
Lecture 16

1 Differentiability

Definition 1.0.1. A real valued function f(x) is said to be differentiable at x0 if

lim
h→0

f(x0 + h)− f(x0)

h
exists.

This limit is called the derivative of f at x0, denoted by f ′(x0).

Example: f(x) = x2

f ′(x) = lim
h→0

2xh+ h2

h
= 2x.

Theorem 1.0.2. If f(x) is differentiable at a, then it is continuous at a.

Proof. For x ̸= a, we may write,

f(x) = (x− a)
f(x)− f(a)

(x− a)
+ f(a).

Now taking the limit x → a and noting that lim(x− a) = 0 and lim f(x)−f(a)
(x−a)

= f ′(a), we

get the result.

Theorem 1.0.3. Let f, g be differentiable at c ∈ (a, b). Then f ± g, fg and
f

g
(g(c) ̸= 0)

is also differentiable at c

Proof. We give the proof for product formula: First note that

(fg)(x)− (fg)(c)

x− c
= f(x)

g(x)− g(c)

x− c
+ g(c)

f(x)− f(c)

x− c
.

Now taking the limit x → c, we get the product formula

(fg)′(c) = f(c)g′(c) + f ′(c)g(c).

Since g(c) ̸= 0 and g is continuous, we get g(x) ̸= 0 in a small interval around c.

Therefore
f

g
(x)− f

g
(c) =

g(c)f(x)− g(c)f(c) + g(c)f(c)− g(x)f(c)

g(x)g(c)

Hence

(f/g)(x)− (f/g)(c)

x− c
=

{
g(c)

f(x)− f(c)

x− c
− f(c)

g(x)− g(c)

x− c

}
1

g(x)g(c)
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Now taking the limit x → c, we get

(
f

g
)′(c) =

g(c)f ′(c)− f(c)g′(c)

g2(c)
.

Theorem 1.0.4. (Chain Rule): Suppose f(x) is differentiable at c and g is differentiable

at f(c), then h(x) := g(f(x)) is differentiable at c and

h′(c) = g′(f(c))f ′(c)

Proof. Define the function h as

h(y) =

{
g(y)−g(f(c))

y−f(c)
y ̸= f(c)

g′(f(c)) y = f(c)

Then the function h is continuous at y = f(c) and g(y)− g(f(c)) = h(y)(y − f(c)), so

g(f(x))− g(f(c))

x− c
= h(f(x))

f(x)− f(c)

x− c
.

Now taking limit x → c, we get the required formula.

Local extremum: A point x = c is called local maximum of f(x), if there exists δ > 0

such that

0 < |x− c| < δ =⇒ f(c) ≥ f(x).

Similarly, one can define local minimum: x = b is a local minimum of f(x) if there exists

δ > 0 such that

0 < |x− b| < δ =⇒ f(b) ≤ f(x).

Theorem 1.0.5. Let f(x) be a differentiable function on (a, b) and let c ∈ (a, b) is a local

maximum of f . Then f ′(c) = 0.

Proof. Let δ be as in the above definition. Then

x ∈ (c, c+ δ) =⇒ f(x)− f(c)

x− c
≤ 0

x ∈ (c− δ, c) =⇒ f(x)− f(c)

x− c
≥ 0.

Now taking the limit x → c, we get f ′(c) = 0.

Theorem 1.0.6. Rolle’s Theorem: Let f(x) be a continuous function on [a, b] and differ-

entiable on (a, b) such that f(a) = f(b). Then there exists c ∈ (a, b) such that f ′(c) = 0.
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Proof. If f(x) is constant, then it is trivial. Suppose f(x0) > f(a) for some x0 ∈ (a, b),

then f attains maximum at some c ∈ (a, b). Other possibilities can be worked out similarly.

Theorem 1.0.7. Mean-Value Theorem (MVT): Let f be a continuous function on [a, b]

and differentiable on (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof. Let l(x) be a straight line joining (a, f(a)) and (b, f(b)). Consider the function

g(x) = f(x)− l(x). Then g(a) = g(b) = 0. Hence by Rolle’s theorem

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a

Corollary 1.0.8. If f is a differentiable function on (a, b) and f ′ = 0, then f is constant.

Proof. By mean value theorem f(x)− f(y) = 0 for all x, y ∈ (a, b).

Remark 1.1. If f(x) is differentiable and sup |f ′(x)| < C for some C. Then, f is

uniformly continuous.

Apply mean value theorem to get |f(x)− f(y)| ≤ C|x− y| for all x, y. Hence given ϵ, we

may choose δ to be less than ϵ/C.

Example 1.0.9. Show that cosx is uniformly continuous on R
By MVT, we get

| cosx− cos y| ≤ | sin c||x− y| ≤ |x− y|

therefore for any given ϵ we may choose any δ < ϵ. ///

Remark 1.2. We note that if f, g satisfies

|f(x)− f(y)| ≤ C1|x− y|; |g(x)− g(y)| ≤ C2|x− y|,∀x, y

Then h(x) = f(g(x)) also satisfies

|h(x)− h(y)| ≤ C1C2|x− y|, ∀x, y

As a consequence, we can easily see that

Example 1.0.10. f(x) = | sinx|, x ∈ R is uniformly continuous.

Example 1.0.11. f(x) =
√
log x, x > 2 is uniformly continuous.
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Remark 1.3. suppose we have a sequence defined by xn+1 = f(xn), n ≥ 1, x0 ∈ domain

of f and if |f ′| ≤ α < 1, then {xn} converges.

As a consequence of the MVT,

|xn+1 − xn| ≤ |f(xn)− f(xn−1)| ≤ |f ′(c)||xn − xn−1| < α|xn − xn−1|

Therefore {xn} is a Cauchy sequence and hence converges.

Example 1.0.12. Let g(x) =
(

10
4+x

)1/2
on [1, 2] and the sequence defined by x1 ∈ (1, 2), xn+1 =

g(xn), n ∈ N converges.

Definition 1.0.13. A function f(x) is strictly increasing on an interval I, if for x, y ∈ I

with x < y we have f(x) < f(y). We say f is strictly decreasing if x < y in I implies

f(x) > f(y).

Theorem 1.0.14. A differentiable function f is (i) strictly increasing in (a, b) if f ′(x) > 0

for all x ∈ (a, b). (ii) strictly decreasing in (a, b) if f ′(x) < 0.

Proof. Choose x, y in (a, b) such x < y. Then by MVT, for some c ∈ (x, y)

f(x)− f(y)

x− y
= f ′(c) > 0.

Hence f(x) < f(y).

Example 1.0.15. Find the intervals where the following function is increasing and de-

creasing

f(x) = x2(x− 3

2
)
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