Lecture 3

1 Sequences ctd..

Theorem 1.0.1 (Sandwich theorem for sequences). Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three sequences such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} a_n = L$ and $\lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Proof. Let $\epsilon > 0$ be given. As $\lim_{n \to \infty} a_n = L$, there exists $N_1 \in \mathbb{N}$ such that

$$n \ge N_1 \implies |a_n - L| < \epsilon. \tag{1.1}$$

Similarly as $\lim_{n \to \infty} c_n = L$, there exists $N_2 \in \mathbb{N}$

$$n \ge N_2 \implies |c_n - L| < \epsilon.$$
 (1.2)

///

Let $N = \max\{N_1, N_2\}$. Then, $L - \epsilon < a_n$ (from (1.1)) and $c_n \leq L + \epsilon$ (from (1.2)). Thus

$$L - \epsilon < a_n \le b_n \le c_n \le L + \epsilon$$

Thus $|b_n - L| < \epsilon$ for all $n \ge N$. Hence the proof.

Examples 1.0.2.

- (i) Consider the sequence $\left\{\frac{\cos n}{n}\right\}_{n=1}^{\infty}$. Then $\frac{-1}{n} \le \frac{\cos n}{n} \le \frac{1}{n}$. Hence by Sandwich theorem $\lim_{n \to \infty} \frac{\cos n}{n} = 0$.
- (ii) As $0 \leq \frac{1}{2^n} \leq \frac{1}{n}$ and $\frac{1}{n} \to 0$ as $n \to \infty$, $\frac{1}{2^n}$ also converges to 0 by Sandwich theorem.
- (iv) If b > 0, then $\lim_{n \to \infty} \sqrt[n]{b} = 1$.

First assume that b > 1. Let $a_n = b^{\frac{1}{n}} - 1$. As b > 1, $a_n > 0$ for all $n \in \mathbb{N}$. Further,

$$b = (1+a_n)^n \ge 1+na_n$$

Then $0 \le a_n \le \frac{b-1}{n}$. Thus $a_n \to 0$, i.e., $b^{\frac{1}{n}} \to 1$ as $n \to \infty$. Now if b < 1, then take $c = \frac{1}{b}$ and it is easy to show the result. ///

Examples 1.0.3.

(i) $\lim_{n \to \infty} \sqrt[n]{n} = 1.$ (ii) If x > 0 then $\lim_{n \to \infty} \frac{n^x}{(1+x)^n} = 0.$ (iii) If p > 0, then $\lim_{n \to \infty} \frac{\log(n)}{n^p} = 0.$ **Solution.** (i) Let $a_n = n^{\frac{1}{n}} - 1$. Then $0 \le a_n \le 1$ for all $n \in \mathbb{N}$. Further,

$$n = (1 + a_n)^n \ge \frac{n(n-1)}{2}a_n^2.$$

Thus $0 \le a_n \le \sqrt{\frac{2}{(n-1)}}$ $(n \ge 2)$. As $\sqrt{\frac{2}{(n-1)}} \to 0$ as $n \to \infty$, by Sandwich theorem, $a_n \to 0$, i.e., $n^{\frac{1}{n}} \to 1$ as $n \to \infty$.

(ii) Let k be an integer such that k > x, k > 0. Then for n > 2k,

$$(1+x)^n > {}_nC_k x^k = \frac{n!}{k!(n-k)!} x^k = \frac{x^k}{k!} \prod_{i=1}^k [n-i+1] > \frac{n^k}{2^k} \frac{x^k}{k!}.$$

Hence,

$$0 < \frac{n^x}{(1+x)^n} < \frac{2^k k!}{x^k} n^{x-k}.$$

As x - k < 0, $n^{x-k} \to 0$. Thus $\frac{n^x}{(1+x)^n} \to 0$ as $n \to \infty$.

(iii) By Archimedian property, for any $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that

$$m \le n^p < (m+1)$$

or equivalently

$$m^{\frac{1}{p}} \le n < (m+1)^{\frac{1}{p}}.$$

Therefore,

$$\frac{1}{n^p} < \frac{\log n}{n^p} < \frac{1}{p} \frac{\log(m+1)}{m}.$$

Also

$$\frac{1}{p} \frac{\log(m+1)}{m} = \frac{1}{p} \frac{\log(m+1)}{m+1} \frac{m+1}{m}.$$

So it is enough to show $\frac{\log n}{n} \to 0$ as $n \to \infty$. for this, let us start with $\epsilon > 0$. From the previous problem we have $n^{\frac{1}{n}} \to 1$ as $n \to \infty$. This implies there exists $N \in \mathbb{N}$ such that

$$n^{\frac{1}{n}} \in (e^{-\epsilon}, e^{\epsilon}), \ \forall \ n \ge N \ (\text{equivalently}) \ \frac{\log n}{n} \in (-\epsilon, \epsilon), \ \forall \ n \ge N.$$

 $\rightarrow 0.$ ///

That is, $\frac{\log n}{n} \to 0$.

