Lecture 17

1 Taylor's theorem

Let f be a k times differentiable function on an interval I of \mathbb{R}. We want to approximate this function by a polynomial $P_{n}(x)$ such that $P_{n}(a)=f(a)$ at a point a. Moreover, if the derivatives of f and P_{n} also equal at a then we see that this approximation becomes more accurate in a neighbourhood of a. So the best coefficients of the polynomial can be calculated using the relation $f^{(k)}(a)=P_{n}^{(k)}(a), k=0,1,2, \ldots, n$. The best is in the sense that if $f(x)$ itself is a polynomial of degree less than or equal to n, then both f and P_{n} are equal. This implies that the polynomial is $\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$. Then we write $f(x)=P_{n}(x)+R_{n}(x)$ in a neighbourhood of a. From this, we also expect the $R_{n}(x) \rightarrow 0$ as $x \rightarrow a$. In fact, we have the following theorem known as Taylor's theorem:

Figure 1: Approximation of $\sin (\mathrm{x})$ by Taylor's polynomials

Theorem 1.0.1. Let $f(x)$ and its derivatives of order m are continuous and $f^{(m+1)}(x)$ exists in a neighbourhood of $x=a$. Then there exists $c \in(a, x)($ or $c \in(x, a))$ such that

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\ldots . .+f^{(m)}(a) \frac{(x-a)^{m}}{m!}+R_{m}(x)
$$

where $R_{m}(x)=\frac{f^{(m+1)}(c)}{(m+1)!}(x-a)^{m+1}$.

Proof. Define the functions F and g as

$$
\begin{gathered}
F(y)=f(x)-f(y)-f^{\prime}(y)(x-y)-\ldots-\frac{f^{(m)}(y)}{m!}(x-y)^{m} \\
g(y)=F(y)-\left(\frac{x-y}{x-a}\right)^{m+1} F(a)
\end{gathered}
$$

Then it is easy to check that $g(a)=0$. Also $g(x)=F(x)=f(x)-f(x)=0$. Therefore, by Rolle's theorem, there exists some $c \in(a, x)$ such that

$$
g^{\prime}(c)=0=F^{\prime}(c)+\frac{(m+1)(x-c)^{m}}{(x-a)^{m+1}} F(a) .
$$

On the other hand, from the definition of F,

$$
F^{\prime}(c)=-\frac{f^{(m+1)}(c)}{m!}(x-c)^{m}
$$

Hence $F(a)=\frac{(x-a)^{m+1}}{(m+1)!} f^{(m+1)}(c)$ and the result follows.
Examples 1.0.2. (i) $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!} e^{c}, c \in(0, x)$ or (x,0) depending on the sign of x.
(ii) $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+\frac{x^{n}}{n!} \sin \left(c+\frac{n \pi}{2}\right), c \in(0, x)$ or $(x, 0)$.
(iii) $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots .+\frac{x^{n}}{n!} \cos \left(c+\frac{n \pi}{2}\right), c \in(0, x)$ or $(x, 0)$.

Example 1.0.3. Find the order n of Taylor Polynomial P_{n}, about $x=0$ to approximate e^{x} in $(-1,1)$ so that the error is not more than 0.005
Solution: We know that $p_{n}(x)=1+x+\ldots+\frac{x^{n}}{n!}$. The maximum error in $[-1,1]$ is

$$
\left|R_{n}(x)\right| \leq \frac{1}{(n+1)!} \max _{[-1,1]}|x|^{n+1} e^{x} \leq \frac{e}{(n+1)!}
$$

So n is such that $\frac{e}{(n+1)!} \leq 0.005$ or $n \geq 5$.
Example 1.0.4. Find the interval of validity when we approximate $\cos x$ with $2 n d$ order polynomial with error tolerance 10^{-4}.
Solution: Taylor polynomial of degree 2 for $\cos x$ is $1-\frac{x^{2}}{2}$. So the remainder is $(\sin c) \frac{x^{3}}{3!}$. Since $|\sin c| \leq 1$, the error will be atmost 10^{-4} if $\left|\frac{x^{3}}{3!}\right| \leq 10^{-4}$. Solving this gives $|x|<$ 0.084 .

