Lecture 29

1 Definite Integral

1.1 Definition, Necessary \& sufficient conditions

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded real valued function on the closed, bounded interval $[a, b]$. Also let m, M be the infimum and supremum of $f(x)$ on $[a, b]$, respectively.

Definition 1.1.1. A partition P of $[a, b]$ is an ordered set $P=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=b\right\}$ such that $x_{0}<x_{1}<\ldots<x_{n}$.

Let m_{k} and M_{k} be the infimum and supremum of $f(x)$ on the subinterval $\left[x_{k-1}, x_{k}\right]$, respectively.
Definition 1.1.2. Lower sum: The Lower sum, denoted with $L(P, f)$ of $f(x)$ with respect to the partition P is given by

$$
L(P, f)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)
$$

Definition 1.1.3. Upper sum: The Upper sum, denoted with $U(P, f)$ of $f(x)$ with respect to the partition P is given by

$$
U(P, f)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)
$$

For a given partition $P, U(P, f) \geq L(P, f)$. In fact the same inequality holds for any two partitions. (see Lemma (1.1.6) below.)

Definition 1.1.4. Refinement of a Partition: A partition Q is called a refinement of the partition P if $P \subseteq Q$.

The following is a simple observation.
Lemma 1.1.5. If Q is a refinement of P, then

$$
L(P, f) \leq L(Q, f) \text { and } U(P, f) \geq U(Q, f)
$$

Proof. Let $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}, \ldots, x_{n}\right\}$ and $Q=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{k-1}, z, x_{k}, \ldots, x_{n}\right\}$. Then

$$
\begin{aligned}
L(P, f) & =m_{0}\left(x_{1}-x_{0}\right)+\ldots+m_{k}\left(x_{k}-x_{k-1}\right)+\ldots+m_{n-1}\left(x_{n}-x_{n-1}\right) \\
& \leq m_{0}\left(x_{1}-x_{0}\right)+\ldots+m_{k}^{\prime}\left(x_{k}-z\right)+m_{k}^{\prime \prime}\left(z-x_{k-1}\right)+\ldots+m_{n-1}\left(x_{n}-x_{n-1}\right) \\
& =L(Q, f)
\end{aligned}
$$

where $m_{k}^{\prime}=\inf _{\left[z, x_{k}\right]} f(x)$ and $m_{k}^{\prime \prime}=\inf _{\left[x_{k-1}, z\right]} f(x)$.

Lemma 1.1.6. If P_{1} and P_{2} be any two partitions, then

$$
L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right)
$$

Proof. Let $Q=P_{1} \cup P_{2}$. Then Q is a refinement of both P_{1} and P_{2}. So by Lemma (1.1.8),

$$
L\left(P_{1}, f\right) \leq L(Q, f) \leq U(Q, f) \leq U\left(P_{2}, f\right) .
$$

Definition 1.1.7. Let \mathcal{P} be the collection of all possible partitions of $[a, b]$. Then the upper integral of f is

$$
\int_{a}^{\bar{b}} f=\inf \{U(P, f): P \in \mathcal{P}\}
$$

and lower integral of f is

$$
\int_{\underline{a}}^{b} f=\sup \{L(P, f): P \in \mathcal{P}\} .
$$

An immediate consequence of Lemma (1.1.6) is
Lemma 1.1.8. For a bounded function $f:[a, b] \rightarrow \mathbb{R}$,

$$
\int_{\underline{a}}^{b} f \leq \int_{a}^{\bar{b}} f
$$

Definition 1.1.9. Riemann integrability: $f:[a, b] \rightarrow \mathbb{R}$ is said to be Riemann integrable if

$$
\int_{\underline{a}}^{b} f=\int_{a}^{\bar{b}} f
$$

and the value of the limit is denoted with $\int_{a}^{b} f(x) d x$. We say $f \in \mathcal{R}[a, b]$.
Example 1.1.10. $f(x)=x$ on $[0,1]$
Consider the sequence of partitions $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, \frac{n}{n}\right\}$. Then

