Lecture 2

1 Sequences and their limit

Definition 1.0.1. A sequence of real numbers is a function from \mathbb{N} to \mathbb{R} .

Notation. It is customary to denote a sequence as $\{a_n\}_{n=1}^{\infty}$.

Examples 1.0.2. (i)
$$\{c\}_{n=1}^{\infty}, c \in \mathbb{R}, (ii) \{\frac{(-1)^{n+1}}{n}\}_{n=1}^{\infty}, (iii) \{\frac{n-1}{n}\}_{n=1}^{\infty} \text{ and } (iv) \{\sqrt{n}\}_{n=1}^{\infty}.$$

Definition 1.0.3. A sequence $\{a_n\}_{n=1}^{\infty}$ converges to limit L if for every $\epsilon > 0$ (given) there exists a positive integer N such that $n \geq N \implies |a_n - L| < \epsilon$.

Notation. $L = \lim_{n \to \infty} a_n \text{ or } a_n \to L.$

Examples 1.0.4.

- (i) It is clear that the constant sequence $\{c\}_{n=1}^{\infty}, c \in \mathbb{R}$, has c as it's limit.
- (ii) Show that $\lim_{n\to\infty} \frac{1}{n} = 0$.

Solution. Let $\epsilon > 0$ be given. In order to show that 1/n approaches 0, we must show that there exists an integer $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \epsilon.$$

But $1/n < \epsilon \Leftrightarrow n > 1/\epsilon$. Thus, if we choose $N \in \mathbb{N}$ such that $N > 1/\epsilon$, then for all $n \geq N$, $1/n < \epsilon$.

(iii) Consider the sequence $\{(-1)^{n+1}\}_{n=1}^{\infty}$. It is intuitively clear that this sequence does not have a limit or it does not approach to any real number. We now prove this by definition. Assume to the contrary, that there exists an $L \in \mathbb{R}$ such that the sequence $\{(-1)^{n+1}\}_{n=1}^{\infty}$ converges to L. Then for $\epsilon = \frac{1}{2}$, there exists an $N \in \mathbb{N}$ such that

1

$$|(-1)^{n+1} - L| < \frac{1}{2}, \ \forall \ n \ge N.$$
 (1.1)

For n even, (1.1) says

$$|-1-L| < \frac{1}{2}, \ \forall \ n \ge N.$$
 (1.2)

while for n odd, (1.1) says

$$|1 - L| < \frac{1}{2}, \ \forall \ n \ge N.$$
 (1.3)

which is a contradiction as $2 = |1+1| \le |1-L| + |1+L| < 1$.

As a first result we have the following uniqueness theorem:

Theorem 1.0.5. If $\{a_n\}_1^{\infty}$ is a sequence and if both $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} a_n = M$ holds, then L = M.

Proof. Suppose that $L \neq M$. Then |L - M| > 0. Let $\epsilon = \frac{|L - M|}{2}$. As $\lim_{n \to \infty} a_n = L$, there exists $N_1 \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ for all $n \geq N_1$. Also as $\lim_{n \to \infty} a_n = M$, there exists $N_2 \in \mathbb{N}$ such that $|a_n - M| < \epsilon$ for all $n \geq N_2$. Let $N = \max\{N_1, N_2\}$. Then for all $n \geq N$, $|a_n - L| < \epsilon$ and $|a_n - M| < \epsilon$. Thus $|L - M| \leq |a_n - L| + |a_n - M| < 2\epsilon = |L - M|$, which is a contradiction. ///

Definition 1.0.6. (Bounded sequence): A sequence $\{a_n\}$ is said to be bounded above, if there exists $M \in \mathbb{R}$ such that $a_n \leq M$ for all $n \in \mathbb{N}$. Similarly, we say that a sequence $\{a_n\}$ is bounded below, if there exists $N \in \mathbb{R}$ such that $a_n \geq N$ for all $n \in \mathbb{N}$. Thus a sequence $\{a_n\}$ is said to be bounded if it is both bounded above and below.

Theorem 1.0.7. Every convergent sequence is bounded.

