Lecture 14

Types of discontinuities

Removable discontinuity: f(z) is defined every where in an interval containing a
except at © = @ and limit exists at © = a OR f(x) is defined also at x = a and limit is
NOT equal to function value at x = a. Then we say that f(x) has removable discontinuity
at x = a. These functions can be extended as continuous functions by defining the value
of f to be the limit value at = = a.

Example 0.0.1. f(x) = OI 0 Here limit as © — 0 is 1. But f(0) is defined to

€Tr =
be 0.

Jump discontinuity: The left and right limits of f(x) exists but not equal. This type
of discontinuities are also called discontinuities of first kind.

Example 0.0.2. f(z) = {1_1 iig Easy to see that left and right limits at 0 are
different. -

Infinite discontinuity: Left or right limit of f(xz) is 0o or —o0.

Example 0.0.3. f(x) = 2 has infinite discontinuity at x = 0.

Discontinuity of second kind: If either lim f(x) or lim f(z) does not exist, then ¢

T—c~ z—ct
is called discontinuity of second kind.
Example 0.0.4. Consider the function
0 z€Q
fz) =
1 2£Q

Then f does not have left or right limit any point c. Indeed, if c € Q, then x, = c—l—% €eQ
and y, = c+ = & Q. For these sequences, we will have, f(c+ %) and f(c+ 7) converges
to different values. If ¢ ¢ Q, then choos x, € (c,c+ ) NQ and y, = c+ = & Q. For
these sequences we will again get different limit values.

Properties of continuous functions

Definition 0.0.5. (Closed set): A subset A of R is called closed set if A contains all its
limit points. (i.e., if {x,} C A and z,, — ¢, then c € A).

Theorem 0.0.6. Continuous functions on closed, bounded interval is bounded.
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Proof. Let f(z) be continuous on [a,b] and let {z,} C [a,b] be a sequence such that
|f(z,,)] > n. Then {z,} is a bounded sequence and hence there exists a subsequence
{zy, } which converges to ¢. Then f(x,, ) — f(c), a contradiction to |f(z,,| > nk.

Theorem 0.0.7. Let f(x) be a continuous function on closed, bounded interval [a,b].
Then supremum and infimum of functions are achieved in [a,b].

Proof. Above theoem and the completeness of R implies that Supremum of f is finite
Let {z,} be a sequence such that f(z,) — supf. Then {z,} is bounded and hence
by Bolzano-Weierstrass theorem, there exists a subsequence z,,, such that z,, — x¢ for
some xg. a < x, < bimplies zg € [a,b]. Since f is continuous, f(x,,) — f(x¢). Hence
f(zo) = sup f. The attainment of minimum can be proved by noting that —f is also
continuous and min f = — sup(—f).

Remark 0.1. Closed and boundedness of the interval is important in the above theorem.
Consider the exzamples (i) f(z) =L on (0,1) (i) f(z) =z on R.

Theorem 0.0.8. Let f(x) be a continuous function on [a,b] and let f(c) > 0 for some
c € (a,b), Then there exists 6 > 0 such that f(z) >0 in (c —d,c+9).

Proof. Let e = 1f(c) > 0. Since f(z) is continuous at ¢, there exists 6 > 0 such that

-l <8 = |f(x) - F(O] < 3/(c)

ie., —2f(c) < f(x) — f(c) < 3f(c). Hence f(z) > 1f(c) for all z € (¢ — &, ¢+ 9).

Corollary 0.0.9. Suppose a continuous functions f(x) satisfies f;f(x)gb(x)dx = 0 for
all continuous functions ¢(x) on [a,b]. Then f(z) =0 on [a,b].

Proof. Suppose f(c¢) > 0. Then by above theorem f(z) > 0 in (¢ — d,¢ + ¢). Choose
¢(z) so that ¢(x) > 0in (¢ —/2,¢+ §/2) and is 0 otherwise. Then fabf(:n)¢(x) >0. A
contradiction.

Alternatively, one can choose ¢(z) = f(x).

Theorem 0.0.10. Let f(z) be a continuous function on R and let f(a)f(b) < 0 for some
a,b. Then there exits ¢ € (a,b) such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Let S = {x € [a,b] : f(z) < 0}. Then [a,a+0) C S
for some 6 > 0 and S is bounded. Let ¢ = sup S. We claim that f(c) = 0. Take z,, = c+1,
then z, ¢ S, ©,, = c¢. Therefore, f(¢) = lim f(x,) > 0. On the otherhand, note that
c— % is NOT supremum. Therefore, there exists a point y, € (¢ — %, ¢) N S. Then note
that y, — ¢, f(c) =lim f(y,) < 0. Hence f(c) =0.



Corollary 0.0.11. Intermediate value theorem: Let f(z) be a continuous function
on [a,b] and let f(a) <y < f(b). Then there ezists ¢ € (a,b) such that f(c) =y

Remark 0.2. A continuous function assumes all values between its maximum and mini-
mum.

Problem: (fixed point): Let f(x) be a continuous function from [0, 1] into [0, 1]. Then
show that there is a point ¢ € [0, 1] such that f(c) = c.

Define the function g(z) = f(x) — 2. Then ¢(0) > 0 and g(1) < 0. Now Apply Interme-
diate value theorem.

Application: Root finding: To find the solutions of f(z) = 0, one can think of defining
a new function g such that g(z) has a fixed point, which in turn satisfies f(z) = 0.
Example: (1) f(x) = 2® + 42® — 10 in the interval [1,2]. Define g(z) = (%)1/2. We can
check that ¢ maps [1,2] into [1,2]. So ¢ has fixed point in [1,2] which is also solution
of f(x) = 0. Such fixed points can be obtained as limit of the sequence {x,}, where
Tnt1 = g(x,), z0 € (1,2). Note that

V10 1

<

/ — —
By Mean Value Theorem, 3 z (see next section)
, 1
[2ns1 = 2l = 192|270 = Tna| < Flon — 20

Iterating this, we get

1
|Tpi1 — xp| < 2—n|x1 — Zo].

Therefore, {z,} is a Cauchy sequence. (see problem after Theorem 1.4.4).



