Lecture 18

1 Taylor's theorem ctd..

Maxima and Minima: Derivative test
Definition 1.0.1. A point $x=a$ is called critical point of the function $f(x)$ if $f^{\prime}(a)=0$.
Second derivative test: A point $x=a$ is a local maxima if $f^{\prime}(a)=0, f^{\prime \prime}(a)<0$.

Suppose $f(x)$ is continuously differentiable in an interval around $x=a$ and let $x=a$ be a critical point of f. Then $f^{\prime}(a)=0$. By Taylor's theorem around $x=a$, there exists, $c \in(a, x)$ (or $c \in(x, a)$),

$$
f(x)-f(a)=\frac{f^{\prime \prime}(c)}{2}(x-a)^{2}
$$

If $f^{\prime \prime}(a)<0$. Then by the continuity of $f^{\prime \prime}$, there exists $\delta>0$ such that $f^{\prime \prime}(c)<0$ in $|x-a|<\delta$. Hence $f(x)<f(a)$ in $|x-a|<\delta$, which implies that $x=a$ is a local maximum.

Similarly, one can show the following for local minima: $x=a$ is a local minima if $f^{\prime}(a)=$ $0, f^{\prime \prime}(a)>0$.

Also the above observations show that if $f^{\prime}(a)=0, f^{\prime \prime}(a)=0$ and $f^{(3)}(a) \neq 0$, then the sign of $f(x)-f(a)$ depends on $(x-a)^{3}$. i.e., it has no constant sign in any interval containing a. Such point is called point of inflection or saddle point.

We can also derive that if $f^{\prime}(a)=f^{\prime \prime}(a)=f^{(3)}(a)=0$, then we again have $x=a$ is a local minima if $f^{(4)}(a)>0$ and is a local maxima if $f^{(4)}(a)<0$.

Summarizing the above, we have:
Theorem 1.0.2. Let f be a real valued function that is differentiable $2 n$ times and $f^{(2 n)}$ is continuous at $x=a$. Then

1. If $f^{(k)}(a)=0$ for $k=1,2, \ldots .2 n-1$ and $f^{(2 n)}(a)>0$ then a is a point of local minimum of $f(x)$
2. If $f^{(k)}(a)=0$ for $k=1,2, \ldots .2 n-1$ and $f^{(2 n)}(a)<0$ then a is a point local maximum of $f(x)$.
3. If $f^{(k)}=0$ for $k=1,2, \ldots .2 n-2$ and $f^{(2 n-1)}(a) \neq 0$, then a is point of inflection. i.e., f has neither local maxima nor local minima at $x=a$.

L'Hospitals Rule:

Suppose $f(x)$ and $g(x)$ are differentiable n times, $f^{(n)}, g^{(n)}$ are continuous at a and $f^{(k)}(a)=$
$g^{(k)}(a)=0$ for $k=0,1,2, \ldots, n-1$. Also if $g^{(n)}(a) \neq 0$. Then by Taylor's theorem,

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)} & =\lim _{x \rightarrow a} \frac{f^{(n)}(c)}{g^{(n)}(c)} \\
& =\frac{f^{(n)}(a)}{g^{(n)}(a)}
\end{aligned}
$$

In the above, we used the fact that $g^{(n)}(x) \neq 0$ "near $x=a$ " and $g^{(n)}(c) \rightarrow g^{(n)}(a)$ as $x \rightarrow a$. Similarly, we can derive a formula for limits as x approaches infinity by taking $x=\frac{1}{y}$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{y \rightarrow 0} \frac{f(1 / y)}{g(1 / y)} \\
& =\lim _{y \rightarrow 0} \frac{\left(-1 / y^{2}\right) f^{\prime}(1 / y)}{\left(-1 / y^{2}\right) g^{\prime}(1 / y)} \\
& =\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

Taylor Series

Suppose f is infinitely differentiable at a and if the remainder term in the Taylor's formula, $R_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. Then we say that the Taylor Series converges to the function $f(x)$ at the point x. So we may write

