
Lecture 30

Definition 1.0.1. Riemann sum: For a partition P = {x1, x2, · · · , xn}, the Riemann sum

S(P, f) is defined as S(P, f) =
n∑
i=1

f(ξi)(xi − xi−1), ξi ∈ [xi−1, xi].

Then it is easy to show the following

Remark 1.0.1. If m = inf
[a,b]

f(x), and M = sup
[a,b]

f(x). Then

m(b− a) ≤ L(P, f ≤ S(P, f) ≤ U(P, f) ≤M(b− a).

In fact, one has the following Darboux theorem:

Theorem 1.0.2. Let f f : [a, b]→ IR be a Riemann integrable function. Then for a given ε > 0,

there exists δ > 0 such that for any partition P with ‖P‖ := max
1≤i≤n

|xi − xi−1| < δ, we have

|S(P, f)−
∫ b

a
f(x)dx| < ε.

Corollary 1.0.3. If f ∈ R[a, b], then for any sequence of partitions {Pn} with ‖Pn‖ → 0, we

have L(Pn, f)→
∫ b
a f(x)dx and U(Pn, f)→

∫ b
a f(x)dx.

Remark 1.0.2. From the above theorem, we note that if there exists a sequence of partition

{Pn} such that ‖Pn‖ → 0 and U(Pn, f)− L(Pn, f) 6→ 0 as n→∞, then f is not integrable.

Problem 1.0.1. Show that the function f : [0, 1]→ IR

f(x) =

1 + x x ∈ Q

1− x x 6∈ Q

is not integrable.

Solution: Consider the sequence of partitions Pn = {0, 1n ,
2
n , ....,

n
n = 1}. Then

U(Pn, f) = (1 +
1

n
)
1

n
+ (1 +

2

n
)
1

n
+ ....+ (1 +

n

n
)
1

n

= 1 +
1

n2
(1 + 2 + ...+ n)

→ 3

2
as n→∞

Now using the fact that infimum of f on [0, 1n ] is 1− 1
n , though it is not achieved, we get

L(Pn, f) = (1− 1

n
)
1

n
+ (1− 2

n
)
1

n
+ ....+ (1− n

n
)
1

n
→ 1

2
as n→∞.

1



Hence f is not integrable.

Theorem 1.0.4. Suppose f is a continuous function on [a, b]. Then f ∈ R[a, b].

Proof. Let ε > 0. By the Theorem on neccessary and sufficient condition for integrability , we

need to show the existence of a partition P such that

U(P, f)− L(P, f) < ε.

Since f is continuous on [a, b], this implies f is uniformly continuous on [a, b]. Therefore there

exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε

(b− a)
. (1.1)

Now choose a partition P such that

sup
1≤k≤n

|xk − xk−1| < δ. (1.2)

As f is continuous on [a, b] there exist x′k, x
′′
k ∈ (xk−1, xk) such that mk = f(x

′
k) and Mk = f(x

′′
k).

By (1.2), |x′k − x
′′
k | < δ and hence by (1.1) |f(x

′′
k)− f(x

′
k)| <

ε
(b−a) . Thus

U(P, f − L(P, f) =
n∑
k=1

(Mk −mk)(xk − xk−1)

=
n∑
k=1

(f(x
′′
k)− f(x

′
k))(xk − xk−1)

≤ ε

(b− a)

n∑
k=1

(xk − xk−1) =
ε

(b− a)
(b− a) = ε.

Therefore f ∈ R[a, b].

Integrability and discontinuous functions:

We study the effect of discontinuity on integrability of a function f(x).

Example 1.0.5. Consider the following function f : [0, 1]→ R.

f(x) =

1, x 6= 1
2

0, x = 1
2

Clearly U(P, f) = 1 for any partition P . We notice that L(P, f) will be less than 1. We

can try to isolate the point x = 1
2 in a subinterval of small length. Consider the partition

Pε = {0, 12 −
ε
2 ,

1
2 + ε

2 , 1}. Then L(Pε, f) = (
1

2
− ε

2
) + (1− 1

2
− ε

2
) = 1− ε. Therefore, for given

ε > 0 we have U(Pε, f)− L(Pε, f) = ε. Hence f is integrable.
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In fact we have the following theorem.

Theorem 1.0.6. Suppose f : [a, b]→ R be a bounded function which has finitely many discon-

tinuities. Then f ∈ R[a, b].

