Lecture 29

1 Definite Integral

1.1 Definition, Necessary & sufficient conditions

Let f : [a,b] — R be a bounded real valued function on the closed, bounded interval [a, b]. Also

let m, M be the infimum and supremum of f(x) on [a, b], respectively.

Definition 1.1.1. A partition P of |a,b] is an ordered set P = {a = xo, x1, T2, ..., T, = b} such
that xg < 1 < ... < Tp.

Let mj, and M}, be the infimum and supremum of f(x) on the subinterval [zy_1, z%], respectively.

Definition 1.1.2. Lower sum: The Lower sum, denoted with L(P, f) of f(x) with respect to
the partition P is given by

L(P, f) = ka({tk — xk,l).
k=1

Definition 1.1.3. Upper sum: The Upper sum, denoted with U(P, f) of f(x) with respect to
the partition P is given by

UP, f) = My(zy, — 25-1).
k=1

For a given partition P, U(P, f) > L(P, f). In fact the same inequality holds for any two

partitions. (see Lemma (1.1.6) below.)

Definition 1.1.4. Refinement of a Partition: A partition Q is called a refinement of the
partition P if P C Q.

The following is a simple observation.
Lemma 1.1.5. If Q is a refinement of P, then
L(P, f) < L(Q, f) and U(P, f) = U(Q, f).

Proof. Let P = {xg,T1,%2, ..., Tk—1, Tk, ..., Tn} and Q = {xo, x1, T2, ..., X1, 2, Tk, ..., Tn }. Then

L(P, f) = mo(x1 — x0) + ... + mp(xp — Tp—1) + . + M1 (T — 1)
<mg(xy — o) + ... + m;g(:rk —2)+ m;(z —Zp_1) + oo + Mmp—1(xy — Tp—1)

= L(@Q, f)

where m, = [inf} f(x) and m, = : inf ]f(l")-
2,Tk Tk—15%



Lemma 1.1.6. If P, and Py be any two partitions, then
L(Plvf) < U(P27f)
Proof. Let Q = Py U P,. Then @ is a refinement of both P; and P». So by Lemma (1.1.8),

L(P, ) S L(Q, f) <U(Q, f) Uy, f).

Definition 1.1.7. Let P be the collection of all possible partitions of [a,b]. Then the upper
integral of f is

b
(/f:mHWRﬂ:PeP}
and lower integral of f is

b
/ f=sup{L(P, f): P e P}

An immediate consequence of Lemma (1.1.6) is

Lemma 1.1.8. For a bounded function f : [a,b] — IR,

/abfﬁ/abf-

Definition 1.1.9. Riemann integrability: f : [a,b] — R is said to be Riemann integrable if

b b
o=
b
and the value of the limit is denoted with / f(z)dz. We say f € Rla,b].

Example 1.1.10. f(z) =z on [0,1]

Consider the sequence of partitions P, = {0, %, %, vy ”Tfl, =}. Then
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Thus lim L(P,, f) = 3 Hence from the definition fo )dr > 1. Similarly
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Hence lim U(P,, f) = =. Again from the definition fol flx)dx < %
n—00 2

Example 1.1.11. f(z) = 22 on [0,1]

Consider the sequence of partitions Pn:{(),n,n,. . ,n} Then
1 1 (2\* 1 ny\2 1
UPo, f) = = —+ = ~7+...+(—) -
n®> n n n/ n
= 3[1+22+ .+ n?]
_n(n+1)(2n+1)
B 6n3

1
Thus lim U(P,, f) = 3 Similarly

n—oQ
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n n n n n
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= —[1+2°+ ..+ (n—1)%
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1
Therefore, hm L(P,, )= 3

Hence from the definition fa f>1/3 and fagf <1/3.
Remark 1.1. In the above two examples fol f= fOTf thanks to Lemma 1.1.8

The following example illustrates the non-integrability.

1, z€Q,

Example 1.1.12. On [0, 1], consider the function f(z) =
0, =z<&0Q.



Let P be a partition of [0, 1]. In any sub interval [zj_1, zx], there exists a rational number and

irrational number. Then the supremum in any subinterval is 1 and infimum is 0. Therefore,
L(P,f)=0and U(P, f) = 1. Hence [, f# [, [.

Necessary and sufficient condition for integrability

Theorem 1.1.13. A bounded function f € Rla,b] if and only if for every € > 0, there exists a

partition P, such that
U(Peaf) _L(P67f) <e

Proof. <: Let € > 0. Then from the definition of upper and lower integral we have

/bf — /bf < U(P., f)— L(P., f) < ¢( by hypothesis).

Thus the conclusion follows as € > 0 is arbitrary.

=-: Conversely, since f: f is the infimum, for any € > 0, there exists a partition P; such that

b
U(Py, f) </ f+§.

Similarly there exists a partition P, such that

b
Lpwf)> [ 1-5

Let P. = P, U P,. Then P, is a refinement of P; and P,. Hence
U(P57f)_L(Peaf) < U(Plaf)_L(P27f)
b b
€ €
< Z e
_/a I / I
b b
=ce€ (as fis integrable,/ f :/ f)

This complete the theorem. ///
Now it is easy to see that the functions considered in Example 1 and Example 2 are integrable.

For any € > 0, we can find n (large) and P, such that 1 < e. Then

U(Pa, f) = (Pas f) = g (nn+1) —nln—1)) =+ <

As a consequence we have the following sequential characterization:



Theorem 1.1.14. f : [a,b] — R is integrable if and only if there exists a sequence {P,} of
partitions of [a,b] such that
lim U(P,, f) — L(P,, f) =0.

n—o0

1
Example 1.1.15. Consider f(z) = on [1,0].
Divide the interval in geometric progression and compute U(P,, f) and L(P,, f) to show that
feR[LD].
Solution: Let P, = {1,7,72,...,7™ = b} be a partition on [1,b]. Then
U(Pp, f) = () (r = 1)+ f(r)(® =)+ o+ fOH O™ =7

1 1
=(r—-1)+ ;T(’r‘ -1 +.+ 77“”717«”—1(7« -1)

=n(r—1)
= n(b% - 1)
1 1 -1
by — 1 b In b(=L
Therefore lim U(P,, f) = lim ——— = lim # —Inb

Similarly

n 1
= —(bn — 1
7,( )
1
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pt/n 1
- pl/nl

=n(1l

—Inb as n — oo.



