
Lecture 3

1 Sequences ctd..

Theorem 1.0.1 (Sandwich theorem for sequences). Let {an}, {bn} and {cn} be three sequences

such that an ≤ bn ≤ cn for all n ∈ N. If lim
n→∞

an = L and lim
n→∞

cn = L, then lim
n→∞

bn = L.

Proof. Let ε > 0 be given. As lim
n→∞

an = L, there exists N1 ∈ N such that

n ≥ N1 =⇒ |an − L| < ε. (1.1)

Similarly as lim
n→∞

cn = L, there exists N2 ∈ N

n ≥ N2 =⇒ |cn − L| < ε. (1.2)

Let N = max{N1, N2}. Then, L− ε < an (from (1.1)) and cn ≤ L+ ε ( from (1.2)). Thus

L− ε < an ≤ bn ≤ cn ≤ L+ ε.

Thus |bn − L| < ε for all n ≥ N . Hence the proof. ///

Examples 1.0.2.

(i) Consider the sequence
{cos n

n

}∞
n=1

. Then
−1

n
≤ cos n

n
≤ 1

n
. Hence by Sandwich theorem

lim
n→∞

cos n

n
= 0.

(ii) As 0 ≤ 1
2n ≤

1
n and 1

n → 0 as n→∞, 1
2n also converges to 0 by Sandwich theorem.

(iv) If b > 0, then lim
n→∞

n
√
b = 1.

First assume that b > 1. Let an = b
1
n − 1. As b > 1, an > 0 for all n ∈ N. Further,

b = (1 + an)n ≥ 1 + nan.

Then 0 ≤ an ≤
b− 1

n
. Thus an → 0, i.e., b

1
n → 1 as n→∞.

Now if b < 1, then take c = 1
b and it is easy to show the result. ///

Examples 1.0.3.

(i) lim
n→∞

n
√
n = 1.

(ii) If x > 0 then lim
n→∞

nx

(1+x)n = 0.

(iii) If p > 0, then lim
n→∞

log(n)
np = 0.
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Solution. (i) Let an = n
1
n − 1. Then 0 ≤ an ≤ 1 for all n ∈ N. Further,

n = (1 + an)n ≥ n(n− 1)

2
a2n.

Thus 0 ≤ an ≤
√

2
(n−1) (n ≥ 2). As

√
2

(n−1) → 0 as n→∞, by Sandwich theorem, an → 0, i.e.,

n
1
n → 1 as n→∞.

(ii) Let k be an integer such that k > x, k > 0. Then for n > 2k,

(1 + x)n > nCkx
k =

n!

k!(n− k)!
xk =

xk

k!

k
Π
i=1

[n− i+ 1] >
nk

2k
xk

k!
.

Hence,

0 <
nx

(1 + x)n
<

2kk!

xk
nx−k.

As x− k < 0, nx−k → 0. Thus
nx

(1 + x)n
→ 0 as n→∞.

(iii) By Archimedian property, for any n ∈ N there exists m ∈ N such that

m ≤ np < (m+ 1)

or equivalently

m
1
p ≤ n < (m+ 1)

1
p .

Therefore,
1

np
<

log n

np
<

1

p

log(m+ 1)

m
.

Also
1

p

log(m+ 1)

m
=

1

p

log(m+ 1)

m+ 1

m+ 1

m
.

So it is enough to show logn
n → 0 as n→∞. for this,

let us start with ε > 0. From the previous problem we have n
1
n → 1 as n → ∞. This implies

there exists N ∈ N such that

n
1
n ∈ (e−ε, eε), ∀ n ≥ N (equivalently)

log n

n
∈ (−ε, ε), ∀ n ≥ N.

That is, logn
n → 0. ///

Definition 1.0.4. Subsequence: Let {an} be a sequence and {n1, n2, ...} be a sequence of

positive integers such that i > j implies ni > nj. Then the sequence {ani}∞i=1 is called a

subsequence of {an}.

Theorem 1.0.5. If the sequence of real numbers {an}∞1 , is convergent to L, then any subse-

quence of {an} is also convergent to L.

Proof. Let {ni}∞i=1 be a sequence of positive integers such that {ani}∞i=1 forms a subsequence of
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{an}. Let ε > 0 be given. As {an} converges to L, there exists N ∈ N such that

|an − L| < ε, ∀ n ≥ N.

Choose M ∈ N such that ni ≥ N for i ≥M . Then

|ani − L| < ε, ∀ i ≥M.

Hence the proof. ///

Theorem 1.0.6. 1. If a sequence {an} converges to a. Then {|an|} converges to |a|.

2. If an ≥ 0 and an → a, then
{√

an
}
converges to

√
a.

Proof. Proof of (1) follows from the inequality

||a| − |b|| ≤ |a− b|, ∀a, b ∈ R.

(2) follows from the fact that if a 6= 0, then

|
√
an −

√
a| ≤ |an − a|

|√an +
√
a|
.

The case a = 0 is easy and is left as an exercise.

Theorem 1.0.7. If a sequence {an} converges to a, then

{
1

n

n∑
k=1

ak

}
also converges to a.

Proof. Proof is left as an exercise. ///

Next we study some fine properties of sequences that imply convergence/divergence.

Theorem 1.0.8. For any sequence {an} with an > 0

lim
n→∞

a1/nn = lim
n→∞

an+1

an

provided the limit on the right side exists.

Proof. Let ε > 0 be arbitrary. Suppose the second limit exists (say l), then there exists N ∈ N
such that

l − ε < an+1

an
< l + ε, ∀n ≥ N.

Taking n = N,N + 1, ....,m− 1 and multiplying we get

(l − ε)m−N <
am
aN

< (l + ε)m−N , ∀m ≥ N + 1

equivalently,

(l − ε)1−
N
ma

1
m
N < (am)

1
m < (l + ε)1−

N
ma

1
m
N , ∀m ≥ N + 1.
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Now the result follows from the fact that lim
m→∞

(l ± ε)1−N/ma1/mN = l ± ε. ///

Corollary 1.0.9. (i) If an > 0 and lim
n→∞

an+1

an
= l < 1, then lim

n→∞
an = 0.

(ii) If an > 0 and lim
n→∞

an+1

an
= l > 1, then an →∞.

Proof. If L < 1, then choose ε0 such that L+ ε0 < 1. Then for this ε0 there exists N0 such that

n ≥ N0 =⇒ an+1

an
< L+ ε0

Therefore from the hypothesis of (i)

n ≥ N0 =⇒ a
1
n
n < L+ ε0

Therefore an < (L+ ε0)
n → 0 as n→∞. A similar argument will imply the (ii). ///

Examples 1.0.10. (i) lim a1/n = 1, if a > 0 (ii) limnαxn = 0, if |x| < 1 and α ∈ R.
Solution: (i) Take an = a, then lim

n→∞

an+1

an
= 1.

(ii) If x 6= 0, take an = nαxn, then lim
n→∞

an+1

an
= lim

n→∞
(1 +

1

n
)α|x| = |x|.
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