
Lecture 13

1 Limits ctd..

One sided limits: Let f(x) is defined on (c, b). The right hand limit of f(x) at c is L,

if given ϵ > 0, there exists δ > 0, such that

0 < x− c < δ =⇒ |f(x)− L| < ϵ.

Notation: lim
x→c+

f(x) = L. Similarly, one can define the left hand limit of f(x) at b and is

denoted by lim
x→b−

f(x) = L.

Both theorems above holds for right and left limits. Proof is easy.

Problem: Show that limθ→0
sin θ
θ

= 1.

Solution: Consider the unit circle centered at O(0, 0) and passing through A(1, 0) and

B(0, 1). Let Q be the projection of P on x−axis and the point T is such that A is the

projection of T on x−axis. Let OT be the ray with ∠AOT = θ, 0 < θ < π/2. Let P be

the point of intersection of OT and circle. Then ∆OPQ and ∆OTA are similar triangles

and hence, Area of ∆OAP < Area of sector OAP < area of ∆OAT . i.e.,

1

2
sin θ <

1

2
θ <

1

2
tan θ

dividing by sin θ, we get 1 >
sin θ

θ
> cos θ. Now lim

θ→0+
cos θ = 1 implies that lim

θ→0+

sin θ

θ
= 1.

Now use the fact that
sin θ

θ
is even function.

At this stage, it is not difficult to prove the following:

Theorem 1.0.1. limx→a f(x) = L exists ⇐⇒ limx→a+ f(x) = limx→a− f(x) = L.

Limits at infinity and infinite limits

Definition 1.0.2. f(x) has limit L as x approaches +∞, if for any given ϵ > 0, there

exists M > 0 such that

x > M =⇒ |f(x)− L| < ϵ.

Similarly, one can define limit as x approaches −∞.
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Problem: (i) lim
x→∞

1

x
= 0, (ii) limx→−∞

1
x
= 0. (iii) lim

x→∞
sinx does not exist.

Solution: (i) and (ii) are easy. For (iii), Choose xn = nπ and yn = π
2
+ 2nπ. Then

xn, yn → ∞ and sinxn = 0, sin yn = 1. Hence the limit does not exist.

Above two theorems on limits hold in this also.

Definition 1.0.3. (Horizontal Asymptote:) A line y = b is a horizontal asymptote of

y = f(x) if either lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b.

Example 1.0.4. (i) y = 1 is a horizontal asymptote for 1 + 1
x+1

Definition 1.0.5. (Infinite Limit): A function f(x) approaches ∞ (f(x) → ∞) as x →
x0 if, for every real B > 0, there exists δ > 0 such that

0 < |x− x0| < δ =⇒ f(x) > B.

Similarly, one can define for −∞. Also one can define one sided limit of f(x) approaching

∞ or −∞.

Examples 1.0.6. (i) lim
x→0

1

x2
= ∞, (ii) limx→0

1
x2 sin(

1
x
) does not exist.

For (i) given B > 0, we can choose δ ≤ 1√
B
. For (ii), choose a sequence {xn} such

that sin 1
xn

= 1, say 1
xn

= π
2
+ 2nπ and 1

yn
= nπ. Then lim

n→∞
f(xn) =

1

x2
n

→ ∞ and

lim
n→∞

f(yn) = 0, though xn, yn → 0 as n → ∞.

Definition 1.0.7. (Vertical Asymptote:) A line x = a is a vertical asymptote of y = f(x)

if either lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞.

Example 1.0.8. f(x) = x+3
x+2

.

x = −2 is a vertical asymptote and y = 1 is a horizontal asymptote.

1.1 Continuous functions

Definition 1.1.1. A real valued function f(x) is said to be continuous at x = c if

(i) c ∈ domain(f)

(ii) lim
x→c

f(x) exists

(iii) The limit in (ii) is equal to f(c).
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In other words, for every sequence xn → c, we must have f(xn) → f(c) as n → ∞.

That is, for a given ϵ > 0, there exists δ > 0 such that

|x− c| < δ =⇒ |f(x)− f(c)| < ϵ.

Examples 1.1.2. 1. f(x) =

{
x2 sin( 1

x
) x ̸= 0

0 x = 0
is continuous at 0.

Let ϵ > 0. Then |f(x)− f(0)| ≤ |x2|. So it is enough to choose δ =
√
ϵ.

2. g(x) =

{
1
x
sin 1

x
x ̸= 0

0 x = 0
is not continuous at 0.

Choose 1
xn

= π
2
+ 2nπ. Then limxn = 0 and f(xn) =

1
xn

→ ∞.

The following theorem is an easy consequence of the definition.

Theorem 1.1.3. Suppose f and g are continuous at c. Then

(i) f ± g is also continuous at c

(ii) fg is continuous at c

(iii)
f

g
is continuous at c if g(c) ̸= 0.

Theorem 1.1.4. Composition of continuous functions is also continuous i.e., if f is

continuous at c and g is continuous at f(c) then g(f(x)) is continuous at c.

Corollary 1.1.5. If f(x) is continuous at c, then |f | is also continuous at c.

Theorem 1.1.6. If f, g are continuous at c, then max(f, g) is continuous at c.

Proof. Proof follows from the relation

max(f, g) =
1

2
(f + g) +

1

2
|f − g|

and the theorems on algebra of limits. ///

Remark 1.1. For sequences: If f is continuous function and let xn → x0 then f(xn) →
f(x0) (here we assumed that xn, x0 ∈ dom(f))

Example 1.1.7. 1. (1+1/n)n → e implies (1+1/n)2n → e2 as f(x) = x2 is continuous

on R.

2. n1/n → 1 implies n1/n

1+n1/n → 1/2 as f(x) = x
1+x

is continuous for all x > 0.
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