Lecture 14

Types of discontinuities

Removable discontinuity: $f(x)$ is defined every where in an interval containing a except at $x=a$ and limit exists at $x=a$ OR $f(x)$ is defined also at $x=a$ and limit is NOT equal to function value at $x=a$. Then we say that $f(x)$ has removable discontinuity at $x=a$. These functions can be extended as continuous functions by defining the value of f to be the limit value at $x=a$.

Example 0.0.1. $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Here limit as $x \rightarrow 0$ is 1 . But $f(0)$ is defined to be 0 .

Jump discontinuity: The left and right limits of $f(x)$ exists but not equal. This type of discontinuities are also called discontinuities of first kind.
Example 0.0.2. $f(x)=\left\{\begin{array}{ll}1 & x \leq 0 \\ -1 & x \geq 0\end{array}\right.$. Easy to see that left and right limits at 0 are different.

Infinite discontinuity: Left or right limit of $f(x)$ is ∞ or $-\infty$.
Example 0.0.3. $f(x)=\frac{1}{x}$ has infinite discontinuity at $x=0$.
Discontinuity of second kind: If either $\lim _{x \rightarrow c^{-}} f(x)$ or $\lim _{x \rightarrow c^{+}} f(x)$ does not exist, then c is called discontinuity of second kind.

Example 0.0.4. Consider the function

$$
f(x)= \begin{cases}0 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q}\end{cases}
$$

Then f does not have left or right limit any point c. Indeed, if $c \in \mathbb{Q}$, then $x_{n}=c+\frac{1}{n} \in \mathbb{Q}$ and $y_{n}=c+\frac{\pi}{n} \notin \mathbb{Q}$. For these sequences, we will have, $f\left(c+\frac{1}{n}\right)$ and $f\left(c+\frac{\pi}{n}\right)$ converges to different values. If $c \notin \mathbb{Q}$, then choos $x_{n} \in\left(c, c+\frac{1}{n}\right) \cap \mathbb{Q}$ and $y_{n}=c+\frac{1}{n} \notin \mathbb{Q}$. For these sequences we will again get different limit values.

Properties of continuous functions

Definition 0.0.5. (Closed set): A subset A of \mathbb{R} is called closed set if A contains all its limit points. (i.e., if $\left\{x_{n}\right\} \subset A$ and $x_{n} \rightarrow c$, then $c \in A$).

Theorem 0.0.6. Continuous functions on closed, bounded interval is bounded.

Proof. Let $f(x)$ be continuous on $[a, b]$ and let $\left\{x_{n}\right\} \subset[a, b]$ be a sequence such that $\left|f\left(x_{n}\right)\right|>n$. Then $\left\{x_{n}\right\}$ is a bounded sequence and hence there exists a subsequence $\left\{x_{n_{k}}\right\}$ which converges to c. Then $f\left(x_{n_{k}}\right) \rightarrow f(c)$, a contradiction to $\mid f\left(x_{n_{k}} \mid>n_{k}\right.$.
Theorem 0.0.7. Let $f(x)$ be a continuous function on closed, bounded interval $[a, b]$. Then supremum and infimum of functions are achieved in $[a, b]$.

Proof. Above theoem and the completeness of \mathbb{R} implies that Supremum of f is finite Let $\left\{x_{n}\right\}$ be a sequence such that $f\left(x_{n}\right) \rightarrow \sup f$. Then $\left\{x_{n}\right\}$ is bounded and hence by Bolzano-Weierstrass theorem, there exists a subsequence $x_{n_{k}}$ such that $x_{n_{k}} \rightarrow x_{0}$ for some x_{0}. $a \leq x_{n} \leq b$ implies $x_{0} \in[a, b]$. Since f is continuous, $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$. Hence $f\left(x_{0}\right)=\sup f$. The attainment of minimum can be proved by noting that $-f$ is also continuous and $\min f=-\sup (-f)$.

Remark 0.1. Closed and boundedness of the interval is important in the above theorem. Consider the examples $(i) f(x)=\frac{1}{x}$ on $(0,1)(i i) f(x)=x$ on \mathbb{R}.

Theorem 0.0.8. Let $f(x)$ be a continuous function on $[a, b]$ and let $f(c)>0$ for some $c \in(a, b)$, Then there exists $\delta>0$ such that $f(x)>0$ in $(c-\delta, c+\delta)$.

