
Lecture 12

1 Calculus of real valued functions

Let f(x) be defined on (a, b) except possibly at x0.

Definition 1.0.1. We say that lim
x→x0

f(x) = L if, for every real number ε > 0, there exists a real

number δ > 0 such that

0 < |x− x0| < δ =⇒ |f(x)− L| < ε. (1.1)

Equivalently,

Remark 1.1. The above definition is equivalent to: for any sequence {xn} with xn → x0, we

have f(xn)→ L as n→∞.

Proof. Suppose limx→x0f(x) exists. Take ε > 0 and let {xn} be a sequence converging to x0.

Then there exists N such that |xn − x0| < δ for n ≥ N . Then by the definition |f(xn)−L| < ε.

i.e., f(xn)→ L.

For the other side, assume that xn → c =⇒ f(xn)→ L. Suppose the limit does not exist. i.e.,

∃ ε0 > 0 such that for any δ > 0, there is x ∈ |x− x0| < δ, for which |f(x)−L| ≥ ε0. Then take

δ = 1
n and pick xn in |xn − x0| < 1

n , then xn → x0 but |f(xn)− L| ≥ ε0. Not possible.

Theorem 1.0.2. If limit exists, then it is unique.

Proof. Proof is easy.

Examples 1.0.3. 1. lim
x→1

(
3x

2
− 1) =

1

2
. Let ε > 0. We have to find δ > 0 such that (1.1)

holds with L = 1/2. Working backwards,

3

2
|x− 1| < ε when ever |x− 1| < δ :=

2

3
ε.

2. Prove that lim
x→2

f(x) = 4, where f(x) =

{
x2 x 6= 2

1 x = 2

Problem: Show that lim
x→0

sin(
1

x
) does not exist.

Consider the sequences {xn} = { 1

nπ
}, {yn} = { 1

2nπ + π
2

}. Then it is easy to see that xn, yn → 0

and sin

(
1

xn

)
→ 0, sin

(
1

yn

)
→ 1. In fact, for every c ∈ [−1, 1], we can find a sequence zn such

that zn → 0 and sin(
1

zn
)→ c as n→∞.

By now we are familiar with limits and one can expect the following:
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Theorem 1.0.4. Suppose lim
x→c

f(x) = L and lim
x→c

g(x) = M , then

1. lim
x→c

(f(x)± g(x)) = L±M .

2. lim
x→c

(fg)(x) = LM and when M 6= 0, lim
x→c

f

g
(x) =

L

M
.

3. (Sandwich): Suppose that h(x) satisfies f(x) ≤ h(x) ≤ g(x) in an interval containing c,

and L = M . Then lim
x→c

h(x) = L.

Proof. We give the proof of (ii). Proof of other assertions are easy to prove. Let ε > 0. From

the definition of limit, we have δ1, δ2, δ3 > 0 such that

|x− c| < δ1 =⇒ |f(x)− L| < 1

2
=⇒ |f(x)| < N for some N > 0,

|x− c| < δ2 =⇒ |f(x)− L| < ε

2M
, and

|x− c| < δ3 =⇒ |g(x)−M | < ε

2N
.

Hence for |x− c| < δ = min{δ1, δ2, δ3}, we have

|f(x)g(x)− LM | ≤ |f(x)g(x)− f(x)M |+ |f(x)M − LM |
≤ |f(x)||g(x)−M |+M |f(x)− L| < ε.

To prove the second part, W.L.G assume M > 0. Then note that there exists an interval

(c− δ1, c+ δ1) around c such that g(x) > M
2 in (c− δ1, c+ δ1). Then the back calculation∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ ≤ |g(x)−M |
M |g(x)|

≤ 2|g(x)−M |
M2

in (c− δ1, c+ δ1). Now from the definition of the limit there exists δ2 such that

|x− c| < δ2 =⇒ |g(x)−M | < M2ε

2

Therefore taking δ = min{δ1, δ2}, from the above two steps we get

|x− c| < δ =⇒
∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ ≤ ε.
Examples 1.0.5. (i) lim

x→0
xm = 0 (m > 0). (ii) lim

x→0
x sinx = 0.

Remark 1.2. Suppose f(x) is bounded in an interval containing c and lim
x→c

g(x) = 0. Then

lim
x→c

f(x)g(x) = 0.

Examples 1.0.6. (i) lim
x→0
|x| sin 1

x
= 0. (ii) lim

x→0
|x| ln(1 + |x|) = 0.
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