
Lecture 31

Domain decompsition property

Let f be bounded on [a, b] and let c ∈ (a, b). Then f is integrable on [a, b] if and only if f is

integrable on [a, c] and [c, b]. In this cases∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx.

Let f be integrable on [a, b]. For ϵ > 0, there exists partition P such that

U(P, f)− L(P, f) < ϵ. (1.1)

With out loss of generality we can assume that P contain c. (otherwise we can refine P by adding

c and the difference will be closer than before) Let P1 = P ∩ [a, c] and P2 = P ∩ [c, b]. Then P1

and P2 are partitions on [a, c] and [c, b] respectively. Also by (1.1), U(P1, f)− L(P1, f) < ϵ and

U(P2, f) − L(P2, f) < ϵ. This implies f is integrable on [a, c] and [c, b]. Conversely, suppose f

is integrable on [a, c] and [c, b]. Then for ϵ > 0, there exists partitions P1 of [a, c] and P2 of [c, b]

such that U(P1, f) − L(P1, f) <
ϵ
2 and U(P2, f) − L(P2, f) <

ϵ
2 . Now take P = P1 ∪ P2. Then

U(P, f)− L(P, f) < ϵ. So by Remark ??, there exists {Pn} such that∫ b

a
f(x)dx = lim

n→∞
S(Pn, f) = lim

n→∞

∑
Pn

f(ξk)(xk−1 − xk)

=
∑

Pn∩[a,c]

f(ξk)(xk − xk−1) +
∑

Pn∩[c,b]

f(ξk)(xk − xk−1)

→
∫ c

a
f(x)dx+

∫ b

c
f(x)dx

Example 1.0.1. Consider the following function f : [0, 1] → R.

f(x) =

1 x = 1
n for some n ∈ N, n ≥ 2

0 x ̸= 1
n

Solution: Let ϵ > 0. Choose N such that
1

N
<

ϵ

2
. Note that f(x) has only finitely many

discontinuities in [ 1N , 1] say ξ1, ξ2, ..., ξr. Define the partition Pϵ as

Pϵ = {0, 1

N
, ξ1 −

ϵ

4r
, ξ1 +

ϵ

4r
, ..., ξr −

ϵ

4r
, ξr +

ϵ

4r
, 1}.
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Since ξr is the last discontinuity, f = 0 in [ξr +
ϵ
4r , 1]. Now L(Pϵ, f) = 0 and

U(Pϵ, f) = 1 · 1

N
+

ϵ

2r
+

ϵ

2r
+ ...+

ϵ

2r
+ 0 · (1− ξr −

ϵ

4r
)

=
1

N
+

ϵ

2
< ϵ.

Therefore f is Riemann integrable. ///

Example 1.0.2. Consider the following function f : [0, 1] → R.

f(x) =

0 x ∈ Q

sin 1
x x ̸∈ Q

Solution: We will show that f is not integrable on a sub interval of [0, 1]. Consider the f on

the subinterval I1 = [ 2π , 1]. Clearly L(P, f) = 0 for any partition P of I1 because f(x) ≥ 0 in

the sub interval [ 2π , 1]. Let Mk be the Supremum of f on subintervals [xk−1, xk] of [
2
π , 1]. Also

the minimum of M ′
ks is sin 1. Therefore,

U(P, f) =
n∑

k=1

f(ξk)(xk − xk−1) > (1− 2

π
) sin 1.

Hence U(P, f) − L(P, f) can not be made less than ϵ for any ϵ < (1 − 2
π ) sin 1. Therefore f is

not Riemann integrable. ///

The discussion above suggests that if a function has countably many discontinuities then it is

integrable. In fact, we have the following:

Definition 1.0.3. (Zero set)

A subset A ⊂ R is said to be zero set if for every ϵ > 0, there exists countable number of intervals

Ii such that A ⊂ ∪iIi and
∑

i |Ii| < ϵ.

So it is clear that any finite set is a zero set. Moreover any countable set can always be

covered by intervals of length ϵ/2i for i ∈ N. Moreover any countable union of zero sets is also

a zero set.

Theorem 1.0.4. (Riemann-Lebesgue theorem)

A bounded function f : [a, b] → R is Riemann integrable if and only if its set of discontinuous

points is a zero set.