Proof. Let $\epsilon=\frac{1}{2} f(c)>0$. Since $f(x)$ is continuous at c, there exists $\delta>0$ such that

$$
|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\frac{1}{2} f(c)
$$

i.e., $-\frac{1}{2} f(c)<f(x)-f(c)<\frac{1}{2} f(c)$. Hence $f(x)>\frac{1}{2} f(c)$ for all $x \in(c-\delta, c+\delta)$.

Corollary 0.0.9. Suppose a continuous functions $f(x)$ satisfies $\int_{a}^{b} f(x) \phi(x) d x=0$ for all continuous functions $\phi(x)$ on $[a, b]$. Then $f(x) \equiv 0$ on $[a, b]$.

Proof. Suppose $f(c)>0$. Then by above theorem $f(x)>0$ in $(c-\delta, c+\delta)$. Choose $\phi(x)$ so that $\phi(x)>0$ in $(c-\delta / 2, c+\delta / 2)$ and is 0 otherwise. Then $\int_{a}^{b} f(x) \phi(x)>0$. A contradiction.
Alternatively, one can choose $\phi(x)=f(x)$.
Theorem 0.0.10. Let $f(x)$ be a continuous function on \mathbb{R} and let $f(a) f(b)<0$ for some a, b. Then there exits $c \in(a, b)$ such that $f(c)=0$.

Proof. Assume that $f(a)<0<f(b)$. Let $S=\{x \in[a, b]: f(x)<0\}$. Then $[a, a+\delta) \subset S$ for some $\delta>0$ and S is bounded. Let $c=\sup S$. We claim that $f(c)=0$. Take $x_{n}=c+\frac{1}{n}$, then $x_{n} \notin S, x_{n} \rightarrow c$. Therefore, $f(c)=\lim f\left(x_{n}\right) \geq 0$. On the otherhand, note that $c-\frac{1}{n}$ is NOT supremum. Therefore, there exists a point $y_{n} \in\left(c-\frac{1}{n}, c\right) \cap S$. Then note that $y_{n} \rightarrow c, f(c)=\lim f\left(y_{n}\right) \leq 0$. Hence $f(c)=0$.

Corollary 0.0.11. Intermediate value theorem: Let $f(x)$ be a continuous function on $[a, b]$ and let $f(a)<y<f(b)$. Then there exists $c \in(a, b)$ such that $f(c)=y$

Remark 0.2. A continuous function assumes all values between its maximum and minimum.

Problem: (fixed point): Let $f(x)$ be a continuous function from $[0,1]$ into $[0,1]$. Then show that there is a point $c \in[0,1]$ such that $f(c)=c$.

Define the function $g(x)=f(x)-x$. Then $g(0) \geq 0$ and $g(1) \leq 0$. Now Apply Intermediate value theorem.

Application: Root finding: To find the solutions of $f(x)=0$, one can think of defining a new function g such that $g(x)$ has a fixed point, which in turn satisfies $f(x)=0$.
Example: (1) $f(x)=x^{3}+4 x^{2}-10$ in the interval [1,2]. Define $g(x)=\left(\frac{10}{4+x}\right)^{1 / 2}$. We can check that g maps $[1,2]$ into $[1,2]$. So g has fixed point in $[1,2]$ which is also solution of $f(x)=0$. Such fixed points can be obtained as limit of the sequence $\left\{x_{n}\right\}$, where $x_{n+1}=g\left(x_{n}\right), x_{0} \in(1,2)$. Note that

$$
g^{\prime}(x)=\frac{\sqrt{10}}{(4+x)^{3 / 2}}<\frac{1}{2} .
$$

By Mean Value Theorem, $\exists z$ (see next section)

$$
\left|x_{n+1}-x_{n}\right|=\left|g^{\prime}(z)\right|\left|x_{n}-x_{n-1}\right| \leq \frac{1}{2}\left|x_{n}-x_{n-1}\right|
$$

Iterating this, we get

$$
\left|x_{n+1}-x_{n}\right|<\frac{1}{2^{n}}\left|x_{1}-x_{0}\right|
$$

Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence. (see problem after Theorem 1.4.4).

