Lecture 30

Definition 1.0.1. Riemann sum: For a partition P = {x1,x9, -+ ,x,}, the Riemann sum
n

S(P, f) is defined as S(P, f) = z:f(&)(acz —xi—1), & € [xim1, @il
i=1

Then it is easy to show the following

Remark 1.0.1. If m = [inlf] f(x), and M = sup f(z). Then
@s [a7b]

m(b—a) < LP,f <SP, f) <U(P, f) < M(b—a).

In fact, one has the following Darboux theorem:

Theorem 1.0.2. Let f f: [a,b] — IR be a Riemann integrable function. Then for a given € > 0,

there exists 6 > 0 such that for any partition P with || P|| := ax |z — xi—1| < 6, we have
i<n

b
|S(P, f) —/ f(z)dz| < e.

Corollary 1.0.3. If f € R[a,b], then for any sequence of partitions {P,} with ||P,|| — 0, we
have L(Py, f) — f(f f(x)dz and U(P,, f) — fabf(x)dac

Remark 1.0.2. From the above theorem, we note that if there exists a sequence of partition
{P,} such that |P,|| = 0 and U(P,, f) — L(Pp, f) # 0 as n — oo, then f is not integrable.

Problem 1.0.1. Show that the function f:[0,1] — IR

1+ z€Q
flz) =
l—2z z4&Q
s not integrable.
Solution: Consider the sequence of partitions P, = {0, %, %, wory =1}, Then
1.1 2.1 n, 1
U(P, =1+4+—-)— 14+—-)—+ ... 14+ —-)—
(P )= (4 )14 (14 )2 4 (1421

1
=14+ (1 +2+..
+ (1424 +n)

3
—>§ asn — 00

Now using the fact that infimum of f on [0, %] isl1— %, though it is not achieved, we get

1.1 2.1 n, 1l 1



Hence f is not integrable.
Theorem 1.0.4. Suppose f is a continuous function on |a,b]. Then f € Rla,b].

Proof. Let ¢ > 0. By the Theorem on neccessary and sufficient condition for integrability , we

need to show the existence of a partition P such that
U(P7f>_L(P’f) <€

Since f is continuous on [a, b, this implies f is uniformly continuous on [a,b]. Therefore there
exists 0 > 0 such that

[z -yl <d=[f(z) - fY)l < (1.1)

(b—a)
Now choose a partition P such that

sup |xg — xp_1| < 9. (1.2)
1<k<n

As f is continuous on [a, b] there exist z ,x" € (xp_1, ) such that m;, = z,) and M, = ).
k' %k k k

By (1.2), |z, — x,| < § and hence by (1.1) | f(z}) — f(z,)| < ay- Thus

n

UP, f—L(P, f) = (M —mg)(xx — z4-1)

k=1
= (f(zy) = fl@p) (@ — 24p1)

k=1
< 5=a) ;(% —Tp-1) = T a)(b—a) =€

Therefore f € Rla,b.

Integrability and discontinuous functions:

We study the effect of discontinuity on integrability of a function f(x).

Example 1.0.5. Consider the following function f :[0,1] — R.

1, z#41
f(z) = .
0, xr = 5
Clearly U(P, f) = 1 for any partition P. We notice that L(P, f) will be less than 1. We
can try to isolate the point x = % i a subinterval of small length. Consider the partition
1 1
P.={0,3— 5,2+ 5,1}, Then L(P., f) = (5 — %) +(1- 5 %) = 1 —e. Therefore, for given

e >0 we have U(P., f) — L(P,, f) = €. Hence f is integrable.



In fact we have the following theorem.

Theorem 1.0.6. Suppose f : [a,b] — R be a bounded function which has finitely many discon-
tinuities. Then f € Rla,b].

Proof follows by constructing suitable partition with sub-intervals of sufficiently small length

around the discontinuities as observed in the above example.Next we have the following theorem

Theorem 1.0.7. Let f be a monotonically decreasing function on [a,b], then f is integrable.

Proof. Let P, = {xg,z1, -+ ,zn} be a partition of [a,b] with xp — z5_1 = EFT“. Since f is
monotone, it is bounded (exercise!). Also my = inf f(z) = f(zx) and My = sup f(x) =
Tk—1,Tk [zr—1,2k]

f(zk—1). Then

- b—a 1
U(Po, f) = L(Pa, ) = D _[f (k1) = f@p)]—— = ~(b = a)(f(0) = f(a)) = 0
k=1
as n — oo. Therefore by the sequential characterization of integrability, f € R]a, b]. ///

1.1 Properties of Definite Integral:
b b
Property 1: For a constant ¢ € R, / cf(z)de = c/ f(z)dx.

Property 2: Let fi1, fo € Rla,b] . Then

/ab(fl + fo)(z)dx = /ab fi(x)dx + /ab fo(z)dz.

Easy to show that for any partition P,

UP, f1+ f2) SU(P, f1) + U(P, f2) (1.3)
L(P7f1+f2)ZL(P7f1)+L(P7f2) (14)

Since fi, fo are integrable, for € > 0 there exists P;, P> such that

U(Pr, f1) — L(Py, f1) <e
U(Pz, fa) — L(Py, f2) <€

Now taking P = P; U P, if necessary, we assume

U(Pvfl)*L(Pafl)<€’ U(Pvfl)fL(P7f2)<€ (15)



Therefore, using (1.3)-(1.5) we get

U(Pvf1+f2)_L(Pvf1+f2) < U(Pvfl)+U(P’f2)_L(Pvf2)_L(P7f2)
< e+ €e=2e

Hence, f1 + f2 is integrable.

n

b
/ (fi+ f2)(@)dx = lim S(P, f1+ f2) = lim > (fi + f2) (&) (2x — 2-1)

k=1

= lim Zfl &) (2k — x—1) + lim Zfz &) (@ — Tp—1)

=/f1 dw+/fz

Property 3: If f(x) < g(x) on [a,b]. Then

[ e < [ gtwrae

First we note that m < f(z) < M implies m(b — a) / f(z) < M(b—a). Then Property 1

and f(x) < g(z) imply / - Pz0m / r)dz > / fa

b
Property 4: If f € Rla,b] then |f| € R[a,b] and |/ f(z)dx| < / |fl(x)dz. Let m, =
inf _|f|(x) and M, = sup |f|(z). Then we claim

Tk—1,Tk Tp_1,Tk]
Claim: My — my > M,; — m;c
Proof of Claim: Note that for x,y € [z;—1, 2],

[f1(2) = 1fI(y) < 1f (@) = f(y) < Mi(f) — mi(f).-

Now take supremum over x and infimum over y, to conclude the claim.

Now since f is integrable, there exists partitions {P,} such that lim U(P,, f) — L(P,, f) = 0.
n—oo

i.e.,
n
lim » (M, —my)(xp —xp—1) = 0.



This implies

n

Jim kz_l(Mk —my)(zk — zp—1) = 0.

Hence |f| is integrable. Note that —|f| < f <|f|. Thus by Property 3 we get

-/ ()i < / o) < / ) = | / " fla)da] < / i)



