Lecture 12

1 Calculus of real valued functions

Let f(z) be defined on (a,b) except possibly at x.

Definition 1.0.1. We say that lim f(x) = L if, for every real number € > 0, there exists a real
Tr—xT0

number 6 > 0 such that
O<|zr—z0] <d = |f(zx)—L| <e (1.1)

Equivalently,

Remark 1.1. The above definition is equivalent to: for any sequence {xy} with x, — g, we
have f(zy,) — L as n — oo.

Proof. Suppose limg_,,, f(x) exists. Take € > 0 and let {z,} be a sequence converging to x.
Then there exists N such that |z, — 29| < ¢ for n > N. Then by the definition |f(z,) — L| < e.
ie., f(zn) — L.

For the other side, assume that x,, - ¢ = f(x,) — L. Suppose the limit does not exist. i.e.,
3 €p > 0 such that for any § > 0, there is x € |z — xg| < J, for which |f(z) — L| > €. Then take
o= % and pick z, in |z, — xo| < %, then z,, — x¢ but |f(x,) — L| > €y. Not possible.

Theorem 1.0.2. If limit exists, then it is unique.

Proof. Proof is easy.

3 1
Examples 1.0.3. 1. lim(g -1) = 5 Let € > 0. We have to find 6 > 0 such that (1.1)

z—1

holds with L = 1/2. Working backwards,

3 2
§|I — 1| < € when ever |z — 1] < § := 3¢

x> x#£2

2. Prove that lim f(z) =4, where f(z) =
T—2 1 T =2

1
Problem: Show that lim sin(—) does not exist.
z—0 x

1
Consider the sequences {z,} = {—1},{yn} = {

1
— W} Then it is easy to see that z,,y, — 0
2

1 1
and sin <> — 0, sin <> — 1. In fact, for every ¢ € [—1, 1], we can find a sequence z, such
In Un

that z, — 0 and sin(—) — c as n — oo.
n

By now we are familiar with limits and one can expect the following:



Theorem 1.0.4. Suppose lim f(z) = L and lim g(x) = M, then
Tr—C r—cC

1. im(f(x) £g(z)) = L+ M.

T—C
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2. ig(fg)(x) = LM and when M # 0, alﬁlg}: g(x) =

3. (Sandwich): Suppose that h(z) satisfies f(z) < h(x) < g(x) in an interval containing c,
and L = M. Then liLn h(zx) = L.

Proof. We give the proof of (ii). Proof of other assertions are easy to prove. Let € > 0. From
the definition of limit, we have d1, d2,d3 > 0 such that

1
lz—c| <0 = ]f(x)—L\<§ — |f(x)] < N for some N > 0,

1z —c| < 8y = |f(x)—L]<ﬁ, and

€

- J - M| < —.
ol <85 = lg(a) ~ M| < o5
Hence for |z — ¢| < 6 = min{di, d2, d3}, we have

[f(2)g(x) = LM[ < [f(x)g(x) — f(x) M|+ | f(2)M — LM]|
<|f(@)llg(x) — M|+ M|f(x) - L| <e.

To prove the second part, W.L.G assume M > 0. Then note that there exists an interval
(¢ — d1,¢+ 01) around c such that g(x) > % in (¢ — 01,¢+ d1). Then the back calculation

L 1| ete) - M| _ 2lg(e) — M|

gle) M|~ Mlg(x)] = M

in (¢ —d1,¢+ 91). Now from the definition of the limit there exists d2 such that

M?2e
2

|z —c| <6y = |g(z) — M| <

Therefore taking § = min{d1,d2}, from the above two steps we get

|z —c| <0 = BN <e.
gle) M

Examples 1.0.5. (i) lin%) 2™ =0(m>0). (i) lir%msin:n = 0.
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Remark 1.2. Suppose f(z) is bounded in an interval containing ¢ and liLn g(x) = 0. Then
lim £(@)g(x) = 0.
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Examples 1.0.6. (i) ili% Ed sin — = 0. (i9) ili% || In(1 + |z]) = 0.



