Lecture 13

1 Limits ctd..

One sided limits: Let $f(x)$ is defined on (c, b). The right hand limit of $f(x)$ at c is L, if given $\epsilon>0$, there exists $\delta>0$, such that

$$
0<x-c<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Notation: $\lim _{x \rightarrow c^{+}} f(x)=L$. Similarly, one can define the left hand limit of $f(x)$ at b and is denoted by $\lim _{x \rightarrow b^{-}} f(x)=L$.

Both theorems above holds for right and left limits. Proof is easy.

Problem: Show that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.
Solution: Consider the unit circle centered at $O(0,0)$ and passing through $A(1,0)$ and $B(0,1)$. Let Q be the projection of P on x-axis and the point T is such that A is the projection of T on x-axis. Let OT be the ray with $\angle A O T=\theta, 0<\theta<\pi / 2$. Let P be the point of intersection of $O T$ and circle. Then $\triangle O P Q$ and $\triangle O T A$ are similar triangles and hence, Area of $\triangle O A P<$ Area of sector $O A P<$ area of $\triangle O A T$. i.e.,

$$
\frac{1}{2} \sin \theta<\frac{1}{2} \theta<\frac{1}{2} \tan \theta
$$

dividing by $\sin \theta$, we get $1>\frac{\sin \theta}{\theta}>\cos \theta$. Now $\lim _{\theta \rightarrow 0^{+}} \cos \theta=1$ implies that $\lim _{\theta \rightarrow 0^{+}} \frac{\sin \theta}{\theta}=1$.
Now use the fact that $\frac{\sin \theta}{\theta}$ is even function.
At this stage, it is not difficult to prove the following:
Theorem 1.0.1. $\lim _{x \rightarrow a} f(x)=L$ exists $\Longleftrightarrow \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$.

Limits at infinity and infinite limits

Definition 1.0.2. $f(x)$ has limit L as x approaches $+\infty$, if for any given $\epsilon>0$, there exists $M>0$ such that

$$
x>M \Longrightarrow|f(x)-L|<\epsilon
$$

Similarly, one can define limit as x approaches $-\infty$.

Problem: (i) $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, (ii) $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$. (iii) $\lim _{x \rightarrow \infty} \sin x$ does not exist.
Solution: (i) and (ii) are easy. For (iii), Choose $x_{n}=n \pi$ and $y_{n}=\frac{\pi}{2}+2 n \pi$. Then $x_{n}, y_{n} \rightarrow \infty$ and $\sin x_{n}=0, \sin y_{n}=1$. Hence the limit does not exist.

Above two theorems on limits hold in this also.

Definition 1.0.3. (Horizontal Asymptote:) A line $y=b$ is a horizontal asymptote of $y=f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=b$ or $\lim _{x \rightarrow-\infty} f(x)=b$.

Example 1.0.4. (i) $y=1$ is a horizontal asymptote for $1+\frac{1}{x+1}$
Definition 1.0.5. (Infinite Limit): A function $f(x)$ approaches $\infty(f(x) \rightarrow \infty)$ as $x \rightarrow$ x_{0} if, for every real $B>0$, there exists $\delta>0$ such that

$$
0<\left|x-x_{0}\right|<\delta \Longrightarrow f(x)>B
$$

Similarly, one can define for $-\infty$. Also one can define one sided limit of $f(x)$ approaching ∞ or $-\infty$.
Examples 1.0.6. (i) $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$, (ii) $\lim _{x \rightarrow 0} \frac{1}{x^{2}} \sin \left(\frac{1}{x}\right)$ does not exist.
For (i) given $B>0$, we can choose $\delta \leq \frac{1}{\sqrt{B}}$. For (ii), choose a sequence $\left\{x_{n}\right\}$ such that $\sin \frac{1}{x_{n}}=1$, say $\frac{1}{x_{n}}=\frac{\pi}{2}+2 n \pi$ and $\frac{1}{y_{n}}=n \pi$. Then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\frac{1}{x_{n}^{2}} \rightarrow \infty$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right)=0$, though $x_{n}, y_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Definition 1.0.7. (Vertical Asymptote:) A line $x=a$ is a vertical asymptote of $y=f(x)$ if either $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$.

Example 1.0.8. $f(x)=\frac{x+3}{x+2}$.
$x=-2$ is a vertical asymptote and $y=1$ is a horizontal asymptote.

1.1 Continuous functions

Definition 1.1.1. A real valued function $f(x)$ is said to be continuous at $x=c$ if
(i) $c \in \operatorname{domain}(f)$
(ii) $\lim _{x \rightarrow c} f(x)$ exists
(iii) The limit in (ii) is equal to $f(c)$.

In other words, for every sequence $x_{n} \rightarrow c$, we must have $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$. That is, for a given $\epsilon>0$, there exists $\delta>0$ such that

$$
|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\epsilon
$$

Examples 1.1.2. 1. $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$ is continuous at 0.
Let $\epsilon>0$. Then $|f(x)-f(0)| \leq\left|x^{2}\right|$. So it is enough to choose $\delta=\sqrt{\epsilon}$.
2. $g(x)=\left\{\begin{array}{ll}\frac{1}{x} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is not continuous at 0.

Choose $\frac{1}{x_{n}}=\frac{\pi}{2}+2 n \pi$. Then $\lim x_{n}=0$ and $f\left(x_{n}\right)=\frac{1}{x_{n}} \rightarrow \infty$.
The following theorem is an easy consequence of the definition.
Theorem 1.1.3. Suppose f and g are continuous at c. Then
(i) $f \pm g$ is also continuous at c
(ii) $f g$ is continuous at c
(iii) $\frac{f}{g}$ is continuous at c if $g(c) \neq 0$.

Theorem 1.1.4. Composition of continuous functions is also continuous i.e., if f is continuous at c and g is continuous at $f(c)$ then $g(f(x))$ is continuous at c.

Corollary 1.1.5. If $f(x)$ is continuous at c, then $|f|$ is also continuous at c.
Theorem 1.1.6. If f, g are continuous at c, then $\max (f, g)$ is continuous at c.
Proof. Proof follows from the relation

$$
\max (f, g)=\frac{1}{2}(f+g)+\frac{1}{2}|f-g|
$$

and the theorems on algebra of limits.
Remark 1.1. For sequences: If f is continuous function and let $x_{n} \rightarrow x_{0}$ then $f\left(x_{n}\right) \rightarrow$ $f\left(x_{0}\right)$ (here we assumed that $\left.x_{n}, x_{0} \in \operatorname{dom}(f)\right)$
Example 1.1.7. 1. $(1+1 / n)^{n} \rightarrow e$ implies $(1+1 / n)^{2 n} \rightarrow e^{2}$ as $f(x)=x^{2}$ is continuous on \mathbb{R}.
2. $n^{1 / n} \rightarrow 1$ implies $\frac{n^{1 / n}}{1+n^{1 / n}} \rightarrow 1 / 2$ as $f(x)=\frac{x}{1+x}$ is continuous for all $x>0$.

