Lecture 2

1 Sequences and their limit

Definition 1.0.1. A sequence of real numbers is a function from \mathbb{N} to \mathbb{R}.
Notation. It is customary to denote a sequence as $\left\{a_{n}\right\}_{n=1}^{\infty}$.
Examples 1.0.2. (i) $\{c\}_{n=1}^{\infty}, c \in \mathbb{R}$, (ii) $\left\{\frac{(-1)^{n+1}}{n}\right\}_{n=1}^{\infty}$, (iii) $\left\{\frac{n-1}{n}\right\}_{n=1}^{\infty}$ and $(i v)\{\sqrt{n}\}_{n=1}^{\infty}$.
Definition 1.0.3. A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to limit L if for every $\epsilon>0$ (given) there exists a positive integer N such that $n \geq N \Longrightarrow\left|a_{n}-L\right|<\epsilon$.

Notation. $L=\lim _{n \rightarrow \infty} a_{n}$ or $a_{n} \rightarrow L$.

Examples 1.0.4.

(i) It is clear that the constant sequence $\{c\}_{n=1}^{\infty}, c \in \mathbb{R}$, has c as it's limit.
(ii) Show that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Solution. Let $\epsilon>0$ be given. In order to show that $1 / n$ approaches 0 , we must show that there exists an integer $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\left|\frac{1}{n}-0\right|=\frac{1}{n}<\epsilon
$$

But $1 / n<\epsilon \Leftrightarrow n>1 / \epsilon$. Thus, if we choose $N \in \mathbb{N}$ such that $N>1 / \epsilon$, then for all $n \geq N$, $1 / n<\epsilon$.
(iii) Consider the sequence $\left\{(-1)^{n+1}\right\}_{n=1}^{\infty}$. It is intuitively clear that this sequence does not have a limit or it does not approach to any real number. We now prove this by definition. Assume to the contrary, that there exists an $L \in \mathbb{R}$ such that the sequence $\left\{(-1)^{n+1}\right\}_{n=1}^{\infty}$ converges to L. Then for $\epsilon=\frac{1}{2}$, there exists an $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|(-1)^{n+1}-L\right|<\frac{1}{2}, \forall n \geq N \tag{1.1}
\end{equation*}
$$

For n even, (1.1) says

$$
\begin{equation*}
|-1-L|<\frac{1}{2}, \forall n \geq N \tag{1.2}
\end{equation*}
$$

while for n odd, (1.1) says

$$
\begin{equation*}
|1-L|<\frac{1}{2}, \forall n \geq N \tag{1.3}
\end{equation*}
$$

which is a contradiction as $2=|1+1| \leq|1-L|+|1+L|<1$.
As a first result we have the following uniqueness theorem:

Theorem 1.0.5. If $\left\{a_{n}\right\}_{1}^{\infty}$ is a sequence and if both $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} a_{n}=M$ holds, then $L=M$.

Proof. Suppose that $L \neq M$. Then $|L-M|>0$. Let $\epsilon=\frac{|L-M|}{2}$. As $\lim _{n \rightarrow \infty} a_{n}=L$, there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\epsilon$ for all $n \geq N_{1}$. Also as $\lim _{n \rightarrow \infty} a_{n}=M$, there exists $N_{2} \in \mathbb{N}$ such that $\left|a_{n}-M\right|<\epsilon$ for all $n \geq N_{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then for all $n \geq N,\left|a_{n}-L\right|<\epsilon$ and $\left|a_{n}-M\right|<\epsilon$. Thus $|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<2 \epsilon=|L-M|$, which is a contradiction. ///

Definition 1.0.6. (Bounded sequence): A sequence $\left\{a_{n}\right\}$ is said to be bounded above, if there exists $M \in \mathbb{R}$ such that $a_{n} \leq M$ for all $n \in \mathbb{N}$. Similarly, we say that a sequence $\left\{a_{n}\right\}$ is bounded below, if there exists $N \in \mathbb{R}$ such that $a_{n} \geq N$ for all $n \in \mathbb{N}$. Thus a sequence $\left\{a_{n}\right\}$ is said to be bounded if it is both bounded above and below.
Theorem 1.0.7. Every convergent sequence is bounded.
Proof. Let $\left\{a_{n}\right\}$ be a convergent sequence and $L=\lim _{n \rightarrow \infty} a_{n}$. Let $\epsilon=1$. Then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<1$ for all $n \geq N$. Further,

$$
\left|a_{n}\right|=\left|a_{n}-L+L\right| \leq\left|a_{n}-L\right|+|L|<1+|L|, \forall n \geq N .
$$

Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n-1}\right|, 1+|L|\right\}$. Then $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Hence $\left\{a_{n}\right\}$ is bounded.

