Lecture 21

1 Application of power series

An important application of power series is to solving initial value problems of ODEs:
Example 1.0.1. Solve $y^{\prime \prime}-2 x y^{\prime}+y=0$.
Writing the solution $x(t)=\sum c_{n} t^{n}$ and substituting in the equation, we get

$$
\sum\left[(n+1)(n+2) c_{n+2}-(2 n-1) c_{n}\right] x^{n}=0
$$

therefore one writes the solution as

$$
y(x)=\sum c_{2 n} x^{2 n}+\sum c_{2 n+1} x^{2 n+1}
$$

All the coefficients are determined using the relation

$$
c_{n+2}=\frac{(2 n-1) c_{n}}{(n+1)(n+2)}
$$

Both the series in the above converges by ratio test. Indeed,

$$
\left|\frac{c_{n+1}}{c_{n}}\right|=\frac{(2 n-1)}{(n+1)(n+2)} \rightarrow 0
$$

So it is natural to ask if the series solution always exists for the problem

$$
\begin{equation*}
y^{\prime \prime}-a_{1}(x) y^{\prime}+a_{2}(x) y=0 . \tag{1.1}
\end{equation*}
$$

The answer is NO. Even if the coefficients a_{1}, a_{2} are infinitely differentiable over whole \mathbb{R}, there need not exist a series solution. For example, if $a_{1}(x)=a_{2}(x)=\left\{\begin{array}{ll}e^{-1 / x}, & x \neq 0 \\ 0 & x=0\end{array}\right.$, with $y(0)=1, y^{\prime}(0)=1$. If we compute all derivatives at 0 , we get $y^{(n)}(0)=0$ for all $n \geq 2$. Therefore the Series method yields $y(x)=1+x$ which is not a solution of the differential equation in any neighborhood of 0 . On the existence of series solutions, the following theorem can be proved.

Definition 1.0.2. Two function $u_{1}(x)$ and $u_{2}(x)$ are linearly independent if there is no constant C such that $u_{1}(x)=C u_{2}(x)$ for all x.

Theorem 1.0.3. If a_{1}, a_{2} are real analytic near 0 then series solution converges in a neighborhood of 0 for the problem (1.1). Moreover there exist two linearly independent solutions.

Proof of this is beyond the level of this course. So we omit here.

