
Lecture 20

1 Power series ctd..

The following theorem is very useful in identifying of some Taylor series.

Theorem 1.0.1. (Term by term differentiation and integration): Suppose f(x) =
∞∑
n=0

anx
n

converges for |x| < R. Then

1.
∞∑
n=0

nanx
n−1 converges in |x| < R and is equal to f ′(x).

2.
∞∑
n=0

1
n+1

anx
n+1 converges in |x| < R and is equal to

∫
f(x)dx.

From this theorem one concludes that a power series is infinitely differentiable with in

its radius of convergence. Now it is natural to ask weather this series coincides with the

Taylor series of the resultant function. The answer is yes and it is simple to prove that if

f(x) =
∑

anx
n, then an = f (n)

n!
. The above theorem is useful to find Taylor series of some

functions.

Example 1.0.2. The Taylor series of f(x) = tan−1 x and a domain of its convergence.

tan−1 x =

∫
dx

1 + x2
=

∫
1− x2 + x4 + ...

=x− x3

3
+

x5

5
+ ...

It is easy to check that the Radius of convergence of this series is equal to 1 (Try!). At

the end point x = 1 we get interesting sum

1− 1

3
+

1

5
− 1

7
+ .... = tan−1(1) =

π

4
.

Though the function tan−1 x is defined on all of R, we see that the power series converges

on (−1, 1). We can apply Abel’s theorem on alternating series to show that the series

converges at x = 1,−1.

Proof of Theorem 1.0.1:

Let f1(x) =
∑∞

n=1 nanx
n−1, |x| < R and since f(x)converges for|x| < R, we can choose

H such that |x|+H < R.Then for|h| < H and|x| < R,we have
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∣∣∣∣f(x+ h)− f(x)

h
− f1(x)

∣∣∣∣ =
∣∣∣∣∣

∞∑
n=2

an

{
(x+ h)n − xn − nhxn−1

h

}∣∣∣∣∣
≤ |h|

∣∣∣∣∣
∞∑
n=2

an

n∑
k=2

(
n

k

)
xn−khk−2

∣∣∣∣∣
≤ |h|

∞∑
n=2

|an|
n∑

k=2

(
n

k

)
|x|n−kHk−2

=
|h|
H2

∞∑
n=2

|an|
n∑

k=2

(
n

k

)
|x|n−kHk

≤ |h|
H2

∞∑
n=0

|an|(|x|+H)n

=
|h|
H2

M

where M =
∑∞

n=0 |an|(|x|+H)n which converges since |x|+H < R. Letting h goes to

zero, we get

lim
h→0

f(x+ h)− f(x)

h
= f1(x).

for|x| < R. That is f1(x) = f ′(x).

To prove the term by term integration formula,we define F (x) =
∑∞

n=0
an
n+1

xn+1. Then

from above we see that F (x) = f(x) for all |x| < R. Therefore∫ x

0

f(t)dt = F (x)− F (0).

Hence the proof of the theorem. ///

From this theorem one concludes that a power series is infinitely differentiable with in

its radius of convergence.

For approximation, we can use the error approximation of alternating series discussed

in the previous section. The total error if we approximate tan−1 x by sn(x), then the

maximum error is |x|n+1

n+1
.

We note that the power series may converge to a function on small interval, even though

the function is defined on a much bigger interval. For example the function log(1 + x)

has power series that converges on (−1, 1), but log(1 + x) is defined on (−1,∞). This

is obvious due to the fact that the domain of convergence of power series is symmetric

about the center. For instance, for a function defined on (−1, 3) the radius of convergence
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of its power series(about 0) cannot be more than 1.

Another interesting application is to integrate the functions for which we have no ”clue”.

For example,

(1) erf(x) =

∫ x

0

e−t2dt =

∫ x

0

(1− t2

1!
+

t4

2!
+ ... = x− x3

3
+

x5

10
+ ...

(2)

∫ x

0

sin t

t
=

∫ x

0

1− t2

3!
+

t4

5!
= x− x3

3! · 3
+

x5

5! · 5
+ ...

Example 1.0.3. Show that log(1 + x) = x− x2

2
+ x3

3
+ ... for all x ∈ (−1, 1).

There are two ways for establishing this. The first one is to show Rn(x) → 0:

It is not difficult to compute the Taylor series around a = 0. Also one can easily show

that Rn(x) → 0 as n → ∞ for any x ∈ (0, 1). Fox x ∈ (−1, 0), we use integration of the

series of f(x) = 1
1+x

.

log(1 + x) =

∫ x

0

f(t)dt

=

∫ x

0

[1− t+ t2 − t3 + ...(−1)ntn + (−1)n+1 tn

1 + t
]dt

= x− x2

2
+

x3

3
+ ...+ (−1)n

tn

n+ 1
+ (−1)n+1

∫ x

0

tn

1 + t
dt

Now for any fixed x ∈ (−1, 0), f(t) = 1
1+t

is bounded for t ∈ (−1, x). Hence as n → ∞,

|Rn(x)| ≤
∣∣∣∣∫ x

0

tn

1 + t
dt

∣∣∣∣ ≤ C
|x|n+1

n+ 1
| ≤ C

n+ 1
→ 0.

The second approach is to use the above theorem to use the seris expansion of 1
1+x

for

|x| < 1 to get

log(1 + x) =

∫ x

0

1

1 + t
dt =

∫ x

0

[1− t+ t2 − t3 + ...] = x− x2

2
+

x3

3
+ ...

///

An important application of power series is to solving initial value problems of ODEs:

Example 1.0.4. Solve y′′ − 2xy′ + y = 0.

Writing the solution x(t) =
∑

cnt
n and substituting in the equation, we get∑

[(n+ 1)(n+ 2)cn+2 − (2n− 1)cn]x
n = 0
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therefore one writes the solution as

y(x) =
∑

c2nx
2n +

∑
c2n+1x

2n+1

All the coefficients are determined using the relation

cn+2 =
(2n− 1)cn

(n+ 1)(n+ 2)

Both the series in the above converges by ratio test. Indeed,∣∣∣∣cn+1

cn

∣∣∣∣ = (2n− 1)

(n+ 1)(n+ 2)
→ 0.

So it is natural to ask if the series solution always exists for the problem

y′′ − a1(x)y
′ + a2(x)y = 0. (1.1)

The answer is NO. Even if the coefficients a1, a2 are infinitely differentiable over whole R,

there need not exist a series solution. For example, if a1(x) = a2(x) =

{
e−1/x, x ̸= 0

0 x = 0
,

with y(0) = 1, y′(0) = 1. If we compute all derivatives at 0, we get y(n)(0) = 0 for all

n ≥ 2. Therefore the Series method yields y(x) = 1 + x which is not a solution of the

differential equation in any neighborhood of 0. On the existence of series solutions, the

following theorem can be proved.

Theorem 1.0.5. If a1, a2 are real analytic near 0 then series solution exists in a neigh-

borhood of 0 for the problem (1.1).

Proof of this is beyond the level of this course. So we omit here.
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