Lecture 15

1 Uniformly continuous functions

Definition 1.0.1. A function f(x) is said to be uniformly continuous on a set S, if for given $\epsilon > 0$, there exists $\delta > 0$ such that

 $x, y \in S, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$

Here δ depends only on ϵ , not on x or y.

Examples 1.0.2. 1. f(x) = x is uniformly continuous on \mathbb{R} . In this case we can choose $\delta < \epsilon$.

2. $f(x) = x^2$ is uniformly continuous on bounded interval [a, b]. Note that $|x^2 - y^2| \le |x + y| |x - y| \le 2b|x - y|$. So one can choose $\delta < \frac{\epsilon}{2b}$.

Remark 1.1. In case of continuous function $f(x) = \frac{1}{x}$ on (0, 1), geometrically one can visualize that the value of δ for the same ϵ depends on the point. Moreover the δ becomes smaller and smaller as we take the point close to 0. But this is only intuition. For getting a mathematical proof, we need the following

Proposition 1.0.3. Proposition: If f(x) is uniformly continuous function \iff for ANY two sequences $\{x_n\}, \{y_n\}$ such that $|x_n - y_n| \to 0$, we have $|f(x_n) - f(y_n)| \to 0$ as $n \to \infty$.

Proof. Suppose not. Then there exists $\{x_n\}, \{y_n\}$ such that $|x_n - y_n| \to 0$ and $|f(x_n) - f(y_n)| > \eta$ for some $\eta > 0$. Then it is clear that for $\epsilon = \eta$, there is no δ for which $|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$. Because the above sequence satisfies $|x - y| < \delta$, but its image does not.

For converse, assume that for any two sequences $\{x_n\}, \{y_n\}$ such that $|x_n - y_n| \to 0$ we have $|f(x_n) - f(y_n)| \to 0$. Suppose f is not uniformly continuous. Then by the definition there exists ϵ_0 such that for any $\delta > 0$, there exist $z, w \in |x - y| < \delta$ for which $|f(z) - f(w)| > \epsilon_0$. Now take $\delta = \frac{1}{n}$ and choose z_n, w_n such that $|z_n - w_n| < \frac{1}{n}$. Then $|f(z_n) - f(w_n)| > \epsilon_0$. A contradiction.

Examples 1.0.4. 1. $f(x) = \frac{1}{x}$ is not uniformly continuous on (0, 1). Take $x_n = \frac{1}{n+1}, y_n = \frac{1}{n}$, then for n large $|x_n - y_n| \to 0$ but $|f(x_n) - f(y_n)| = 1$.

2. $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . Take $x_n = n + \frac{1}{n}$ and $y_n = n$. Then $|x_n - y_n| = \frac{1}{n} \to 0$, but $|f(x_n) - f(y_n)| = 2 + \frac{1}{n^2} > 2$.

- **Remark 1.2.** 1. It is easy to see from the definition that if f, g are uniformly continuous, then $f \pm g$ is also uniformly continuous.
 - 2. If f, g are uniformly continuous, then fg need not be uniformly continuous. This can be seen by noting that f(x) = x is uniformly continuous on \mathbb{R} but x^2 is not uniformly continuous on \mathbb{R} .

Theorem 1.0.5. A continuous function f(x) on a closed, bounded interval [a, b] is uniformly continuous.

Proof. Suppose not. Then there exists $\epsilon > 0$ and sequences $\{x_n\}$ and $\{y_n\}$ in [a, b] such that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| > \epsilon$. But then by Bolzano-Weierstrass theorem, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ that converges to x_0 . Also $y_{n_k} \to x_0$. Now since f is continuous, we have $f(x_0) = \lim f(x_{n_k}) = \lim f(y_{n_k})$. Hence $|f(x_{n_k}) - f(y_{n_k})| \to 0$, a contradiction.

Example 1.0.6. $f(x) = \sqrt{x}$ is uniformly continuous on [0, 1]

Using mean value theorem of differentiable functions we will show (in lecture 17) that $f(x) = \sqrt{x}, x \in [1, \infty)$ is uniformly continuous. Combining these two intervals we can easily see that \sqrt{x} is uniformly continuous on $[0, \infty)$.

Example 1.0.7. $f(x) = x \sin x$ and $f(x) = \sin x^2$ are uniformly continuous on any closed bounded interval [a, b]

Corollary 1.0.8. Suppose f(x) has only removable discontinuities in [a, b]. Then \hat{f} , the extension of f, is uniformly continuous.

Example 1.0.9. $f(x) = \frac{\sin x}{x}$ for $x \neq 0$ and 0 for x = 0 on [0,1] has extension $\tilde{f}(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0\\ 1 & x = 0 \end{cases}$ which is uniformly continuous on [-1,1].

Theorem 1.0.10. Let f be a uniformly continuous function and let $\{x_n\}$ be a cauchy sequence. Then $\{f(x_n)\}$ is also a Cauchy sequence.

Proof. Let $\epsilon > 0$. As f is uniformly continuous, there exists $\delta > 0$ such that

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Since $\{x_n\}$ is a Cauchy sequence, there exists N such that

$$m, n > N \implies |x_n - x_m| < \delta.$$

Therefore $|f(x_n) - f(x_m)| < \epsilon$ for all m, n > N.

Corollary 1.0.11. Let I be an open interval $f : I \to \mathbb{R}$ be a uniformly continuous function. Let a be an end point of I. Then limit $\lim_{x\to a} f(x)$ exists.

Example 1.0.12. $f(x) = \frac{1}{x^2}$ is not uniformly continuous on (0, 1).

The sequence $x_n = \frac{1}{n}$ is cauchy but $f(x_n) = n^2$ is not. Hence f cannot be uniformly continuous.

Example 1.0.13. $f(x) = \sin(1/x), x \in (0, 1)$ is not uniformly continuous.