Lecture 16

1 Differentiability
Definition 1.0.1. A real valued function f(x) is said to be differentiable at xq if

f(xo +h) — f(x0)
h

lim

h—0

exists.

This limit is called the derivative of f at xo, denoted by f'(xo).
Example: f(z) = z?

h—0 h
Theorem 1.0.2. If f(x) is differentiable at a, then it is continuous at a.

Proof. For x # a, we may write,

o) = - L= o)
Now taking the limit 2 — a and noting that lim(x — a) = 0 and lim % = f'(a), we

get the result.

Theorem 1.0.3. Let f, g be differentiable at ¢ € (a,b). Then f+g, fg and S (g(c) #£0)
g

1s also differentiable at ¢

Proof. We give the proof for product formula: First note that

(fg)(xi:ifg)(c) =f(x)w+g(c) T —c

Now taking the limit  — ¢, we get the product formula

(f9)'(c) = f(c)g'(c) + f'(c)g(c).
Since g(c) # 0 and g is continuous, we get g(z) # 0 in a small interval around c.

Therefore
_g9lo)f(x) —gle) f(c) + g(c) f(c) — g(z) f(c)
g g g9(z)g(c)

Hence

(f/g9)(x) = (f/g)(c) _{ f(x) — f(o) g(fﬁ)—g(C)} 1
= g(c)—"—=— f(c)
g(w

Tr —cC r —cC r —C
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Now taking the limit z — ¢, we get

oy 9O ~ F()g(©
7

Theorem 1.0.4. (Chain Rule): Suppose f(x) is differentiable at ¢ and g is differentiable
at f(c), then h(x) := g(f(z)) is differentiable at ¢ and

Proof. Define the function h as

9(y)—g(f(c))
W) — i@ y # f(c)
g {g’(f(c)) y= (0

Then the function h is continuous at y = f(c) and g(y) — g(f(c)) = h(y)(y — f(¢)), so

Tr—cC Tr —cC

Now taking limit x — ¢, we get the required formula.

Local extremum: A point x = ¢ is called local maximum of f(z), if there exists § > 0
such that
O<|zr—c|<d = f(c)> f(x).

Similarly, one can define local minimum: z = b is a local minimum of f(z) if there exists
0 > 0 such that
O0<|z—bl<d = f(b) < f(z).

Theorem 1.0.5. Let f(z) be a differentiable function on (a,b) and let ¢ € (a,b) is a local
mazximum of f. Then f'(c) = 0.

Proof. Let 6 be as in the above definition. Then

r € (c,c+0) = WQ)
x € (c—0d,¢) = wz&

Now taking the limit z — ¢, we get f’(¢) = 0.

Theorem 1.0.6. Rolle’s Theorem: Let f(x) be a continuous function on [a,b] and differ-
entiable on (a,b) such that f(a) = f(b). Then there exists ¢ € (a,b) such that f'(c) = 0.



Proof. 1t f(x) is constant, then it is trivial. Suppose f(xg) > f(a) for some x4 € (a,b),
then f attains maximum at some ¢ € (a, b). Other possibilities can be worked out similarly.

Theorem 1.0.7. Mean-Value Theorem (MVT): Let f be a continuous function on [a, b
and differentiable on (a,b). Then there exists c € (a,b) such that

f() = fa) = f'(e)(b - a).

Proof. Let l(x) be a straight line joining (a, f(a)) and (b, f(b)). Consider the function
g(x) = f(x) = l(z). Then g(a) = g(b) = 0. Hence by Rolle’s theorem

f(b) = f(a)

0=g(0)= ) -2~

Corollary 1.0.8. If f is a differentiable function on (a,b) and f' =0, then f is constant.

Proof. By mean value theorem f(x) — f(y) = 0 for all z,y € (a,b).

Remark 1.1. If f(x) is differentiable and sup|f'(z)| < C for some C. Then, f is
uniformly continuous.

Apply mean value theorem to get |f(x) — f(y)| < Clo —y| for all x,y. Hence given €, we
may choose 0 to be less than ¢/C.

Example 1.0.9. Show that cosx is uniformly continuous on R
By MVT, we get
|cosx — cosy| < [sinc||lz —y| < |z —y

therefore for any given € we may choose any § < €. ///

Remark 1.2. We note that if f, g satisfies
[f(z) = FW)] < Cilz —yl; [9(z) — g(y)| < Colw —y[,Va,y
Then h(x) = f(g(x)) also satisfies
|h(z) — h(y)| < C1Cslx —y, Va,y

As a consequence, we can easily see that
Example 1.0.10. f(z) = |sinz|, = € R is uniformly continuous.

Example 1.0.11. f(z) = v/logz, x > 2 is uniformly continuous.



Remark 1.3. suppose we have a sequence defined by x,+1 = f(x,),n > 1,29 € domain
of f and if |f'| < a <1, then {x,} converges.
As a consequence of the MV'T,

|xn+1 - xn| S |f(xn) - f(xn—1)| S |f’(C)||Jjn - xn—1| < Oé|33n — Tn-1

Therefore {x,} is a Cauchy sequence and hence converges.

Example 1.0.12. Let g(x) = (%)1/2 on [1,2] and the sequence defined by x1 € (1,2), xp11 =

g(x,),n € N converges.

Definition 1.0.13. A function f(x) is strictly increasing on an interval I, if for z,y € I
with x < y we have f(x) < f(y). We say f is strictly decreasing if x < y in I implies

flx) > f(y)
Theorem 1.0.14. A differentiable function f is (i) strictly increasing in (a,b) if f'(z) > 0
for all x € (a,b). (i) strictly decreasing in (a,b) if f'(z) <O0.

Proof. Choose z,y in (a,b) such x < y. Then by MVT, for some ¢ € (z,y)

Hence f(x) < f(y).

Example 1.0.15. Find the intervals where the following function is increasing and de-
creasing



