Lecture 13

1 Limits ctd..

One sided limits: Let f(x) is defined on (c, b). The right hand limit of f(x) at c is L, if given $\epsilon > 0$, there exists $\delta > 0$, such that

$$0 < x - c < \delta \implies |f(x) - L| < \epsilon.$$

Notation: $\lim_{x \to c^+} f(x) = L$. Similarly, one can define the left hand limit of f(x) at b and is denoted by $\lim_{x \to b^-} f(x) = L$.

Both theorems above holds for right and left limits. Proof is easy.

Problem: Show that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$.

Solution: Consider the unit circle centered at O(0,0) and passing through A(1,0) and B(0,1). Let Q be the projection of P on x-axis and the point T is such that A is the projection of T on x-axis. Let OT be the ray with $\angle AOT = \theta, 0 < \theta < \pi/2$. Let P be the point of intersection of OT and circle. Then $\triangle OPQ$ and $\triangle OTA$ are similar triangles and hence, Area of $\triangle OAP <$ Area of sector OAP < area of $\triangle OAT$. i.e.,

$$\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$$

dividing by $\sin \theta$, we get $1 > \frac{\sin \theta}{\theta} > \cos \theta$. Now $\lim_{\theta \to 0^+} \cos \theta = 1$ implies that $\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1$. Now use the fact that $\frac{\sin \theta}{\theta}$ is even function. At this stage, it is not difficult to prove the following:

Theorem 1.0.1. $\lim_{x\to a} f(x) = L$ exists $\iff \lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = L$.

Limits at infinity and infinite limits

Definition 1.0.2. f(x) has limit L as x approaches $+\infty$, if for any given $\epsilon > 0$, there exists M > 0 such that

$$x > M \implies |f(x) - L| < \epsilon.$$

Similarly, one can define limit as x approaches $-\infty$.

Problem: (i) $\lim_{x\to\infty} \frac{1}{x} = 0$, (ii) $\lim_{x\to-\infty} \frac{1}{x} = 0$. (iii) $\lim_{x\to\infty} \sin x$ does not exist. **Solution:** (i) and (ii) are easy. For (iii), Choose $x_n = n\pi$ and $y_n = \frac{\pi}{2} + 2n\pi$. Then $x_n, y_n \to \infty$ and $\sin x_n = 0$, $\sin y_n = 1$. Hence the limit does not exist.

Above two theorems on limits hold in this also.

Definition 1.0.3. (Horizontal Asymptote:) A line y = b is a horizontal asymptote of y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.

Example 1.0.4. (i) y = 1 is a horizontal asymptote for $1 + \frac{1}{x+1}$

Definition 1.0.5. (Infinite Limit): A function f(x) approaches ∞ ($f(x) \to \infty$) as $x \to x_0$ if, for every real B > 0, there exists $\delta > 0$ such that

$$0 < |x - x_0| < \delta \implies f(x) > B.$$

Similarly, one can define for $-\infty$. Also one can define one sided limit of f(x) approaching ∞ or $-\infty$.

Examples 1.0.6. (i) $\lim_{x \to 0} \frac{1}{x^2} = \infty$, (ii) $\lim_{x \to 0} \frac{1}{x^2} \sin(\frac{1}{x})$ does not exist.

For (i) given B > 0, we can choose $\delta \leq \frac{1}{\sqrt{B}}$. For (ii), choose a sequence $\{x_n\}$ such that $\sin \frac{1}{x_n} = 1$, say $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$ and $\frac{1}{y_n} = n\pi$. Then $\lim_{n \to \infty} f(x_n) = \frac{1}{x_n^2} \to \infty$ and $\lim_{n \to \infty} f(y_n) = 0$, though $x_n, y_n \to 0$ as $n \to \infty$.

Definition 1.0.7. (Vertical Asymptote:) A line x = a is a vertical asymptote of y = f(x) if either $\lim_{x \to a^+} f(x) = \pm \infty$ or $\lim_{x \to a^-} f(x) = \pm \infty$.

Example 1.0.8. $f(x) = \frac{x+3}{x+2}$. x = -2 is a vertical asymptote and y = 1 is a horizontal asymptote.

1.1 Continuous functions

Definition 1.1.1. A real valued function f(x) is said to be continuous at x = c if (i) $c \in domain(f)$ (ii) $\lim_{x \to c} f(x)$ exists (iii) The limit in (ii) is equal to f(c). In other words, for every sequence $x_n \to c$, we must have $f(x_n) \to f(c)$ as $n \to \infty$. That is, for a given $\epsilon > 0$, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \epsilon.$$

Examples 1.1.2. 1. $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$ is continuous at 0. Let $\epsilon > 0$. Then $|f(x) - f(0)| \le |x^2|$. So it is enough to choose $\delta = \sqrt{\epsilon}$. 2. $g(x) = \begin{cases} \frac{1}{x} \sin \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$ is not continuous at 0. Choose $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$. Then $\lim x_n = 0$ and $f(x_n) = \frac{1}{x_n} \to \infty$.

The following theorem is an easy consequence of the definition.

Theorem 1.1.3. Suppose f and g are continuous at c. Then (i) $f \pm g$ is also continuous at c(ii) fg is continuous at c(iii) $\frac{f}{g}$ is continuous at c if $g(c) \neq 0$.

Theorem 1.1.4. Composition of continuous functions is also continuous i.e., if f is continuous at c and g is continuous at f(c) then g(f(x)) is continuous at c.

Corollary 1.1.5. If f(x) is continuous at c, then |f| is also continuous at c.

Theorem 1.1.6. If f, g are continuous at c, then $\max(f, g)$ is continuous at c.

Proof. Proof follows from the relation

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|$$

///

and the theorems on algebra of limits.

Remark 1.1. For sequences: If f is continuous function and let $x_n \to x_0$ then $f(x_n) \to f(x_0)$ (here we assumed that $x_n, x_0 \in dom(f)$)

Example 1.1.7. 1. $(1+1/n)^n \to e \text{ implies } (1+1/n)^{2n} \to e^2 \text{ as } f(x) = x^2 \text{ is continuous on } \mathbb{R}.$

2.
$$n^{1/n} \to 1$$
 implies $\frac{n^{1/n}}{1+n^{1/n}} \to 1/2$ as $f(x) = \frac{x}{1+x}$ is continuous for all $x > 0$.