}$ is a sequence of positive numbers such that
(a) $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$ and
(b) $\lim _{n \rightarrow \infty} a_{n}=0$,
then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
Proof. Consider the partial sums with odd index, $s_{1}, s_{3}, s_{5}, \ldots$ Now, for any $n \in \mathbb{N}$,

$$
s_{2 n+1}=s_{2 n-1}-a_{2 n}+a_{2 n+1} \leq s_{2 n-1}(\text { by }(\mathrm{a}))
$$

Thus the sequence $\left\{s_{2 n-1}\right\}_{1}^{\infty}$ forms a non-increasing sequence. Also, notice that

$$
s_{2 n-1}=\sum_{i=1}^{n-1}\left(a_{2 i-1}-a_{2 i}\right)+a_{2 n-1}
$$

Since each quantity in the parenthesis is non-negative and $a_{2 n-1}>0$, the sequence $\left\{s_{2 n-1}\right\}$ is bounded below by 0 . Hence $\left\{s_{2 n-1}\right\}_{1}^{\infty}$ is convergent.

Now, consider the partial sums with even index, $s_{2}, s_{4}, s_{6}, \ldots$ For any $n \in \mathbb{N}$,

$$
s_{2 n+2}=s_{2 n}+a_{2 n+1}-a_{2 n+2} \geq s_{2 n}(\text { by }(\mathrm{a}))
$$

Thus the sequence $\left\{s_{2 n}\right\}_{1}^{\infty}$ forms a non-decreasing sequence. Further,

$$
s_{2 n}=a_{1}-\sum_{i=1}^{n-1}\left(a_{2 i}-a_{2 i+1}\right)-a_{2 n} \leq a_{1}
$$

which means that $s_{2 n}$ is bounded above by a_{1}. Therefore, $\left\{s_{2 n}\right\}$ is convergent.
Let $L=\lim s_{2 n}$ and $M=\lim S_{2 n-1}$. By ((b)),

$$
0=\lim a_{2 n}=\lim \left(s_{2 n}-s_{2 n-1}\right)=L-M
$$

Thus $L=M$ and hence the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.

Examples 1.0.3.

1) Consider the series $\sum_{n=1}^{\infty}(-1)^{n+1} 2^{1 / n}$. Here $a_{n}=2^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$. Hence the above theorem does not apply. Anyhow, one can show that the series diverges.
2) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. The $a_{n}^{\prime} s$ of this series satisfies the hypothesis of the above theorem and hence the series converges.

Examples 1.0.4.

1) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges conditionally.
2) The series $\sum_{n=1}^{\infty} \frac{(-1)^{2 n-1}}{2 n-1}$ converges conditionally.

The following is a more genreal test than the previous theorem.
Theorem 1.0.5. (Dirichlet test)
Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers such that

1. the sequence $s_{n}=\sum_{k=1}^{n} a_{k}$ is bounded,
2. the sequence b_{n} is decreasing and $b_{n} \rightarrow 0$.

Then the series $\sum a_{n} b_{n}$ converges.
Proof. Let $t_{n}=\sum_{k=1}^{n} a_{k} b_{k}$. Since s_{n} is bounded, there exists $M>0$, such that $\left|s_{n}\right| \leq M$ for all n. Now note that

$$
a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}=s_{1}\left(b_{1}-b_{2}\right)+s_{2}\left(b_{2}-b_{3}\right)+\ldots . s_{n-1}\left(b_{n-1}-b_{n}\right)+s_{n} b_{n}
$$

Since b_{n} is decreasing, $b_{n}-b_{n+1} \geq 0$. Therefore

$$
\left|a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}\right| \leq M b_{1}
$$

Since $b_{n} \rightarrow 0$, for any $\epsilon>0$, we get N such that $\left|b_{n}\right| \leq \epsilon$ for all $n \geq N$. Now we can easily see that for $m>n$,

$$
\left|t_{m}-t_{n}\right|=\left|\sum_{n}^{m} a_{k} b_{k}\right|=M\left|b_{n}\right| \leq M \epsilon
$$

Therefore, by Cauchy's test, the series $\sum a_{n} b_{n}$ converges.

Examples 1.0.6.

1) Consider the series $\sum \frac{\cos n \pi}{\log n}$. Here take $a_{n}=\cos n \pi$ and $b_{n}=\frac{1}{\log n}$. Then

$$
\left|A_{n}\right| \leq\left|\sum_{k=1}^{n} \cos n \pi\right| \leq 1
$$

(check the first 4 terms and then use periodicity of $\cos x$)
and b_{n} decreases to 0 . Hence the series conveges. In this case we can see that the series does not converge absolutely (apply Cauchy's test).
 boundedness of the partial sums of $\sum a_{n}$, we can apply Ratio test to see that the series $\sum a_{n}$ converges. Hence the sequence of partial sums converge and so will be bounded. Therefore by Dirichlet test the series $\sum a_{n} b_{n}$ converges.

Theorem 1.0.7. (Integral Test). If $f(x)$ is decreasing and non-negative on $[1, \infty)$, Then

$$
\int_{1}^{\infty} f(x) d x<\infty \Longleftrightarrow \sum_{n=1}^{\infty} f(n) \text { converges. }
$$

Details of this theorem will be done after convergence of improper integral.
Examples 1.0.8. 1. $f(x)=\frac{1}{x}$. Here $\int_{0}^{\infty} f(x) d x$ is not finite. Therefore $\sum \frac{1}{n}$ diverges.
2. $f(x)=\frac{1}{x^{2}}$. Here $\int_{0}^{\infty} f(x) d x$ is finite. Therefore $\sum \frac{1}{n^{2}}$ converges.