1.1 Algebra of convergent sequences

Theorem 1.1.1. Let $\left\{a_{n}\right\}_{1}^{\infty}$ and $\left\{b_{n}\right\}_{1}^{\infty}$ be two sequences such that $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=$ M. Then
(i) $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$.
(ii) $\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c L, c \in \mathbb{R}$..
(iii) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M$.
(iv) $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{L}{M}$ if $M \neq 0$.

Proof. (i) Let $\epsilon>0$. Since a_{n} converges to L there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\epsilon / 2 \forall n \geq N_{1}
$$

Also, as b_{n} converges to M there exists $N_{2} \in \mathbb{N}$ such that

$$
\left|b_{n}-M\right|<\epsilon / 2 \forall n \geq N_{2} .
$$

Thus

$$
\left|\left(a_{n}+b_{n}\right)-(L+M)\right| \leq\left|a_{n}-L\right|+\left|b_{N}-M\right|<\epsilon \forall n \geq N=\max \left\{N_{1} \cdot N_{2}\right\} .
$$

(ii) Easy to prove. Hence left as an exercise to the students.
(iii) Let $\epsilon>0$. Since a_{n} is a convergent sequence, it is bounded by M_{1} (say). Also as a_{n} converges to L there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\epsilon / 2 M \forall n \geq N_{1} .
$$

Similarly as b_{n} converges to M there exists $N_{2} \in \mathbb{N}$ such that

$$
\left|b_{n}-M\right|<\epsilon / 2 M_{1} \forall n \geq N_{2} .
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then

$$
\begin{aligned}
\left|a_{n} b_{n}-L M\right| & =\left|a_{n} b_{n}-a_{n} M+a_{n} M-L M\right| \leq\left|a_{n}\left(b_{n}-M\right)\right|+\left|M\left(a_{n}-L\right)\right| \\
& =\left|a_{n}\right|\left|b_{n}-M\right|+M\left|a_{n}-L\right|<\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

(iv) In order to prove this, it is enough to prove that if $\lim _{n \rightarrow \infty} a_{n}=L, L \neq 0$, then $\lim _{n \rightarrow \infty} 1 / a_{n}=1 / L$. Without loss of generality, let us assume that $L>0$. Let $\epsilon>0$ be given. As $\left\{a_{n}\right\}$ forms a convergent sequence, it is bounded. Choose $N_{1} \in \mathbb{N}$ such that $a_{n}>L / 2$ for all $n \geq N_{1}$. Also, as a_{n} converges to L, there exists $N_{2} \in \mathbb{N}$ such that $\left|a_{n}-L\right|<L^{2} \epsilon / 2$ for all $n \geq N_{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then

$$
n \geq N \Longrightarrow\left|\frac{1}{a_{n}}-\frac{1}{L}\right|=\frac{\left|a_{n}-L\right|}{\left|a_{n} L\right|}<\frac{2}{L^{2}} \frac{L^{2} \epsilon}{2}=\epsilon
$$

Examples 1.1.2.

(i) Consider the sequence $\left\{\frac{5}{n^{2}}\right\}_{1}^{\infty}$. Then $\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=\lim _{n \rightarrow \infty} 5 \cdot \frac{1}{n} \cdot \frac{1}{n}=5 \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=$ $5 \cdot 0 \cdot 0=0$.
(ii) Consider the sequence $\left\{\frac{3 n^{2}-6 n}{5 n^{2}+4}\right\}_{1}^{\infty}$. Notice that $\frac{3 n^{2}-6 n}{5 n^{2}+4}=\frac{3-6 / n}{5+4 / n} \rightarrow 3 / 5$. Thus

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}-6 n}{5 n^{2}+4}=\lim _{n \rightarrow \infty} \frac{3-6 / n}{5+4 / n}=\frac{3-\lim \frac{6}{n}}{5+\lim _{n \rightarrow \infty} \frac{4}{n}}=3 / 5 .
$$

