Lecture 15

1 Uniformly continuous functions

Definition 1.0.1. A function $f(x)$ is said to be uniformly continuous on a set S, if for given $\epsilon>0$, there exists $\delta>0$ such that

$$
x, y \in S, \quad|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon .
$$

Here δ depends only on ϵ, not on x or y.
Examples 1.0.2. 1. $f(x)=x$ is uniformly continuous on \mathbb{R}. In this case we can choose $\delta<\epsilon$.
2. $f(x)=x^{2}$ is uniformly continuous on bounded interval $[a, b]$. Note that $\left|x^{2}-y^{2}\right| \leq|x+y||x-y| \leq 2 b|x-y|$. So one can choose $\delta<\frac{\epsilon}{2 b}$.

Remark 1.1. In case of continuous function $f(x)=\frac{1}{x}$ on $(0,1)$, geometrically one can visualize that the value of δ for the same ϵ depends on the point. Moreover the δ becomes smaller and smaller as we take the point close to 0 . But this is only intuition. For getting a mathematical proof, we need the following

Proposition 1.0.3. Proposition: If $f(x)$ is uniformly continuous function \Longleftrightarrow for ANY two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that $\left|x_{n}-y_{n}\right| \rightarrow 0$, we have $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Suppose not. Then there exists $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that $\left|x_{n}-y_{n}\right| \rightarrow 0$ and $\mid f\left(x_{n}\right)-$ $f\left(y_{n}\right) \mid>\eta$ for some $\eta>0$. Then it is clear that for $\epsilon=\eta$, there is no δ for which $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon$. Because the above sequence satisfies $|x-y|<\delta$, but its image does not.
For converse, assume that for any two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that $\left|x_{n}-y_{n}\right| \rightarrow 0$ we have $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \rightarrow 0$. Suppose f is not uniformly continuous. Then by the definition there exists ϵ_{0} such that for any $\delta>0$, there exist $z, w \in|x-y|<\delta$ for which $|f(z)-f(w)|>\epsilon_{0}$. Now take $\delta=\frac{1}{n}$ and choose z_{n}, w_{n} such that $\left|z_{n}-w_{n}\right|<\frac{1}{n}$. Then $\left|f\left(z_{n}\right)-f\left(w_{n}\right)\right|>\epsilon_{0}$. A contradiction.
Examples 1.0.4. 1. $f(x)=\frac{1}{x}$ is not uniformly continuous on $(0,1)$.
Take $x_{n}=\frac{1}{n+1}, y_{n}=\frac{1}{n}$, then for n large $\left|x_{n}-y_{n}\right| \rightarrow 0$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=1$.
2. $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.

Take $x_{n}=n+\frac{1}{n}$ and $y_{n}=n$. Then $\left|x_{n}-y_{n}\right|=\frac{1}{n} \rightarrow 0$, but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=$ $2+\frac{1}{n^{2}}>2$.

Remark 1.2. 1. It is easy to see from the definition that if f, g are uniformly continuous, then $f \pm g$ is also uniformly continuous.
2. If f, g are uniformly continuous, then $f g$ need not be uniformly continuous. This can be seen by noting that $f(x)=x$ is uniformly continuous on \mathbb{R} but x^{2} is not uniformly continuous on \mathbb{R}.

Theorem 1.0.5. A continuous function $f(x)$ on a closed, bounded interval $[a, b]$ is uniformly continuous.

Proof. Suppose not. Then there exists $\epsilon>0$ and sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in $[a, b]$ such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|>\epsilon$. But then by Bolzano-Weierstrass theorem, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ that converges to x_{0}. Also $y_{n_{k}} \rightarrow x_{0}$. Now since f is continuous, we have $f\left(x_{0}\right)=\lim f\left(x_{n_{k}}\right)=\lim f\left(y_{n_{k}}\right)$. Hence $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \rightarrow 0$, a contradiction.

Example 1.0.6. $f(x)=\sqrt{x}$ is uniformly continuous on $[0,1]$
Using mean value theorem of differentiable functions we will show (in lecture 17) that $f(x)=\sqrt{x}, x \in[1, \infty)$ is uniformly continuous. Combining these two intervals we can easily see that \sqrt{x} is uniformly continuous on $[0, \infty)$.

Example 1.0.7. $f(x)=x \sin x$ and $f(x)=\sin x^{2}$ are uniformly continuous on any closed bounded interval $[a, b]$

Corollary 1.0.8. Suppose $f(x)$ has only removable discontinuities in $[a, b]$. Then \tilde{f}, the extension of f, is uniformly continuous.

Example 1.0.9. $f(x)=\frac{\sin x}{x}$ for $x \neq 0$ and 0 for $x=0$ on $[0,1]$ has extension $\tilde{f}(x)=$ $\left\{\begin{array}{ll}\frac{\sin x}{x} & x \neq 0 \\ 1 & x=0\end{array}\right.$ which is uniformly continuous on $[-1,1]$.

Theorem 1.0.10. Let f be a uniformly continuous function and let $\left\{x_{n}\right\}$ be a cauchy sequence. Then $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy sequence.

Proof. Let $\epsilon>0$. As f is uniformly continuous, there exists $\delta>0$ such that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon
$$

Since $\left\{x_{n}\right\}$ is a Cauchy sequence, there exists N such that

$$
m, n>N \Longrightarrow\left|x_{n}-x_{m}\right|<\delta
$$

Therefore $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\epsilon$ for all $m, n>N$.

Corollary 1.0.11. Let I be an open interval $f: I \rightarrow \mathbb{R}$ be a uniformly continuous function. Let a be an end point of I. Then limit $\lim _{x \rightarrow a} f(x)$ exists.

Example 1.0.12. $f(x)=\frac{1}{x^{2}}$ is not uniformly continuous on $(0,1)$.
The sequence $x_{n}=\frac{1}{n}$ is cauchy but $f\left(x_{n}\right)=n^{2}$ is not. Hence f cannot be uniformly continuous.

Example 1.0.13. $f(x)=\sin (1 / x), x \in(0,1)$ is not uniformly continuous.