$$
\begin{aligned}
L\left(P_{n}, f\right) & =0 \cdot \frac{1}{n}+\frac{1}{n} \cdot \frac{1}{n}+\ldots+\frac{n-1}{n} \frac{1}{n} \\
& =\frac{1}{n^{2}}[1+2+\ldots+(n-1)] \\
& =\frac{n(n-1)}{2 n^{2}}
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\frac{1}{2}$. Hence from the definition $\int_{\underline{0}}^{1} f(x) d x \geq \frac{1}{2}$. Similarly

$$
\begin{aligned}
U\left(P_{n}, f\right) & =\frac{1}{n} \cdot \frac{1}{n}+\frac{2}{n} \cdot \frac{1}{n}+\ldots+\frac{n}{n} \frac{1}{n} \\
& =\frac{1}{n^{2}}[1+2+\ldots+n] \\
& =\frac{n(n+1)}{2 n^{2}}
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\frac{1}{2}$. Again from the definition $\int_{0}^{\overline{1}} f(x) d x \leq \frac{1}{2}$.

Example 1.1.11. $f(x)=x^{2}$ on $[0,1]$
Consider the sequence of partitions $P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, \frac{n}{n}\right\}$. Then

$$
\begin{aligned}
U\left(P_{n}, f\right) & =\frac{1}{n^{2}} \cdot \frac{1}{n}+\left(\frac{2}{n}\right)^{2} \cdot \frac{1}{n}+\ldots+\left(\frac{n}{n}\right)^{2} \frac{1}{n} \\
& =\frac{1}{n^{3}}\left[1+2^{2}+\ldots+n^{2}\right] \\
& =\frac{n(n+1)(2 n+1)}{6 n^{3}}
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\frac{1}{3}$. Similarly

$$
\begin{aligned}
L\left(P_{n}, f\right) & =0 \cdot \frac{1}{n}+\left(\frac{1}{n}\right)^{2} \cdot \frac{1}{n}+\ldots+\left(\frac{n-1}{n}\right)^{2} \frac{1}{n} \\
& =\frac{1}{n^{3}}\left[1+2^{2}+\ldots+(n-1)^{2}\right] \\
& =\frac{n(n-1)(2 n-1)}{6 n^{3}}
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\frac{1}{3}$.
Hence from the definition $\int_{\underline{a}}^{b} f \geq 1 / 3$ and $\int_{a}^{\bar{b}} f \leq 1 / 3$.

Remark 1.1. In the above two examples $\int_{\underline{0}}^{1} f=\int_{0}^{\overline{1}} f$ thanks to Lemma 1.1.8

The following example illustrates the non-integrability.

Example 1.1.12. On $[0,1]$, consider the function $f(x)= \begin{cases}1, & x \in Q, \\ 0, & x \notin Q .\end{cases}$

Let P be a partition of $[0,1]$. In any sub interval $\left[x_{k-1}, x_{k}\right]$, there exists a rational number and irrational number. Then the supremum in any subinterval is 1 and infimum is 0 . Therefore, $L(P, f)=0$ and $U(P, f)=1$. Hence $\int_{\underline{0}}^{1} f \neq \int_{0}^{\overline{1}} f$.

Necessary and sufficient condition for integrability

Theorem 1.1.13. A bounded function $f \in \mathcal{R}[a, b]$ if and only if for every $\epsilon>0$, there exists a partition P_{ϵ} such that

$$
U\left(P_{\epsilon}, f\right)-L\left(P_{\epsilon}, f\right)<\epsilon
$$

Proof. \Leftarrow : Let $\epsilon>0$. Then from the definition of upper and lower integral we have

$$
\int_{a}^{\bar{b}} f-\int_{\underline{a}}^{b} f \leq U\left(P_{\epsilon}, f\right)-L\left(P_{\epsilon}, f\right)<\epsilon(\text { by hypothesis })
$$

