Lecture 3

1 Sequences ctd..

Theorem 1.0.1 (Sandwich theorem for sequences). Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be three sequences such that $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$. If $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.

Proof. Let $\epsilon>0$ be given. As $\lim _{n \rightarrow \infty} a_{n}=L$, there exists $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
n \geq N_{1} \Longrightarrow\left|a_{n}-L\right|<\epsilon \tag{1.1}
\end{equation*}
$$

Similarly as $\lim _{n \rightarrow \infty} c_{n}=L$, there exists $N_{2} \in \mathbb{N}$

$$
\begin{equation*}
n \geq N_{2} \Longrightarrow\left|c_{n}-L\right|<\epsilon \tag{1.2}
\end{equation*}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then, $L-\epsilon<a_{n}\left(\right.$ from (1.1)) and $c_{n} \leq L+\epsilon($ from (1.2)). Thus

$$
L-\epsilon<a_{n} \leq b_{n} \leq c_{n} \leq L+\epsilon
$$

Thus $\left|b_{n}-L\right|<\epsilon$ for all $n \geq N$. Hence the proof.

Examples 1.0.2.

(i) Consider the sequence $\left\{\frac{\cos n}{n}\right\}_{n=1}^{\infty}$. Then $\frac{-1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}$. Hence by Sandwich theorem $\lim _{n \rightarrow \infty} \frac{\cos n}{n}=0$.
(ii) As $0 \leq \frac{1}{2^{n}} \leq \frac{1}{n}$ and $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty, \frac{1}{2^{n}}$ also converges to 0 by Sandwich theorem.
(iv) If $b>0$, then $\lim _{n \rightarrow \infty} \sqrt[n]{b}=1$.

First assume that $b>1$. Let $a_{n}=b^{\frac{1}{n}}-1$. As $b>1, a_{n}>0$ for all $n \in \mathbb{N}$. Further,

$$
b=\left(1+a_{n}\right)^{n} \geq 1+n a_{n}
$$

Then $0 \leq a_{n} \leq \frac{b-1}{n}$. Thus $a_{n} \rightarrow 0$, i.e., $b^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$.
Now if $b<1$, then take $c=\frac{1}{b}$ and it is easy to show the result.

Examples 1.0.3.

(i) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
(ii) If $x>0$ then $\lim _{n \rightarrow \infty} \frac{n^{x}}{(1+x)^{n}}=0$.
(iii) If $p>0$, then $\lim _{n \rightarrow \infty} \frac{\log (n)}{n^{p}}=0$.

Solution. (i) Let $a_{n}=n^{\frac{1}{n}}-1$. Then $0 \leq a_{n} \leq 1$ for all $n \in \mathbb{N}$. Further,

$$
n=\left(1+a_{n}\right)^{n} \geq \frac{n(n-1)}{2} a_{n}^{2}
$$

Thus $0 \leq a_{n} \leq \sqrt{\frac{2}{(n-1)}}(n \geq 2)$. As $\sqrt{\frac{2}{(n-1)}} \rightarrow 0$ as $n \rightarrow \infty$, by Sandwich theorem, $a_{n} \rightarrow 0$, i.e., $n^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$.
(ii) Let k be an integer such that $k>x, k>0$. Then for $n>2 k$,

$$
(1+x)^{n}>{ }_{n} C_{k} x^{k}=\frac{n!}{k!(n-k)!} x^{k}=\frac{x^{k}}{k!} \prod_{i=1}^{k}[n-i+1]>\frac{n^{k}}{2^{k}} \frac{x^{k}}{k!}
$$

Hence,

$$
0<\frac{n^{x}}{(1+x)^{n}}<\frac{2^{k} k!}{x^{k}} n^{x-k}
$$

As $x-k<0, n^{x-k} \rightarrow 0$. Thus $\frac{n^{x}}{(1+x)^{n}} \rightarrow 0$ as $n \rightarrow \infty$.
(iii) By Archimedian property, for any $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that

$$
m \leq n^{p}<(m+1)
$$

or equivalently

$$
m^{\frac{1}{p}} \leq n<(m+1)^{\frac{1}{p}}
$$

Therefore,

$$
\frac{1}{n^{p}}<\frac{\log n}{n^{p}}<\frac{1}{p} \frac{\log (m+1)}{m}
$$

Also

$$
\frac{1}{p} \frac{\log (m+1)}{m}=\frac{1}{p} \frac{\log (m+1)}{m+1} \frac{m+1}{m} .
$$

So it is enough to show $\frac{\log n}{n} \rightarrow 0$ as $n \rightarrow \infty$. for this,
let us start with $\epsilon>0$. From the previous problem we have $n^{\frac{1}{n}} \rightarrow 1$ as $n \rightarrow \infty$. This implies there exists $N \in \mathbb{N}$ such that

$$
n^{\frac{1}{n}} \in\left(e^{-\epsilon}, e^{\epsilon}\right), \forall n \geq N \text { (equivalently) } \frac{\log n}{n} \in(-\epsilon, \epsilon), \forall n \geq N \text {. }
$$

