
Lecture 18

1 Taylor’s theorem ctd..

Maxima and Minima: Derivative test

Definition 1.0.1. A point x = a is called critical point of the function f(x) if f ′(a) = 0.

Second derivative test: A point x = a is a local maxima if f ′(a) = 0, f ′′(a) < 0.

Suppose f(x) is continuously differentiable in an interval around x = a and let x = a be a

critical point of f . Then f ′(a) = 0. By Taylor’s theorem around x = a, there exists, c ∈ (a, x)

(or c ∈ (x, a)),

f(x)− f(a) =
f ′′(c)

2
(x− a)2.

If f ′′(a) < 0. Then by the continuity of f ′′, there exists δ > 0 such that f ′′(c) < 0 in |x−a| < δ.

Hence f(x) < f(a) in |x− a| < δ, which implies that x = a is a local maximum.

Similarly, one can show the following for local minima: x = a is a local minima if f ′(a) =

0, f ′′(a) > 0.

Also the above observations show that if f ′(a) = 0, f ′′(a) = 0 and f (3)(a) 6= 0, then the sign of

f(x)− f(a) depends on (x− a)3. i.e., it has no constant sign in any interval containing a. Such

point is called point of inflection or saddle point.

We can also derive that if f ′(a) = f ′′(a) = f (3)(a) = 0, then we again have x = a is a local

minima if f (4)(a) > 0 and is a local maxima if f (4)(a) < 0.

Summarizing the above, we have:

Theorem 1.0.2. Let f be a real valued function that is differentiable 2n times and f (2n) is

continuous at x = a . Then

1. If f (k)(a) = 0 for k = 1, 2, ....2n − 1 and f (2n)(a) > 0 then a is a point of local minimum

of f(x)

2. If f (k)(a) = 0 for k = 1, 2, ....2n− 1 and f (2n)(a) < 0 then a is a point local maximum of

f(x).

3. If f (k) = 0 for k = 1, 2, ....2n− 2 and f (2n−1)(a) 6= 0, then a is point of inflection. i.e., f

has neither local maxima nor local minima at x = a.

L’Hospitals Rule:

Suppose f(x) and g(x) are differentiable n times, f (n), g(n) are continuous at a and f (k)(a) =

1



g(k)(a) = 0 for k = 0, 1, 2, ...., n− 1. Also if g(n)(a) 6= 0. Then by Taylor’s theorem,

lim
x→a

f(x)

g(x)
= lim

x→a

f (n)(c)

g(n)(c)

=
f (n)(a)

g(n)(a)

In the above, we used the fact that g(n)(x) 6= 0 ”near x = a” and g(n)(c)→ g(n)(a) as x→ a.

Similarly, we can derive a formula for limits as x approaches infinity by taking x = 1
y .

lim
x→∞

f(x)

g(x)
= lim

y→0

f(1/y)

g(1/y)

= lim
y→0

(−1/y2)f ′(1/y)

(−1/y2)g′(1/y)

= lim
x→∞

f ′(x)

g′(x)

Taylor Series

Suppose f is infinitely differentiable at a and if the remainder term in the Taylor’s formula,

Rn(x)→ 0 as n→∞. Then we say that the Taylor Series converges to the function f(x) at the

point x. So we may write

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n. (1.1)

For a fixed x, the above infinite sum is a series of real numbers. One can independently check

the convergence of such series by the convergence tests. However that does not confirm if the

series is equal to f(x). The series on the RHS of (1.1) is called Taylor series of f(x) about the

point a.

In some cases it is easy to verify this. For example,

Suppose there exists C = C(x) > 0, independent of n, such that |f (n)(x)| ≤ C(x). Then

|Rn(x)| → 0 if lim
n→∞

|x− a|n+1

(n+ 1)!
= 0. For any fixed x and a, we can always find N such that

|x− a| < N . Let q := |x−a|
N < 1. Then∣∣∣∣(x− a)n+1

(n+ 1)!

∣∣∣∣ =

∣∣∣∣ |x− a|1

∣∣∣∣ ∣∣∣∣ |x− a|2

∣∣∣∣ ... ∣∣∣∣ |x− a|N − 1

∣∣∣∣ ∣∣∣∣ |x− a|N

∣∣∣∣ ... ∣∣∣∣ |x− a|n+ 1

∣∣∣∣
<

∣∣∣∣ |x− a|N−1(N − 1)!

∣∣∣∣ qn−N+2

→ 0 as n→∞ thanks to q < 1.

In case of a = 0, the formula obtained in Taylor’s theorem is known as Maclaurin’s formula and

the corresponding series that one obtains is known as Maclaurin’s series.
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Examples 1.0.3. 1. f(x) = ex.

In this case Rn(x) =
xn+1

(n+ 1)!
f (n+1)(c) =

xn+1

(n+ 1)!
ec =

xn+1

(n+ 1)!
eθx, for some θ ∈ (0, 1).

Therefore for any given x fixed, lim
n→∞

|Rn(x)| = lim
n→∞

(
xn+1

(n+ 1)!

)
eθx = 0.

2. f(x) = sinx.

In this case it is easy to see that |Rn(x)| ≤ |x|2n+1

(2n+ 1)!
| sin(c+

nπ

2
)|. Now use the fact that

| sinx| ≤ 1 and follow as in example (i).

Definition 1.0.4. An infinitely differentiable function f(x) is called Real analytic at x = a if

the function has Taylor series expansion: There exists R > 0 and

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, |x− a| < R

Note that the series in the RHS may converge but not equal to f(x). So to say that the func-

tion has its Taylor series we need to first check the remainder term Rn(x) goes to zero as n→∞.

We state the following characterization of real analytic functions. The proof is beyond the

scope of this course.

Theorem 1.0.5. The following are equivalent

1. f(x) is real analytic at x = a

2. For every small interval I containing a, there exist constants r > 0 and C > 0 such that

for all k ∈ N ∪ {0}: ∣∣∣f (k)(x)
∣∣∣ ≤ C k!

rk
∀x ∈ I.

(2) =⇒ (1): The remainder of Taylor’s theorem Rn can be estimated as

|Rn(x)| ≤ C

rn+1
|x− a|n+1

= C

(
|x− a|
r

)n+1

→ 0 if |x− a| < r. ///

It is not easy to detect if a function is not real analytic. For example

f(x) =

{
e−1/x, x > 0

0 x ≤ 0.

This function is infinitely differentiable and all its derivatives at 0 are equal to zero. So the

Taylor series at zero identically zero. But the function is not identically equal to zero in any

interval containing zero.
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