
Lecture 29

1 Definite Integral

1.1 Definition, Necessary & sufficient conditions

Let f : [a, b]→ R be a bounded real valued function on the closed, bounded interval [a, b]. Also

let m,M be the infimum and supremum of f(x) on [a, b], respectively.

Definition 1.1.1. A partition P of [a, b] is an ordered set P = {a = x0, x1, x2, ..., xn = b} such

that x0 < x1 < ... < xn.

Let mk and Mk be the infimum and supremum of f(x) on the subinterval [xk−1, xk], respectively.

Definition 1.1.2. Lower sum: The Lower sum, denoted with L(P, f) of f(x) with respect to

the partition P is given by

L(P, f) =
n∑
k=1

mk(xk − xk−1).

Definition 1.1.3. Upper sum: The Upper sum, denoted with U(P, f) of f(x) with respect to

the partition P is given by

U(P, f) =
n∑
k=1

Mk(xk − xk−1).

For a given partition P , U(P, f) ≥ L(P, f). In fact the same inequality holds for any two

partitions. (see Lemma (1.1.6) below.)

Definition 1.1.4. Refinement of a Partition: A partition Q is called a refinement of the

partition P if P ⊆ Q.

The following is a simple observation.

Lemma 1.1.5. If Q is a refinement of P , then

L(P, f) ≤ L(Q, f) and U(P, f) ≥ U(Q, f).

Proof. Let P = {x0, x1, x2, ..., xk−1, xk, ..., xn} and Q = {x0, x1, x2, ..., xk−1, z, xk, ..., xn}. Then

L(P, f) = m0(x1 − x0) + ...+mk(xk − xk−1) + ...+mn−1(xn − xn−1)

≤ m0(x1 − x0) + ...+m
′
k(xk − z) +m

′′
k(z − xk−1) + ...+mn−1(xn − xn−1)

= L(Q, f)

where m
′
k = inf

[z,xk]
f(x) and m

′′
k = inf

[xk−1,z]
f(x).
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Lemma 1.1.6. If P1 and P2 be any two partitions, then

L(P1, f) ≤ U(P2, f).

Proof. Let Q = P1 ∪ P2. Then Q is a refinement of both P1 and P2. So by Lemma (1.1.8),

L(P1, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P2, f).

Definition 1.1.7. Let P be the collection of all possible partitions of [a, b]. Then the upper

integral of f is ∫ b

a
f = inf{U(P, f) : P ∈ P}

and lower integral of f is ∫ b

a
f = sup{L(P, f) : P ∈ P}.

An immediate consequence of Lemma (1.1.6) is

Lemma 1.1.8. For a bounded function f : [a, b]→ IR,

∫ b

a
f ≤

∫ b

a
f.

Definition 1.1.9. Riemann integrability: f : [a, b]→ R is said to be Riemann integrable if

∫ b

a
f =

∫ b

a
f

and the value of the limit is denoted with

∫ b

a
f(x)dx. We say f ∈ R[a, b].

Example 1.1.10. f(x) = x on [0, 1]

Consider the sequence of partitions Pn = {0, 1n ,
2
n , ...,

n−1
n , nn}. Then

L(Pn, f) = 0 · 1

n
+

1

n
· 1

n
+ ...+

n− 1

n

1

n

=
1

n2
[1 + 2 + ...+ (n− 1)]

=
n(n− 1)

2n2
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Thus lim
n→∞

L(Pn, f) =
1

2
. Hence from the definition

∫ 1
0 f(x)dx ≥ 1

2 . Similarly

U(Pn, f) =
1

n
· 1

n
+

2

n
· 1

n
+ ...+

n

n

1

n

=
1

n2
[1 + 2 + ...+ n]

=
n(n+ 1)

2n2

Hence lim
n→∞

U(Pn, f) =
1

2
. Again from the definition

∫ 1
0 f(x)dx ≤ 1

2 .

