Lecture 11

1 Alternating series

Definition 1.0.1. An alternating series is an infinite series whose terms alternate in sign.

Theorem 1.0.2. Suppose $\{a_n\}$ is a sequence of positive numbers such that

- (a) $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$ and
- $(b) \lim_{n \to \infty} a_n = 0,$

then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof. Consider the partial sums with odd index, s_1, s_3, s_5, \ldots Now, for any $n \in \mathbb{N}$,

$$s_{2n+1} = s_{2n-1} - a_{2n} + a_{2n+1} \le s_{2n-1}$$
 (by (a))

Thus the sequence $\{s_{2n-1}\}_1^\infty$ forms a non-increasing sequence. Also, notice that

$$s_{2n-1} = \sum_{i=1}^{n-1} (a_{2i-1} - a_{2i}) + a_{2n-1}.$$

Since each quantity in the parenthesis is non-negative and $a_{2n-1} > 0$, the sequence $\{s_{2n-1}\}$ is bounded below by 0. Hence $\{s_{2n-1}\}_1^{\infty}$ is convergent.

Now, consider the partial sums with even index, s_2, s_4, s_6, \ldots For any $n \in \mathbb{N}$,

$$s_{2n+2} = s_{2n} + a_{2n+1} - a_{2n+2} \ge s_{2n}$$
 (by (a)).

Thus the sequence $\{s_{2n}\}_1^\infty$ forms a non-decreasing sequence. Further,

$$s_{2n} = a_1 - \sum_{i=1}^{n-1} (a_{2i} - a_{2i+1}) - a_{2n} \le a_1,$$

which means that s_{2n} is bounded above by a_1 . Therefore, $\{s_{2n}\}$ is convergent.

Let $L = \lim s_{2n}$ and $M = \lim S_{2n-1}$. By ((b)),

$$0 = \lim \ a_{2n} = \lim \ (s_{2n} - s_{2n-1}) = L - M.$$

Thus L = M and hence the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Examples 1.0.3.

1) Consider the series $\sum_{n=1}^{\infty} (-1)^{n+1} 2^{1/n}$. Here $a_n = 2^{1/n} \to 1$ as $n \to \infty$. Hence the above theorem does not apply. Anyhow, one can show that the series diverges.

///

2) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. The $a'_n s$ of this series satisfies the hypothesis of the above theorem and hence the series converges.

Examples 1.0.4.

1) The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges conditionally.
2) The series $\sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{2n-1}$ converges conditionally.

The following is a more genreal test than the previous theorem.

Theorem 1.0.5. (Dirichlet test) Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers such that

- 1. the sequence $s_n = \sum_{k=1}^n a_k$ is bounded,
- 2. the sequence b_n is decreasing and $b_n \to 0$.

Then the series $\sum a_n b_n$ converges.

Proof. Let $t_n = \sum_{k=1}^n a_k b_k$. Since s_n is bounded, there exists M > 0, such that $|s_n| \le M$ for all n. Now note that

$$a_1b_1 + a_2b_2 + \dots + a_nb_n = s_1(b_1 - b_2) + s_2(b_2 - b_3) + \dots + s_{n-1}(b_{n-1} - b_n) + s_nb_n$$

Since b_n is decreasing, $b_n - b_{n+1} \ge 0$. Therefore

$$|a_1b_1 + a_2b_2 + \dots + a_nb_n| \le Mb_1$$

Since $b_n \to 0$, for any $\epsilon > 0$, we get N such that $|b_n| \le \epsilon$ for all $n \ge N$. Now we can easily see that for m > n,

$$|t_m - t_n| = |\sum_{n=1}^{m} a_k b_k| = M|b_n| \le M\epsilon$$

///

Therefore, by Cauchy's test, the series $\sum a_n b_n$ converges.

Examples 1.0.6.

1) Consider the series
$$\sum \frac{\cos n\pi}{\log n}$$
. Here take $a_n = \cos n\pi$ and $b_n = \frac{1}{\log n}$. Then
 $|A_n| \le |\sum_{k=1}^n \cos n\pi| \le 1$

(check the first 4 terms and then use periodicity of $\cos x$) and b_n decreases to 0. Hence the series conveges. In this case we can see that the series does not converge absolutely (apply Cauchy's test). 2) $\sum \frac{2^{2n}n^2}{e^n n!} \frac{1}{(\log n)^2}$. Take $b_n = \frac{1}{(\log n)^2}$ and $a_n = \frac{2^{2n}n^2}{e^n n!}$. Then b_n decreases to 0. To show the boundedness of the partial sums of $\sum a_n$, we can apply Ratio test to see that the series $\sum a_n$ converges. Hence the sequence of partial sums converge and so will be bounded. Therefore by Dirichlet test the series $\sum a_n b_n$ converges.

Theorem 1.0.7. (Integral Test). If f(x) is decreasing and non-negative on $[1, \infty)$, Then

$$\int_{1}^{\infty} f(x)dx < \infty \iff \sum_{n=1}^{\infty} f(n) \quad converges.$$

Details of this theorem will be done after convergence of improper integral.

Examples 1.0.8. 1. $f(x) = \frac{1}{x}$. Here $\int_0^\infty f(x) dx$ is not finite. Therefore $\sum \frac{1}{n}$ diverges.

2. $f(x) = \frac{1}{x^2}$. Here $\int_0^\infty f(x) dx$ is finite. Therefore $\sum \frac{1}{n^2}$ converges.