
Lecture 11

1 Alternating series

Definition 1.0.1. An alternating series is an infinite series whose terms alternate in sign.

Theorem 1.0.2. Suppose {an} is a sequence of positive numbers such that

(a) an ≥ an+1 for all n ∈ N and

(b) lim
n→∞

an = 0,

then the alternating series
∞∑
n=1

(−1)n+1an converges.

Proof. Consider the partial sums with odd index, s1, s3, s5, . . . . Now, for any n ∈ N,

s2n+1 = s2n−1 − a2n + a2n+1 ≤ s2n−1 (by (a)).

Thus the sequence {s2n−1}∞1 forms a non-increasing sequence. Also, notice that

s2n−1 =
n−1∑
i=1

(a2i−1 − a2i) + a2n−1.

Since each quantity in the parenthesis is non-negative and a2n−1 > 0, the sequence {s2n−1} is bounded
below by 0. Hence {s2n−1}∞1 is convergent.

Now, consider the partial sums with even index, s2, s4, s6, . . . . For any n ∈ N,

s2n+2 = s2n + a2n+1 − a2n+2 ≥ s2n (by (a)).

Thus the sequence {s2n}∞1 forms a non-decreasing sequence. Further,

s2n = a1 −
n−1∑
i=1

(a2i − a2i+1)− a2n ≤ a1,

which means that s2n is bounded above by a1. Therefore, {s2n} is convergent.
Let L = lim s2n and M = lim S2n−1. By ((b)),

0 = lim a2n = lim (s2n − s2n−1) = L−M.

Thus L =M and hence the alternating series
∞∑
n=1

(−1)n+1an converges. ///

Examples 1.0.3.

1) Consider the series
∞∑
n=1

(−1)n+121/n. Here an = 21/n → 1 as n → ∞. Hence the above theorem

does not apply. Anyhow, one can show that the series diverges.
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2) Consider the series
∞∑
n=1

(−1)n+1

n
. The a′ns of this series satisfies the hypothesis of the above

theorem and hence the series converges.

Examples 1.0.4.

1) The series
∞∑
n=1

(−1)n+1

n
converges conditionally.

2) The series
∞∑
n=1

(−1)2n−1

2n− 1
converges conditionally.

The following is a more genreal test than the previous theorem.

Theorem 1.0.5. (Dirichlet test)

Let {an} and {bn} be sequences of real numbers such that

1. the sequence sn =
n∑

k=1

ak is bounded,

2. the sequence bn is decreasing and bn → 0.

Then the series
∑
anbn converges.

Proof. Let tn =

n∑
k=1

akbk. Since sn is bounded, there exists M > 0, such that |sn| ≤M for all n. Now

note that

a1b1 + a2b2 + ...+ anbn = s1(b1 − b2) + s2(b2 − b3) + ....sn−1(bn−1 − bn) + snbn

Since bn is decreasing, bn − bn+1 ≥ 0. Therefore

|a1b1 + a2b2 + ...+ anbn| ≤Mb1

Since bn → 0, for any ε > 0, we get N such that |bn| ≤ ε for all n ≥ N . Now we can easily see that for

m > n,

|tm − tn| = |
m∑
n

akbk| =M |bn| ≤Mε

Therefore, by Cauchy’s test, the series
∑
anbn converges. ///

Examples 1.0.6.

1) Consider the series
∑ cosnπ

log n
. Here take an = cosnπ and bn = 1

logn . Then

|An| ≤ |
n∑

k=1

cosnπ| ≤ 1

(check the first 4 terms and then use periodicity of cosx)

and bn decreases to 0. Hence the series conveges. In this case we can see that the series does

not converge absolutely (apply Cauchy’s test).
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2)
∑ 22nn2

enn!
1

(logn)2
. Take bn = 1

(logn)2
and an = 22nn2

enn! . Then bn decreases to 0. To show the

boundedness of the partial sums of
∑
an, we can apply Ratio test to see that the series

∑
an

converges. Hence the sequence of partial sums converge and so will be bounded. Therefore by

Dirichlet test the series
∑
anbn converges.

Theorem 1.0.7. (Integral Test). If f(x) is decreasing and non-negative on [1,∞), Then∫ ∞
1

f(x)dx <∞ ⇐⇒
∞∑
n=1

f(n) converges.

Details of this theorem will be done after convergence of improper integral.

Examples 1.0.8. 1. f(x) = 1
x . Here

∫∞
0 f(x)dx is not finite. Therefore

∑ 1
n diverges.

2. f(x) = 1
x2 . Here

∫∞
0 f(x)dx is finite. Therefore

∑ 1
n2 converges.
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