Definition 1.0.4. Subsequence: Let $\{a_n\}$ be a sequence and $\{n_1, n_2, ...\}$ be a sequence of positive integers such that i > j implies $n_i > n_j$. Then the sequence $\{a_{n_i}\}_{i=1}^{\infty}$ is called a subsequence of $\{a_n\}$.

Theorem 1.0.5. If the sequence of real numbers $\{a_n\}_1^\infty$, is convergent to L, then any subsequence of $\{a_n\}$ is also convergent to L.

Proof. Let $\{n_i\}_{i=1}^{\infty}$ be a sequence of positive integers such that $\{a_{n_i}\}_{i=1}^{\infty}$ forms a subsequence of

 $\{a_n\}$. Let $\epsilon > 0$ be given. As $\{a_n\}$ converges to L, there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon, \ \forall \ n \ge N.$$

Choose $M \in \mathbb{N}$ such that $n_i \geq N$ for $i \geq M$. Then

$$|a_{n_i} - L| < \epsilon, \ \forall \ i \ge M.$$

Hence the proof.

Theorem 1.0.6. 1. If a sequence $\{a_n\}$ converges to a. Then $\{|a_n|\}$ converges to |a|.

2. If
$$a_n \ge 0$$
 and $a_n \to a$, then $\{\sqrt{a_n}\}$ converges to \sqrt{a} .

Proof. Proof of (1) follows from the inequality

$$||a| - |b|| \le |a - b|, \quad \forall a, b \in \mathbb{R}.$$

(2) follows from the fact that if $a \neq 0$, then

$$|\sqrt{a_n} - \sqrt{a}| \le \frac{|a_n - a|}{|\sqrt{a_n} + \sqrt{a}|}.$$

The case a = 0 is easy and is left as an exercise.

Theorem 1.0.7. If a sequence $\{a_n\}$ converges to a, then $\left\{\frac{1}{n}\sum_{k=1}^n a_k\right\}$ also converges to a.

Proof. Proof is left as an exercise.

Next we study some fine properties of sequences that imply convergence/divergence.

Theorem 1.0.8. For any sequence $\{a_n\}$ with $a_n > 0$

$$\lim_{n \to \infty} a_n^{1/n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

provided the limit on the right side exists.

Proof. Let $\epsilon > 0$ be arbitrary. Suppose the second limit exists (say l), then there exists $N \in \mathbb{N}$ such that

$$l-\epsilon < \frac{a_{n+1}}{a_n} < l+\epsilon, \ \forall n \ge N.$$

Taking n = N, N + 1, ..., m - 1 and multiplying we get

$$(l-\epsilon)^{m-N} < \frac{a_m}{a_N} < (l+\epsilon)^{m-N}, \quad \forall m \ge N+1$$

equivalently,

$$(l-\epsilon)^{1-\frac{N}{m}}a_N^{\frac{1}{m}} < (a_m)^{\frac{1}{m}} < (l+\epsilon)^{1-\frac{N}{m}}a_N^{\frac{1}{m}}, \quad \forall m \ge N+1.$$

///

///

Now the result follows from the fact that $\lim_{m \to \infty} (l \pm \epsilon)^{1-N/m} a_N^{1/m} = l \pm \epsilon.$ ///

Corollary 1.0.9. (i) If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l < 1$, then $\lim_{n \to \infty} a_n = 0$.

(ii) If $a_n > 0$ and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l > 1$, then $a_n \to \infty$.

Proof. If L < 1, then choose ϵ_0 such that $L + \epsilon_0 < 1$. Then for this ϵ_0 there exists N_0 such that

$$n \ge N_0 \implies \frac{a_{n+1}}{a_n} < L + \epsilon_0$$

Therefore from the hypothesis of (i)

$$n \ge N_0 \implies a_n^{\frac{1}{n}} < L + \epsilon_0$$

Therefore $a_n < (L + \epsilon_0)^n \to 0$ as $n \to \infty$. A similar argument will imply the (ii). ///

Examples 1.0.10. (i) $\lim a^{1/n} = 1$, if a > 0 (ii) $\lim n^{\alpha} x^n = 0$, if |x| < 1 and $\alpha \in \mathbb{R}$. **Solution:** (i) Take $a_n = a$, then $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$. (ii) If $x \neq 0$, take $a_n = n^{\alpha} x^n$, then $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} (1 + \frac{1}{n})^{\alpha} |x| = |x|$.