Mean Value Theorem

Theorem 1.0.5. Let f(x) be a continuous function on [a, b]. Then there exists ξ ∈ [a, b] such

that ∫ b

a
f(x)dx = f(ξ)(b− a).
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Proof. Let m = min
x∈[a,b]

f(x) and M = max
x∈[a,b]

f(x). Then by Property 3, we have

m(b− a) ≤
∫ b

a
f ≤ M(b− a),

i.e.

m ≤ 1

(b− a)

∫ b

a
f ≤ M.

Now since f(x) is continuous, it attains all values between it’s maximum and minimum values.

Therefore there exists ξ ∈ [a, b] such that f(ξ) =
1

(b− a)

∫ b

a
f . ///

Theorem 1.0.6. Fundamental Theorem: Let f(x) be a continuous function on [a, b] and let

ϕ(x) =

∫ x

a
f(s)ds. Then ϕ is differentiable and ϕ

′
(x) = f(x).

Proof. As
ϕ(x+∆x)− ϕ(x)

∆x
=

1

∆x

∫ x+∆x

x
f(s)ds, By Mean value theorem, there exists ξ ∈

[x, x+∆x] such that ∫ x+∆x

x
f(s)ds = ∆xf(ξ).

Therefore lim
∆x→0

ϕ(x+∆x)− ϕ(x)

∆x
= lim

∆x→0
f(ξ). Since f is continuous, lim

∆x→0
f(ξ) = f( lim

∆x→0
ξ) =

f(x). Thus ϕ
′
(x) = f(x). ///

Remark 1.0.1. If f is integrable then ϕ is continuous.

Now we ask the following important

Question: It is always not true that
∫ b
a f ′(x)dx = f(b)− f(a).?

The answer is NO. For example, take f(x) = x2 sin 1
x for x ̸= 0 and f(0) = 0. Then f is

differentiable on [0, 1]. Here the derivatives at the end points are the left/right derivatives. It is

easy to check that f ′(x) = 2x sin 1
x2 − 2

x cos
1
x2 for x ∈ (0, 1) and f ′(0) = 0. Therefore f ′ is not

bounded and so not integrable.

Second Fundamental Theorem

Definition 1.0.7. A function F (x) is called anti-derivative of f(x), if F ′(x) = f(x).

Theorem 1.0.8. Suppose F (x) is an anti- derivative of continuous function f(x). Then∫ b
a f(x)dx = F (b)− F (a).
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Proof. By First fundamental theorem, we have

d

dx

∫ x

a
f(s)ds = f(x).

Also F ′(x) = f(x). Hence
∫ x
a f(s)ds = F (x) + c for some constant c ∈ R. Taking x = a, we get

c = −F (a). Now taking x = b we get
∫ b
a f(x)dx = F (b)− F (a). ///

Moreover, one can prove the following more general theorem:

Theorem 1.0.9.

If f is integrable and if there exists F such that F ′ = f , then
∫ b
a f(x)dx = F (b)− F (a).

Proof. Proof follows from the neccessary and sufficient condition. Interested students may see

the text book.

Problem 1.0.1. lim
x→0

1

x

∫ x

0
sin(t2)dt = 0.

Change of Variable formula

Theorem 1.0.10. Let u(t), u′(t) be continuous on [a, b] and f is a continuous function on the

interval u([a, b]). Then ∫ b

a
f(u(x))u′(x)dx =

∫ u(b)

u(a)
f(y)dy.

Proof. Note that f([a, b]) is a closed and bounded interval. Since f is continuous, it has primitive

F . i.e., F (x) =
∫ x
a f(t)dt. Then by chain rule of differentiation, d

dtF (u(t)) = F ′(u(t))u′(t). i.e.,

F (u(t)) is the primitive of f(u(t))u′(t) and by Newton-Leibnitz formula, we get∫ b

a
f(u(t))u′(t)dt = F (u(b))− F (u(a)).

On the other hand, for any two points in u([a, b]), we have (by Newton-Leibnitz formula)∫ B

A
f(y)dy = F (B)− F (A).

Hence B = u(b) and A = u(a).

Problem 1.0.2. Evaluate
∫ 1
0 x

√
1 + x2dx.

Taking u = 1 + x2, we get u′ = 2x and u(0) = 1, u(1) = 2. Then∫ 1

0
x
√

1 + x2dx =
1

2

∫ 2

1

√
udu =

1

3
u

2
3
2
u=1 =

1

3
(2

2
3 − 1).
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