Thus the conclusion follows as $\epsilon>0$ is arbitrary.
\Rightarrow : Conversely, since $\int_{a}^{\bar{b}} f$ is the infimum, for any $\epsilon>0$, there exists a partition P_{1} such that

$$
U\left(P_{1}, f\right)<\int_{a}^{\bar{b}} f+\frac{\epsilon}{2}
$$

Similarly there exists a partition P_{2} such that

$$
L\left(P_{2}, f\right)>\int_{\underline{a}}^{b} f-\frac{\epsilon}{2}
$$

Let $P_{\epsilon}=P_{1} \cup P_{2}$. Then P_{ϵ} is a refinement of P_{1} and P_{2}. Hence

$$
\begin{aligned}
U\left(P_{\epsilon}, f\right)-L\left(P_{\epsilon}, f\right) & \leq U\left(P_{1}, f\right)-L\left(P_{2}, f\right) \\
& \leq \int_{a}^{\bar{b}} f+\frac{\epsilon}{2}-\int_{\underline{a}}^{b} f+\frac{\epsilon}{2} \\
& =\epsilon\left(\operatorname{as} f \text { is integrable, } \int_{a}^{\bar{b}} f=\int_{\underline{a}}^{b} f\right)
\end{aligned}
$$

This complete the theorem.
Now it is easy to see that the functions considered in Example 1 and Example 2 are integrable. For any $\epsilon>0$, we can find n (large) and P_{n} such that $\frac{1}{n}<\epsilon$. Then

$$
U\left(P_{n}, f\right)-L\left(P_{n}, f\right)=\frac{1}{2 n^{2}}(n(n+1)-n(n-1))=\frac{1}{n}<\epsilon
$$

As a consequence we have the following sequential characterization:

Theorem 1.1.14. $f:[a, b] \rightarrow \mathbb{R}$ is integrable if and only if there exists a sequence $\left\{P_{n}\right\}$ of partitions of $[a, b]$ such that

$$
\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)-L\left(P_{n}, f\right)=0
$$

Example 1.1.15. Consider $f(x)=\frac{1}{x}$ on $[1, b]$.
Divide the interval in geometric progression and compute $U\left(P_{n}, f\right)$ and $L\left(P_{n}, f\right)$ to show that $f \in \mathcal{R}[1, b]$.
Solution: Let $P_{n}=\left\{1, r, r^{2}, \ldots, r^{n}=b\right\}$ be a partition on $[1, b]$. Then

$$
\begin{aligned}
U\left(P_{n}, f\right) & =f(1)(r-1)+f(r)\left(r^{2}-r\right)+\ldots .+f\left(r^{n-1}\right)\left(r^{n}-r^{n-1}\right) \\
& =(r-1)+\frac{1}{r} r(r-1)+. .+\frac{1}{r^{n-1}} r^{n-1}(r-1) \\
& =n(r-1) \\
& =n\left(b^{\frac{1}{n}}-1\right)
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} \frac{b^{\frac{1}{n}}-1}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{b^{\frac{1}{n}} \ln b\left(\frac{-1}{n^{2}}\right)}{\frac{-1}{n^{2}}}=\ln b$.
Similarly

$$
\begin{aligned}
L\left(P_{n}, f\right) & =f(r)(r-1)+f\left(r^{2}\right)\left(r^{2}-r\right)+\ldots+f\left(r^{n}\right)\left(r^{n}-r^{n-1}\right) \\
& =\frac{1}{r}(r-1)+. .+\frac{1}{r^{n}} r^{n-1}(r-1) \\
& =\frac{n}{r}\left(b^{\frac{1}{n}}-1\right) \\
& =n\left(1-\frac{1}{b^{1 / n}}\right) \\
& =\frac{b^{1 / n}-1}{b^{1 / n} \frac{1}{n}} \rightarrow \ln b \text { as } n \rightarrow \infty .
\end{aligned}
$$