Example 1.1.11. f(x) = x2 on [0, 1]

Consider the sequence of partitions Pn = {0, 1n ,
2
n , ...,

n−1
n , nn}. Then

U(Pn, f) =
1

n2
· 1

n
+

(
2

n

)2

· 1

n
+ ...+

(n
n

)2 1

n

=
1

n3
[1 + 22 + ...+ n2]

=
n(n+ 1)(2n+ 1)

6n3

Thus lim
n→∞

U(Pn, f) =
1

3
. Similarly

L(Pn, f) = 0 · 1

n
+

(
1

n

)2

· 1

n
+ ...+

(
n− 1

n

)2 1

n

=
1

n3
[1 + 22 + ...+ (n− 1)2]

=
n(n− 1)(2n− 1)

6n3

Therefore, lim
n→∞

L(Pn, f) =
1

3
.

Hence from the definition
∫ b
a f ≥ 1/3 and

∫ b
a f ≤ 1/3.

Remark 1.1. In the above two examples
∫ 1
0 f =

∫ 1
0 f thanks to Lemma 1.1.8

The following example illustrates the non-integrability.

Example 1.1.12. On [0, 1], consider the function f(x) =

1, x ∈ Q,

0, x 6∈ Q.
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Let P be a partition of [0, 1]. In any sub interval [xk−1, xk], there exists a rational number and

irrational number. Then the supremum in any subinterval is 1 and infimum is 0. Therefore,

L(P, f) = 0 and U(P, f) = 1. Hence
∫ 1
0 f 6=

∫ 1
0 f .

Necessary and sufficient condition for integrability

Theorem 1.1.13. A bounded function f ∈ R[a, b] if and only if for every ε > 0, there exists a

partition Pε such that

U(Pε, f)− L(Pε, f) < ε.

Proof. ⇐: Let ε > 0. Then from the definition of upper and lower integral we have

∫ b

a
f −

∫ b

a
f ≤ U(Pε, f)− L(Pε, f) < ε( by hypothesis).

Thus the conclusion follows as ε > 0 is arbitrary.

⇒: Conversely, since
∫ b
a f is the infimum, for any ε > 0, there exists a partition P1 such that

U(P1, f) <

∫ b

a
f +

ε

2
.

Similarly there exists a partition P2 such that

L(P2, f) >

∫ b

a
f − ε

2
.

Let Pε = P1 ∪ P2. Then Pε is a refinement of P1 and P2. Hence

U(Pε, f)− L(Pε, f) ≤ U(P1, f)− L(P2, f)

≤
∫ b

a
f +

ε

2
−
∫ b

a
f +

ε

2

= ε (as f is integrable,

∫ b

a
f =

∫ b

a
f)

This complete the theorem. ///

Now it is easy to see that the functions considered in Example 1 and Example 2 are integrable.

For any ε > 0, we can find n (large) and Pn such that 1
n < ε. Then

U(Pn, f)− L(Pn, f) =
1

2n2
(n(n+ 1)− n(n− 1)) =

1

n
< ε.

As a consequence we have the following sequential characterization:
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Theorem 1.1.14. f : [a, b] → R is integrable if and only if there exists a sequence {Pn} of

partitions of [a, b] such that

lim
n→∞

U(Pn, f)− L(Pn, f) = 0.

Example 1.1.15. Consider f(x) =
1

x
on [1, b].

Divide the interval in geometric progression and compute U(Pn, f) and L(Pn, f) to show that

f ∈ R[1, b].

Solution: Let Pn = {1, r, r2, ..., rn = b} be a partition on [1, b]. Then

U(Pn, f) = f(1)(r − 1) + f(r)(r2 − r) + ....+ f(rn−1)(rn − rn−1)

= (r − 1) +
1

r
r(r − 1) + ..+

1

rn−1
rn−1(r − 1)

= n(r − 1)

= n(b
1
n − 1)

Therefore lim
n→∞

U(Pn, f) = lim
n→∞

b
1
n − 1
1
n

= lim
n→∞

b
1
n ln b(−1

n2 )
−1
n2

= ln b.

Similarly

L(Pn, f) = f(r)(r − 1) + f(r2)(r2 − r) + ...+ f(rn)(rn − rn−1)

=
1

r
(r − 1) + ..+

1

rn
rn−1(r − 1)

=
n

r
(b

1
n − 1)

= n(1− 1

b1/n
)

=
b1/n − 1

b1/n 1
n

→ ln b as n→∞.
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