Lecture 12

1 Calculus of real valued functions

Let $f(x)$ be defined on (a, b) except possibly at x_{0}.
Definition 1.0.1. We say that $\lim _{x \rightarrow x_{0}} f(x)=L$ if, for every real number $\epsilon>0$, there exists a real number $\delta>0$ such that

$$
\begin{equation*}
0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\epsilon \tag{1.1}
\end{equation*}
$$

Equivalently,
Remark 1.1. The above definition is equivalent to: for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightarrow x_{0}$, we have $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$.

Proof. Suppose $\lim _{x \rightarrow x_{0}} f(x)$ exists. Take $\epsilon>0$ and let $\left\{x_{n}\right\}$ be a sequence converging to x_{0}. Then there exists N such that $\left|x_{n}-x_{0}\right|<\delta$ for $n \geq N$. Then by the definition $\left|f\left(x_{n}\right)-L\right|<\epsilon$. i.e., $f\left(x_{n}\right) \rightarrow L$.

For the other side, assume that $x_{n} \rightarrow c \Longrightarrow f\left(x_{n}\right) \rightarrow L$. Suppose the limit does not exist. i.e., $\exists \epsilon_{0}>0$ such that for any $\delta>0$, there is $x \in\left|x-x_{0}\right|<\delta$, for which $|f(x)-L| \geq \epsilon_{0}$. Then take $\delta=\frac{1}{n}$ and pick x_{n} in $\left|x_{n}-x_{0}\right|<\frac{1}{n}$, then $x_{n} \rightarrow x_{0}$ but $\left|f\left(x_{n}\right)-L\right| \geq \epsilon_{0}$. Not possible.
Theorem 1.0.2. If limit exists, then it is unique.
Proof. Proof is easy.
Examples 1.0.3. 1. $\lim _{x \rightarrow 1}\left(\frac{3 x}{2}-1\right)=\frac{1}{2}$. Let $\epsilon>0$. We have to find $\delta>0$ such that (1.1) holds with $L=1 / 2$. Working backwards,

$$
\frac{3}{2}|x-1|<\epsilon \text { when ever }|x-1|<\delta:=\frac{2}{3} \epsilon .
$$

2. Prove that $\lim _{x \rightarrow 2} f(x)=4$, where $f(x)= \begin{cases}x^{2} & x \neq 2 \\ 1 & x=2\end{cases}$

Problem: Show that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.
Consider the sequences $\left\{x_{n}\right\}=\left\{\frac{1}{n \pi}\right\},\left\{y_{n}\right\}=\left\{\frac{1}{2 n \pi+\frac{\pi}{2}}\right\}$. Then it is easy to see that $x_{n}, y_{n} \rightarrow 0$ and $\sin \left(\frac{1}{x_{n}}\right) \rightarrow 0, \sin \left(\frac{1}{y_{n}}\right) \rightarrow 1$. In fact, for every $c \in[-1,1]$, we can find a sequence z_{n} such that $z_{n} \rightarrow 0$ and $\sin \left(\frac{1}{z_{n}}\right) \rightarrow c$ as $n \rightarrow \infty$.

By now we are familiar with limits and one can expect the following:

Theorem 1.0.4. Suppose $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then

1. $\lim _{x \rightarrow c}(f(x) \pm g(x))=L \pm M$.
2. $\lim _{x \rightarrow c}(f g)(x)=L M$ and when $M \neq 0, \lim _{x \rightarrow c} \frac{f}{g}(x)=\frac{L}{M}$.
3. (Sandwich): Suppose that $h(x)$ satisfies $f(x) \leq h(x) \leq g(x)$ in an interval containing c, and $L=M$. Then $\lim _{x \rightarrow c} h(x)=L$.

Proof. We give the proof of (ii). Proof of other assertions are easy to prove. Let $\epsilon>0$. From the definition of limit, we have $\delta_{1}, \delta_{2}, \delta_{3}>0$ such that

$$
\begin{aligned}
|x-c|<\delta_{1} & \Longrightarrow|f(x)-L|<\frac{1}{2} \Longrightarrow|f(x)|<N \text { for some } N>0, \\
|x-c|<\delta_{2} & \Longrightarrow|f(x)-L|<\frac{\epsilon}{2 M}, \text { and } \\
|x-c|<\delta_{3} & \Longrightarrow|g(x)-M|<\frac{\epsilon}{2 N} .
\end{aligned}
$$

Hence for $|x-c|<\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, we have

$$
\begin{aligned}
|f(x) g(x)-L M| & \leq|f(x) g(x)-f(x) M|+|f(x) M-L M| \\
& \leq|f(x)||g(x)-M|+M|f(x)-L|<\epsilon .
\end{aligned}
$$

To prove the second part, W.L.G assume $M>0$. Then note that there exists an interval $\left(c-\delta_{1}, c+\delta_{1}\right)$ around c such that $g(x)>\frac{M}{2}$ in $\left(c-\delta_{1}, c+\delta_{1}\right)$. Then the back calculation

$$
\left|\frac{1}{g(x)}-\frac{1}{M}\right| \leq \frac{|g(x)-M|}{M|g(x)|} \leq \frac{2|g(x)-M|}{M^{2}}
$$

in $\left(c-\delta_{1}, c+\delta_{1}\right)$. Now from the definition of the limit there exists δ_{2} such that

$$
|x-c|<\delta_{2} \Longrightarrow|g(x)-M|<\frac{M^{2} \epsilon}{2}
$$

Therefore taking $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, from the above two steps we get

$$
|x-c|<\delta \Longrightarrow\left|\frac{1}{g(x)}-\frac{1}{M}\right| \leq \epsilon .
$$

Examples 1.0.5. (i) $\lim _{x \rightarrow 0} x^{m}=0(m>0)$. (ii) $\lim _{x \rightarrow 0} x \sin x=0$.
Remark 1.2. Suppose $f(x)$ is bounded in an interval containing c and $\lim _{x \rightarrow c} g(x)=0$. Then $\lim _{x \rightarrow c} f(x) g(x)=0$.
Examples 1.0.6. (i) $\lim _{x \rightarrow 0}|x| \sin \frac{1}{x}=0$. (ii) $\lim _{x \rightarrow 0}|x| \ln (1+|x|)=0$.

