Lecture 14

Types of discontinuities

Removable discontinuity: f(x) is defined every where in an interval containing a except at x = a and limit exists at x = a OR f(x) is defined also at x = a and limit is NOT equal to function value at x = a. Then we say that f(x) has removable discontinuity at x = a. These functions can be extended as continuous functions by defining the value of f to be the limit value at x = a.

Example 0.0.1. $f(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$. Here limit as $x \to 0$ is 1. But f(0) is defined to be 0.

Jump discontinuity: The left and right limits of f(x) exists but not equal. This type of discontinuities are also called discontinuities of first kind.

Example 0.0.2. $f(x) = \begin{cases} 1 & x \leq 0 \\ -1 & x \geq 0 \end{cases}$. Easy to see that left and right limits at 0 are different.

Infinite discontinuity: Left or right limit of f(x) is ∞ or $-\infty$.

Example 0.0.3. $f(x) = \frac{1}{x}$ has infinite discontinuity at x = 0.

Discontinuity of second kind: If either $\lim_{x\to c^-} f(x)$ or $\lim_{x\to c^+} f(x)$ does not exist, then c is called discontinuity of second kind.

Example 0.0.4. Consider the function

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q} \end{cases}$$

Then f does not have left or right limit any point c. Indeed, if $c \in \mathbb{Q}$, then $x_n = c + \frac{1}{n} \in \mathbb{Q}$ and $y_n = c + \frac{\pi}{n} \notin \mathbb{Q}$. For these sequences, we will have, $f(c + \frac{1}{n})$ and $f(c + \frac{\pi}{n})$ converges to different values. If $c \notin \mathbb{Q}$, then choos $x_n \in (c, c + \frac{1}{n}) \cap \mathbb{Q}$ and $y_n = c + \frac{1}{n} \notin \mathbb{Q}$. For these sequences we will again get different limit values.

Properties of continuous functions

Definition 0.0.5. (Closed set): A subset A of \mathbb{R} is called closed set if A contains all its limit points. (i.e., if $\{x_n\} \subset A$ and $x_n \to c$, then $c \in A$).

Theorem 0.0.6. Continuous functions on closed, bounded interval is bounded.

Proof. Let f(x) be continuous on [a, b] and let $\{x_n\} \subset [a, b]$ be a sequence such that $|f(x_n)| > n$. Then $\{x_n\}$ is a bounded sequence and hence there exists a subsequence $\{x_{n_k}\}$ which converges to c. Then $f(x_{n_k}) \to f(c)$, a contradiction to $|f(x_{n_k}| > n_k)$.

Theorem 0.0.7. Let f(x) be a continuous function on closed, bounded interval [a, b]. Then supremum and infimum of functions are achieved in [a, b].

Proof. Above theorem and the completeness of \mathbb{R} implies that Supremum of f is finite Let $\{x_n\}$ be a sequence such that $f(x_n) \to \sup f$. Then $\{x_n\}$ is bounded and hence by Bolzano-Weierstrass theorem, there exists a subsequence x_{n_k} such that $x_{n_k} \to x_0$ for some x_0 . $a \leq x_n \leq b$ implies $x_0 \in [a, b]$. Since f is continuous, $f(x_{n_k}) \to f(x_0)$. Hence $f(x_0) = \sup f$. The attainment of minimum can be proved by noting that -f is also continuous and min $f = -\sup(-f)$.

Remark 0.1. Closed and boundedness of the interval is important in the above theorem. Consider the examples (i) $f(x) = \frac{1}{x}$ on (0,1) (ii) f(x) = x on \mathbb{R} .

Theorem 0.0.8. Let f(x) be a continuous function on [a, b] and let f(c) > 0 for some $c \in (a, b)$, Then there exists $\delta > 0$ such that f(x) > 0 in $(c - \delta, c + \delta)$.

Proof. Let $\epsilon = \frac{1}{2}f(c) > 0$. Since f(x) is continuous at c, there exists $\delta > 0$ such that

$$|x-c| < \delta \implies |f(x) - f(c)| < \frac{1}{2}f(c)$$

i.e., $-\frac{1}{2}f(c) < f(x) - f(c) < \frac{1}{2}f(c)$. Hence $f(x) > \frac{1}{2}f(c)$ for all $x \in (c - \delta, c + \delta)$.

Corollary 0.0.9. Suppose a continuous functions f(x) satisfies $\int_a^b f(x)\phi(x)dx = 0$ for all continuous functions $\phi(x)$ on [a, b]. Then $f(x) \equiv 0$ on [a, b].

Proof. Suppose f(c) > 0. Then by above theorem f(x) > 0 in $(c - \delta, c + \delta)$. Choose $\phi(x)$ so that $\phi(x) > 0$ in $(c - \delta/2, c + \delta/2)$ and is 0 otherwise. Then $\int_a^b f(x)\phi(x) > 0$. A contradiction.

Alternatively, one can choose $\phi(x) = f(x)$.

Theorem 0.0.10. Let f(x) be a continuous function on \mathbb{R} and let f(a)f(b) < 0 for some a, b. Then there exits $c \in (a, b)$ such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Let $S = \{x \in [a, b] : f(x) < 0\}$. Then $[a, a + \delta) \subset S$ for some $\delta > 0$ and S is bounded. Let $c = \sup S$. We claim that f(c) = 0. Take $x_n = c + \frac{1}{n}$, then $x_n \notin S$, $x_n \to c$. Therefore, $f(c) = \lim f(x_n) \ge 0$. On the other hand, note that $c - \frac{1}{n}$ is NOT supremum. Therefore, there exists a point $y_n \in (c - \frac{1}{n}, c) \cap S$. Then note that $y_n \to c$, $f(c) = \lim f(y_n) \le 0$. Hence f(c) = 0. **Corollary 0.0.11. Intermediate value theorem:** Let f(x) be a continuous function on [a, b] and let f(a) < y < f(b). Then there exists $c \in (a, b)$ such that f(c) = y

Remark 0.2. A continuous function assumes all values between its maximum and minimum.

Problem: (fixed point): Let f(x) be a continuous function from [0, 1] into [0, 1]. Then show that there is a point $c \in [0, 1]$ such that f(c) = c.

Define the function g(x) = f(x) - x. Then $g(0) \ge 0$ and $g(1) \le 0$. Now Apply Intermediate value theorem.

Application: Root finding: To find the solutions of f(x) = 0, one can think of defining a new function g such that g(x) has a fixed point, which in turn satisfies f(x) = 0. *Example:* (1) $f(x) = x^3 + 4x^2 - 10$ in the interval [1, 2]. Define $g(x) = \left(\frac{10}{4+x}\right)^{1/2}$. We can check that g maps [1, 2] into [1, 2]. So g has fixed point in [1, 2] which is also solution of f(x) = 0. Such fixed points can be obtained as limit of the sequence $\{x_n\}$, where $x_{n+1} = g(x_n), x_0 \in (1, 2)$. Note that

$$g'(x) = \frac{\sqrt{10}}{(4+x)^{3/2}} < \frac{1}{2}.$$

By Mean Value Theorem, $\exists z \text{ (see next section)}$

$$|x_{n+1} - x_n| = |g'(z)||x_n - x_{n-1}| \le \frac{1}{2}|x_n - x_{n-1}|$$

Iterating this, we get

$$|x_{n+1} - x_n| < \frac{1}{2^n} |x_1 - x_0|.$$

Therefore, $\{x_n\}$ is a Cauchy sequence. (see problem after Theorem 1.4.4).