Proof. Let $\{a_n\}$ be a convergent sequence and $L = \lim_{n \to \infty} a_n$. Let $\epsilon = 1$. Then there exists $N \in \mathbb{N}$ such that $|a_n - L| < 1$ for all $n \ge N$. Further,

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|, \forall n \ge N.$$

Let $M = \max\{|a_1|, |a_2|, ..., |a_{n-1}|, 1 + |L|\}$. Then $|a_n| \leq M$ for all $n \in \mathbb{N}$. Hence $\{a_n\}$ is bounded.

1.1 Algebra of convergent sequences

Theorem 1.1.1. Let $\{a_n\}_1^{\infty}$ and $\{b_n\}_1^{\infty}$ be two sequences such that $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$. Then

- (i) $\lim_{n\to\infty} (a_n + b_n) = L + M.$
- (ii) $\lim_{n\to\infty} (ca_n) = cL, c \in \mathbb{R}..$
- (iii) $\lim_{n \to \infty} (a_n b_n) = LM$.
- (iv) $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{L}{M}$ if $M \neq 0$.

Proof. (i) Let $\epsilon > 0$. Since a_n converges to L there exists $N_1 \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon/2 \ \forall \ n \ge N_1.$$

Also, as b_n converges to M there exists $N_2 \in \mathbb{N}$ such that

$$|b_n - M| < \epsilon/2 \ \forall \ n > N_2.$$

Thus

$$|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_N - M| < \epsilon \ \forall \ n \ge N = \max\{N_1 \cdot N_2\}.$$

- (ii) Easy to prove. Hence left as an exercise to the students.
- (iii) Let $\epsilon > 0$. Since a_n is a convergent sequence, it is bounded by M_1 (say). Also as a_n converges to L there exists $N_1 \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon/2M \ \forall \ n \ge N_1.$$

Similarly as b_n converges to M there exists $N_2 \in \mathbb{N}$ such that

$$|b_n - M| < \epsilon/2M_1 \ \forall \ n \ge N_2.$$

Let $N = \max\{N_1, N_2\}$. Then

$$|a_n b_n - LM| = |a_n b_n - a_n M + a_n M - LM| \le |a_n (b_n - M)| + |M(a_n - L)|$$

= |a_n||b_n - M| + M|a_n - L| < \epsilon/2 + \epsilon/2 = \epsilon

(iv) In order to prove this, it is enough to prove that if $\lim_{n\to\infty} a_n = L$, $L \neq 0$, then $\lim_{n\to\infty} 1/a_n = 1/L$. Without loss of generality, let us assume that L > 0. Let $\epsilon > 0$ be given. As $\{a_n\}$ forms a convergent sequence, it is bounded. Choose $N_1 \in \mathbb{N}$ such that $a_n > L/2$ for all $n \geq N_1$. Also, as a_n converges to L, there exists $N_2 \in \mathbb{N}$ such that $|a_n - L| < L^2 \epsilon/2$ for all $n \geq N_2$. Let $N = \max\{N_1, N_2\}$. Then

$$n \ge N \implies \left| \frac{1}{a_n} - \frac{1}{L} \right| = \frac{|a_n - L|}{|a_n L|} < \frac{2}{L^2} \frac{L^2 \epsilon}{2} = \epsilon.$$
 ///

Examples 1.1.2.

- (i) Consider the sequence $\left\{\frac{5}{n^2}\right\}_1^{\infty}$. Then $\lim_{n\to\infty}\frac{5}{n^2}=\lim_{n\to\infty}5\cdot\frac{1}{n}\cdot\frac{1}{n}=5\cdot\lim_{n\to\infty}\frac{1}{n}\cdot\lim_{n\to\infty}\frac{1}{n}=5\cdot0\cdot0=0$.
- (ii) Consider the sequence $\left\{\frac{3n^2-6n}{5n^2+4}\right\}_1^{\infty}$. Notice that $\frac{3n^2-6n}{5n^2+4} = \frac{3-6/n}{5+4/n} \to 3/5$. Thus

$$\lim_{n \to \infty} \frac{3n^2 - 6n}{5n^2 + 4} = \lim_{n \to \infty} \frac{3 - 6/n}{5 + 4/n} = \frac{3 - \lim \frac{6}{n}}{5 + \lim_{n \to \infty} \frac{4}{n}} = 3/5.$$