That is, $\frac{\log n}{n} \rightarrow 0$.
Definition 1.0.4. Subsequence: Let $\left\{a_{n}\right\}$ be a sequence and $\left\{n_{1}, n_{2}, \ldots\right\}$ be a sequence of positive integers such that $i>j$ implies $n_{i}>n_{j}$. Then the sequence $\left\{a_{n_{i}}\right\}_{i=1}^{\infty}$ is called a subsequence of $\left\{a_{n}\right\}$.
Theorem 1.0.5. If the sequence of real numbers $\left\{a_{n}\right\}_{1}^{\infty}$, is convergent to L, then any subsequence of $\left\{a_{n}\right\}$ is also convergent to L.
Proof. Let $\left\{n_{i}\right\}_{i=1}^{\infty}$ be a sequence of positive integers such that $\left\{a_{n_{i}}\right\}_{i=1}^{\infty}$ forms a subsequence of
$\left\{a_{n}\right\}$. Let $\epsilon>0$ be given. As $\left\{a_{n}\right\}$ converges to L, there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\epsilon, \forall n \geq N .
$$

Choose $M \in \mathbb{N}$ such that $n_{i} \geq N$ for $i \geq M$. Then

$$
\left|a_{n_{i}}-L\right|<\epsilon, \forall i \geq M .
$$

Hence the proof.
Theorem 1.0.6. 1. If a sequence $\left\{a_{n}\right\}$ converges to a. Then $\left\{\left|a_{n}\right|\right\}$ converges to $|a|$.
2. If $a_{n} \geq 0$ and $a_{n} \rightarrow a$, then $\left\{\sqrt{a_{n}}\right\}$ converges to \sqrt{a}.

Proof. Proof of (1) follows from the inequality

$$
||a|-|b|| \leq|a-b|, \quad \forall a, b \in \mathbb{R}
$$

(2) follows from the fact that if $a \neq 0$, then

$$
\left|\sqrt{a_{n}}-\sqrt{a}\right| \leq \frac{\left|a_{n}-a\right|}{\left|\sqrt{a_{n}}+\sqrt{a}\right|} .
$$

The case $a=0$ is easy and is left as an exercise.
Theorem 1.0.7. If a sequence $\left\{a_{n}\right\}$ converges to a, then $\left\{\frac{1}{n} \sum_{k=1}^{n} a_{k}\right\}$ also converges to a.
Proof. Proof is left as an exercise.
Next we study some fine properties of sequences that imply convergence/divergence.
Theorem 1.0.8. For any sequence $\left\{a_{n}\right\}$ with $a_{n}>0$

$$
\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

provided the limit on the right side exists.
Proof. Let $\epsilon>0$ be arbitrary. Suppose the second limit exists (say l), then there exists $N \in \mathbb{N}$ such that

$$
l-\epsilon<\frac{a_{n+1}}{a_{n}}<l+\epsilon, \quad \forall n \geq N
$$

Taking $n=N, N+1, \ldots, m-1$ and multiplying we get

$$
(l-\epsilon)^{m-N}<\frac{a_{m}}{a_{N}}<(l+\epsilon)^{m-N}, \quad \forall m \geq N+1
$$

equivalently,

$$
(l-\epsilon)^{1-\frac{N}{m}} a_{N}^{\frac{1}{m}}<\left(a_{m}\right)^{\frac{1}{m}}<(l+\epsilon)^{1-\frac{N}{m}} a_{N}^{\frac{1}{m}}, \quad \forall m \geq N+1 .
$$

Now the result follows from the fact that $\lim _{m \rightarrow \infty}(l \pm \epsilon)^{1-N / m} a_{N}^{1 / m}=l \pm \epsilon$.
Corollary 1.0.9. (i) If $a_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=l<1$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
(ii) If $a_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=l>1$, then $a_{n} \rightarrow \infty$.

Proof. If $L<1$, then choose ϵ_{0} such that $L+\epsilon_{0}<1$. Then for this ϵ_{0} there exists N_{0} such that

$$
n \geq N_{0} \Longrightarrow \frac{a_{n+1}}{a_{n}}<L+\epsilon_{0}
$$

Therefore from the hypothesis of (i)

$$
n \geq N_{0} \Longrightarrow a_{n}^{\frac{1}{n}}<L+\epsilon_{0}
$$

Therefore $a_{n}<\left(L+\epsilon_{0}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$. A similar argument will imply the (ii).
Examples 1.0.10. (i) $\lim a^{1 / n}=1$, if $a>0 \quad$ (ii) $\lim n^{\alpha} x^{n}=0$, if $|x|<1$ and $\alpha \in \mathbb{R}$.
Solution: (i) Take $a_{n}=a$, then $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$.
(ii) If $x \neq 0$, take $a_{n}=n^{\alpha} x^{n}$, then $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{\alpha}|x|=|x|$.