Proof follows by constructing suitable partition with sub-intervals of sufficiently small length

around the discontinuities as observed in the above example.Next we have the following theorem

Theorem 1.0.7. Let f be a monotonically decreasing function on [a, b], then f is integrable.

Proof. Let Pn = {x0, x1, · · · , xn} be a partition of [a, b] with xk − xk−1 = b−a
n . Since f is

monotone, it is bounded (exercise!). Also mk = inf
[xk−1,xk]

f(x) = f(xk) and Mk = sup
[xk−1,xk]

f(x) =

f(xk−1). Then

U(Pn, f)− L(Pn, f) =
n∑
k=1

[f(xk−1)− f(xk)]
b− a
n

=
1

n
(b− a)(f(b)− f(a))→ 0

as n→∞. Therefore by the sequential characterization of integrability, f ∈ R[a, b]. ///

1.1 Properties of Definite Integral:

Property 1: For a constant c ∈ R,

∫ b

a
cf(x)dx = c

∫ b

a
f(x)dx.

Property 2: Let f1, f2 ∈ R[a, b] . Then∫ b

a
(f1 + f2)(x)dx =

∫ b

a
f1(x)dx+

∫ b

a
f2(x)dx.

Easy to show that for any partition P ,

U(P, f1 + f2) ≤ U(P, f1) + U(P, f2) (1.3)

L(P, f1 + f2) ≥ L(P, f1) + L(P, f2) (1.4)

Since f1, f2 are integrable, for ε > 0 there exists P1, P2 such that

U(P1, f1)− L(P1, f1) < ε

U(P2, f2)− L(P2, f2) < ε

Now taking P = P1 ∪ P2, if necessary, we assume

U(P, f1)− L(P, f1) < ε, U(P, f1)− L(P, f2) < ε (1.5)
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Therefore, using (1.3)-(1.5) we get

U(P, f1 + f2)− L(P, f1 + f2) ≤ U(P, f1) + U(P, f2)− L(P, f2)− L(P, f2)

< ε+ ε = 2ε.

Hence, f1 + f2 is integrable.

∫ b

a
(f1 + f2)(x)dx = lim

n→∞
S(Pn, f1 + f2) = lim

n→∞

n∑
k=1

(f1 + f2)(ξk)(xk − xk−1)

= lim
n→∞

n∑
k=1

f1(ξk)(xk − xk−1) + lim
n→∞

n∑
k=1

f2(ξk)(xk − xk−1)

=

∫ b

a
f1(x)dx+

∫ b

a
f2(x)dx

Property 3: If f(x) ≤ g(x) on [a, b]. Then∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx.

First we note that m ≤ f(x) ≤ M implies m(b − a) ≤
∫ b

a
f(x) ≤ M(b − a). Then Property 1

and f(x) ≤ g(x) imply

∫ b

a
(g − f) ≥ 0 or

∫ b

a
g(x)dx ≥

∫ b

a
f(x)dx.

Property 4: If f ∈ R[a, b] then |f | ∈ R[a, b] and |
∫ b

a
f(x)dx| ≤

∫ b

a
|f |(x)dx. Let m

′
k =

inf
[xk−1,xk]

|f |(x) and M
′
k = sup

[xk−1,xk]
|f |(x). Then we claim

Claim: Mk −mk ≥M
′
k −m

′
k

Proof of Claim: Note that for x, y ∈ [xi−1, xi],

|f |(x)− |f |(y) ≤ |f(x)− f(y)| ≤Mi(f)−mi(f).

Now take supremum over x and infimum over y, to conclude the claim.

Now since f is integrable, there exists partitions {Pn} such that lim
n→∞

U(Pn, f)− L(Pn, f) = 0.

i.e.,

lim
n→∞

n∑
k=1

(Mk −mk)(xk − xk−1) = 0.
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This implies

lim
n→∞

n∑
k=1

(M
′
k −m

′
k)(xk − xk−1) = 0.

Hence |f | is integrable. Note that −|f | ≤ f ≤ |f |. Thus by Property 3 we get

−
∫ b

a
|f |(x)dx ≤

∫ b

a
f(x)dx ≤

∫ b

a
|f |(x)dx =⇒ |

∫ b

a
f(x)dx| ≤

∫ b

a
|f |(x)dx.
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