
Lecture 14

Types of discontinuities

Removable discontinuity: f(x) is defined every where in an interval containing a

except at x = a and limit exists at x = a OR f(x) is defined also at x = a and limit is

NOT equal to function value at x = a. Then we say that f(x) has removable discontinuity

at x = a. These functions can be extended as continuous functions by defining the value

of f to be the limit value at x = a.

Example 0.0.1. f(x) =

{
sinx
x

x 6= 0

0 x = 0
. Here limit as x→ 0 is 1. But f(0) is defined to

be 0.

Jump discontinuity: The left and right limits of f(x) exists but not equal. This type

of discontinuities are also called discontinuities of first kind.

Example 0.0.2. f(x) =

{
1 x ≤ 0

−1 x ≥ 0
. Easy to see that left and right limits at 0 are

different.

Infinite discontinuity: Left or right limit of f(x) is ∞ or −∞.

Example 0.0.3. f(x) = 1
x

has infinite discontinuity at x = 0.

Discontinuity of second kind: If either lim
x→c−

f(x) or lim
x→c+

f(x) does not exist, then c

is called discontinuity of second kind.

Example 0.0.4. Consider the function

f(x) =

{
0 x ∈ Q
1 x 6∈ Q

Then f does not have left or right limit any point c. Indeed, if c ∈ Q, then xn = c+ 1
n
∈ Q

and yn = c+ π
n
6∈ Q. For these sequences, we will have, f(c+ 1

n
) and f(c+ π

n
) converges

to different values. If c 6∈ Q, then choos xn ∈ (c, c + 1
n
) ∩ Q and yn = c + 1

n
6∈ Q. For

these sequences we will again get different limit values.

Properties of continuous functions

Definition 0.0.5. (Closed set): A subset A of R is called closed set if A contains all its

limit points. (i.e., if {xn} ⊂ A and xn → c, then c ∈ A).

Theorem 0.0.6. Continuous functions on closed, bounded interval is bounded.
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Proof. Let f(x) be continuous on [a, b] and let {xn} ⊂ [a, b] be a sequence such that

|f(xn)| > n. Then {xn} is a bounded sequence and hence there exists a subsequence

{xnk
} which converges to c. Then f(xnk

)→ f(c), a contradiction to |f(xnk
| > nk.

Theorem 0.0.7. Let f(x) be a continuous function on closed, bounded interval [a, b].

Then supremum and infimum of functions are achieved in [a, b].

Proof. Above theoem and the completeness of R implies that Supremum of f is finite

Let {xn} be a sequence such that f(xn) → sup f . Then {xn} is bounded and hence

by Bolzano-Weierstrass theorem, there exists a subsequence xnk
such that xnk

→ x0 for

some x0. a ≤ xn ≤ b implies x0 ∈ [a, b]. Since f is continuous, f(xnk
) → f(x0). Hence

f(x0) = sup f . The attainment of minimum can be proved by noting that −f is also

continuous and min f = − sup(−f).

Remark 0.1. Closed and boundedness of the interval is important in the above theorem.

Consider the examples (i) f(x) = 1
x

on (0, 1) (ii) f(x) = x on R.

Theorem 0.0.8. Let f(x) be a continuous function on [a, b] and let f(c) > 0 for some

c ∈ (a, b), Then there exists δ > 0 such that f(x) > 0 in (c− δ, c+ δ).

Proof. Let ε = 1
2
f(c) > 0. Since f(x) is continuous at c, there exists δ > 0 such that

|x− c| < δ =⇒ |f(x)− f(c)| < 1

2
f(c)

i.e., −1
2
f(c) < f(x)− f(c) < 1

2
f(c). Hence f(x) > 1

2
f(c) for all x ∈ (c− δ, c+ δ).

Corollary 0.0.9. Suppose a continuous functions f(x) satisfies
∫ b
a
f(x)φ(x)dx = 0 for

all continuous functions φ(x) on [a, b]. Then f(x) ≡ 0 on [a, b].

Proof. Suppose f(c) > 0. Then by above theorem f(x) > 0 in (c − δ, c + δ). Choose

φ(x) so that φ(x) > 0 in (c− δ/2, c + δ/2) and is 0 otherwise. Then
∫ b
a
f(x)φ(x) > 0. A

contradiction.

Alternatively, one can choose φ(x) = f(x).

Theorem 0.0.10. Let f(x) be a continuous function on R and let f(a)f(b) < 0 for some

a, b. Then there exits c ∈ (a, b) such that f(c) = 0.

Proof. Assume that f(a) < 0 < f(b). Let S = {x ∈ [a, b] : f(x) < 0}. Then [a, a+ δ) ⊂ S

for some δ > 0 and S is bounded. Let c = supS. We claim that f(c) = 0. Take xn = c+ 1
n
,

then xn 6∈ S, xn → c. Therefore, f(c) = lim f(xn) ≥ 0. On the otherhand, note that

c − 1
n

is NOT supremum. Therefore, there exists a point yn ∈ (c − 1
n
, c) ∩ S. Then note

that yn → c, f(c) = lim f(yn) ≤ 0. Hence f(c) = 0.
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Corollary 0.0.11. Intermediate value theorem: Let f(x) be a continuous function

on [a, b] and let f(a) < y < f(b). Then there exists c ∈ (a, b) such that f(c) = y

Remark 0.2. A continuous function assumes all values between its maximum and mini-

mum.

Problem: (fixed point): Let f(x) be a continuous function from [0, 1] into [0, 1]. Then

show that there is a point c ∈ [0, 1] such that f(c) = c.

Define the function g(x) = f(x)− x. Then g(0) ≥ 0 and g(1) ≤ 0. Now Apply Interme-

diate value theorem.

Application: Root finding: To find the solutions of f(x) = 0, one can think of defining

a new function g such that g(x) has a fixed point, which in turn satisfies f(x) = 0.

Example: (1) f(x) = x3 + 4x2 − 10 in the interval [1, 2]. Define g(x) =
(

10
4+x

)1/2
. We can

check that g maps [1, 2] into [1, 2]. So g has fixed point in [1, 2] which is also solution

of f(x) = 0. Such fixed points can be obtained as limit of the sequence {xn}, where

xn+1 = g(xn), x0 ∈ (1, 2). Note that

g′(x) =

√
10

(4 + x)3/2
<

1

2
.

By Mean Value Theorem, ∃ z (see next section)

|xn+1 − xn| = |g′(z)||xn − xn−1| ≤
1

2
|xn − xn−1|

Iterating this, we get

|xn+1 − xn| <
1

2n
|x1 − x0|.

Therefore, {xn} is a Cauchy sequence. (see problem after Theorem 1.4.4).
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