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} . \tag{1.1}
\end{equation*}
$$

For a fixed x, the above infinite sum is a series of real numbers. One can independently check the convergence of such series by the convergence tests. However that does not confirm if the series is equal to $f(x)$. The series on the RHS of (1.1) is called Taylor series of $f(x)$ about the point a.
In some cases it is easy to verify this. For example,
Suppose there exists $C=C(x)>0$, independent of n, such that $\left|f^{(n)}(x)\right| \leq C(x)$. Then $\left|R_{n}(x)\right| \rightarrow 0$ if $\lim _{n \rightarrow \infty} \frac{|x-a|^{n+1}}{(n+1)!}=0$. For any fixed x and a, we can always find N such that $|x-a|<N$. Let $q:=\frac{|x-a|}{N}<1$. Then

$$
\begin{aligned}
\left|\frac{(x-a)^{n+1}}{(n+1)!}\right|= & \left|\frac{|x-a|}{1}\right|\left|\frac{|x-a|}{2}\right| \ldots\left|\frac{|x-a|}{N-1}\right|\left|\frac{|x-a|}{N}\right| \ldots\left|\frac{|x-a|}{n+1}\right| \\
& <\left|\frac{|x-a|^{N-1}}{(N-1)!}\right| q^{n-N+2}
\end{aligned}
$$

$\rightarrow 0$ as $n \rightarrow \infty$ thanks to $q<1$.

In case of $a=0$, the formula obtained in Taylor's theorem is known as Maclaurin's formula and the corresponding series that one obtains is known as Maclaurin's series.

Examples 1.0.3. 1. $f(x)=e^{x}$.
In this case $R_{n}(x)=\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c)=\frac{x^{n+1}}{(n+1)!} e^{c}=\frac{x^{n+1}}{(n+1)!} e^{\theta x}$, for some $\theta \in(0,1)$.
Therefore for any given x fixed, $\lim _{n \rightarrow \infty}\left|R_{n}(x)\right|=\lim _{n \rightarrow \infty}\left(\frac{x^{n+1}}{(n+1)!}\right) e^{\theta x}=0$.
2. $f(x)=\sin x$.

In this case it is easy to see that $\left|R_{n}(x)\right| \leq \frac{|x|^{2 n+1}}{(2 n+1)!}\left|\sin \left(c+\frac{n \pi}{2}\right)\right|$. Now use the fact that $|\sin x| \leq 1$ and follow as in example (i).
Definition 1.0.4. An infinitely differentiable function $f(x)$ is called Real analytic at $x=a$ if the function has Taylor series expansion: There exists $R>0$ and

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \quad|x-a|<R
$$

Note that the series in the RHS may converge but not equal to $f(x)$. So to say that the function has its Taylor series we need to first check the remainder term $R_{n}(x)$ goes to zero as $n \rightarrow \infty$.

We state the following characterization of real analytic functions. The proof is beyond the scope of this course.

Theorem 1.0.5. The following are equivalent

1. $f(x)$ is real analytic at $x=a$
2. For every small interval I containing a, there exist constants $r>0$ and $C>0$ such that for all $k \in \mathbb{N} \cup\{0\}$:

$$
\left|f^{(k)}(x)\right| \leq C \frac{k!}{r^{k}} \forall x \in I
$$

$(2) \Longrightarrow(1)$: The remainder of Taylor's theorem R_{n} can be estimated as

$$
\begin{aligned}
\left|R_{n}(x)\right| & \leq \frac{C}{r^{n+1}}|x-a|^{n+1} \\
& =C\left(\frac{|x-a|}{r}\right)^{n+1} \rightarrow 0 \text { if }|x-a|<r . \quad / / /
\end{aligned}
$$

It is not easy to detect if a function is not real analytic. For example

$$
f(x)= \begin{cases}e^{-1 / x}, & x>0 \\ 0 & x \leq 0\end{cases}
$$

This function is infinitely differentiable and all its derivatives at 0 are equal to zero. So the Taylor series at zero identically zero. But the function is not identically equal to zero in any interval containing zero.

