
Lecture 2

1 Sequences and their limit

Definition 1.0.1. A sequence of real numbers is a function from N to R.

Notation. It is customary to denote a sequence as {an}∞n=1.

Examples 1.0.2. (i) {c}∞n=1, c ∈ R, (ii) { (−1)
n+1

n }∞n=1, (iii) {n−1n }
∞
n=1 and (iv) {

√
n}∞n=1.

Definition 1.0.3. A sequence {an}∞n=1 converges to limit L if for every ε > 0 (given) there

exists a positive integer N such that n ≥ N =⇒ |an − L| < ε.

Notation. L = lim
n→∞

an or an → L.

Examples 1.0.4.

(i) It is clear that the constant sequence {c}∞n=1, c ∈ R, has c as it’s limit.

(ii) Show that lim
n→∞

1

n
= 0.

Solution. Let ε > 0 be given. In order to show that 1/n approaches 0, we must show that

there exists an integer N ∈ N such that for all n ≥ N ,∣∣∣∣ 1

n
− 0

∣∣∣∣ =
1

n
< ε.

But 1/n < ε⇔ n > 1/ε. Thus, if we choose N ∈ N such that N > 1/ε, then for all n ≥ N,
1/n < ε.

(iii) Consider the sequence {(−1)n+1}∞n=1. It is intuitively clear that this sequence does not

have a limit or it does not approach to any real number. We now prove this by definition.

Assume to the contrary, that there exists an L ∈ R such that the sequence {(−1)n+1}∞n=1

converges to L. Then for ε = 1
2 , there exists an N ∈ N such that

|(−1)n+1 − L| < 1

2
, ∀ n ≥ N. (1.1)

For n even, (1.1) says

| − 1− L| < 1

2
, ∀ n ≥ N. (1.2)

while for n odd, (1.1) says

|1− L| < 1

2
, ∀ n ≥ N. (1.3)

which is a contradiction as 2 = |1 + 1| ≤ |1− L|+ |1 + L| < 1.

As a first result we have the following uniqueness theorem:
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Theorem 1.0.5. If {an}∞1 is a sequence and if both lim
n→∞

an = L and lim
n→∞

an = M holds, then

L = M .

Proof. Suppose that L 6= M . Then |L −M | > 0. Let ε = |L−M |
2 . As lim

n→∞
an = L, there exists

N1 ∈ N such that |an − L| < ε for all n ≥ N1. Also as lim
n→∞

an = M ,there exists N2 ∈ N such

that |an −M | < ε for all n ≥ N2. Let N = max{N1, N2}. Then for all n ≥ N , |an − L| < ε and

|an−M | < ε. Thus |L−M | ≤ |an−L|+ |an−M | < 2ε = |L−M |, which is a contradiction. ///

Definition 1.0.6. (Bounded sequence): A sequence {an} is said to be bounded above, if there

exists M ∈ R such that an ≤M for all n ∈ N. Similarly, we say that a sequence {an} is bounded

below, if there exists N ∈ R such that an ≥ N for all n ∈ N. Thus a sequence {an} is said to be

bounded if it is both bounded above and below.

Theorem 1.0.7. Every convergent sequence is bounded.

Proof. Let {an} be a convergent sequence and L = lim
n→∞

an. Let ε = 1. Then there exists N ∈ N
such that |an − L| < 1 for all n ≥ N . Further,

|an| = |an − L+ L| ≤ |an − L|+ |L| < 1 + |L|,∀ n ≥ N.

Let M = max{|a1|, |a2|, ..., |an−1|, 1 + |L|}. Then |an| ≤ M for all n ∈ N. Hence {an} is

bounded. ///

1.1 Algebra of convergent sequences

Theorem 1.1.1. Let {an}∞1 and {bn}∞1 be two sequences such that lim
n→∞

an = L and lim
n→∞

bn =

M . Then

(i) lim
n→∞

(an + bn) = L+M .

(ii) lim
n→∞

(can) = cL, c ∈ R..

(iii) lim
n→∞

(anbn) = LM .

(iv) lim
n→∞

(
an
bn

)
=

L

M
if M 6= 0.

Proof. (i) Let ε > 0. Since an converges to L there exists N1 ∈ N such that

|an − L| < ε/2 ∀ n ≥ N1.

Also, as bn converges to M there exists N2 ∈ N such that

|bn −M | < ε/2 ∀ n ≥ N2.

Thus

|(an + bn)− (L+M)| ≤ |an − L|+ |bN −M | < ε ∀ n ≥ N = max{N1.N2}.
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(ii) Easy to prove. Hence left as an exercise to the students.

(iii) Let ε > 0. Since an is a convergent sequence, it is bounded by M1 (say). Also as an
converges to L there exists N1 ∈ N such that

|an − L| < ε/2M ∀ n ≥ N1.

Similarly as bn converges to M there exists N2 ∈ N such that

|bn −M | < ε/2M1 ∀ n ≥ N2.

Let N = max{N1, N2}. Then

|anbn − LM | = |anbn − anM + anM − LM | ≤ |an(bn −M)|+ |M(an − L)|
= |an||bn −M |+M |an − L| < ε/2 + ε/2 = ε

(iv) In order to prove this, it is enough to prove that if limn→∞ an = L, L 6= 0, then

limn→∞ 1/an = 1/L. Without loss of generality, let us assume that L > 0. Let ε > 0

be given. As {an} forms a convergent sequence, it is bounded. Choose N1 ∈ N such that

an > L/2 for all n ≥ N1. Also, as an converges to L, there exists N2 ∈ N such that

|an − L| < L2ε/2 for all n ≥ N2. Let N = max{N1, N2}. Then

n ≥ N =⇒
∣∣∣∣ 1

an
− 1

L

∣∣∣∣ =
|an − L|
|anL|

<
2

L2

L2ε

2
= ε. ///

Examples 1.1.2.

(i) Consider the sequence

{
5

n2

}∞
1

. Then lim
n→∞

5

n2
= lim

n→∞
5 · 1

n
· 1

n
= 5 · lim

n→∞

1

n
· lim
n→∞

1

n
=

5 · 0 · 0 = 0.

(ii) Consider the sequence

{
3n2 − 6n

5n2 + 4

}∞
1

. Notice that
3n2 − 6n

5n2 + 4
=

3− 6/n

5 + 4/n
→ 3/5. Thus

lim
n→∞

3n2 − 6n

5n2 + 4
= lim

n→∞

3− 6/n

5 + 4/n
=

3− lim 6
n

5 + limn→∞
4
n

= 3/5.
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