Lecture 31

Domain decompsition property
Let f be bounded on [a,b] and let ¢ € (a,b). Then f is integrable on [a,b] if and only if f is

integrable on [a, c] and [c, b]. In this cases

/abf(m)dx = /acf(a;)dac + /be(m)dx.

Let f be integrable on [a,b]. For € > 0, there exists partition P such that

With out loss of generality we can assume that P contain c. (otherwise we can refine P by adding
¢ and the difference will be closer than before) Let P, = P N [a,c] and P, = PN c,b]. Then P;
and Ps are partitions on [a, c] and [c, b] respectively. Also by (1.1), U(Py, f) — L(Py, f) < € and
U(Py, f) — L(Pa, f) < e. This implies f is integrable on [a, c] and [c, b]. Conversely, suppose f
is integrable on [a, c] and [c, b]. Then for € > 0, there exists partitions P; of [a, ] and P of [c, b]
such that U(P1, f) — L(P1, f) < § and U(Py, f) — L(P», f) < §. Now take P = Py U P,. Then
U(P, f) — L(P, f) < e. So by Remark ??, there exists {P,} such that
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Example 1.0.1. Consider the following function f :[0,1] — R.
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Solution: Let ¢ > 0. Choose N such that N < % Note that f(x) has only finitely many

discontinuities in [%, 1] say &1,&2, ..., & . Define the partition P, as
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Since &, is the last discontinuity, f = 0 in [§, + 4+, 1]. Now L(F, f) = 0 and

1 € € € €
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Therefore f is Riemann integrable. /]/

Example 1.0.2. Consider the following function f :[0,1] — R.
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Solution: We will show that f is not integrable on a sub interval of [0,1]. Consider the f on
the subinterval I; = [%, 1]. Clearly L(P, f) = 0 for any partition P of I; because f(z) > 0 in
the sub interval [2,1]. Let M}, be the Supremum of f on subintervals [z;_1, 2] of [2,1]. Also

the minimum of M, I’CS is sin 1. Therefore,

UP, 1) = S F(€) (o —x1) > (1= 2)sin .

™
k=1

Hence U(P, f) — L(P, f) can not be made less than € for any e < (1 — 2)sin1. Therefore f is
not Riemann integrable. ///
The discussion above suggests that if a function has countably many discontinuities then it is

integrable. In fact, we have the following;:

Definition 1.0.3. (Zero set)
A subset A C R is said to be zero set if for every € > 0, there exists countable number of intervals
I; such that A C Uil; and ), |I;| < e.

So it is clear that any finite set is a zero set. Moreover any countable set can always be
covered by intervals of length €/2! for i € N. Moreover any countable union of zero sets is also

a zero set.

Theorem 1.0.4. (Riemann-Lebesgue theorem)
A bounded function f : [a,b] — R is Riemann integrable if and only if its set of discontinuous

points 1S a zero set.
Mean Value Theorem

Theorem 1.0.5. Let f(x) be a continuous function on [a,b]. Then there exists & € [a,b] such
that

b
/ f(@)de = F()(b— a).
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Proof. Let m = min f(x) and M = max f(z). Then by Property 3, we have
z€|a,b| z€[a,b]

b
m(b—a,)g/ f< Mb-a),

< (bfa)/abeM.

i.e.

m <

Now since f(x) is continuous, it attains all values between it’s maximum and minimum values.

Therefore there exists £ € [a, b] such that f( / f ///

Theorem 1.0.6. Fundamental Theorem: Let f(x) be a continuous function on [a,b] and let
€T

= / f(s)ds. Then ¢ is differentiable and ¢ (z) = f(x).

Ax) — 1 z+Ax
Proof. As o+ A:Ea)t o) = Ax/ f(s)ds, By Mean value theorem, there exists £ €

[z, z + Az] such that
o+ Az
[ ses=aapo).

oz + Az) — o(a) o | B
Therefore AI;:IEO A = Ahgo f(&). Since f is continuous, Alirgof(f) = f(Alglggo €)=

f(x). Thus ¢'(z) = f(x). /11

Remark 1.0.1. If f is integrable then ¢ is continuous.

Now we ask the following important

Question: It is always not true that f f(x)dx = f(b) — f(a).?

The answer is NO. For example, take f(z) = = s1n% for x # 0 and f(0) = 0. Then f is
differentiable on [0, 1]. Here the derivatives at the end points are the left /right derivatives. It is
easy to check that f/(z) = 2xsin -y — 2 cos 25 for z € (0,1) and f’(0) = 0. Therefore f’ is not

bounded and so not integrable.

Second Fundamental Theorem
Definition 1.0.7. A function F(z) is called anti-derivative of f(z), if F'(x) = f(x).

Theorem 1.0.8. Suppose F(x) is an anti- derivative of continuous function f(x). Then

Ji f(z)dz = F(b) = F(a).



Proof. By First fundamental theorem, we have

= / " f(s)ds = ().

Also F'(z) = f(x). Hence [ f(s)ds = F(z) + c for some constant ¢ € R. Taking = = a, we get
¢ = —F(a). Now taking z = b we get [* f(z)de = F(b) — F(a). ///

Moreover, one can prove the following more general theorem:
Theorem 1.0.9.
If f is integrable and if there exists F' such that F' = f, then f f(z F(b) — F(a).

Proof. Proof follows from the neccessary and sufficient condition. Interested students may see
the text book.
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Problem 1.0.1. lim — [ sin(¢?)dt = 0.
z=0T Jo

Change of Variable formula

Theorem 1.0.10. Let u(t),u'(t) be continuous on [a,b] and f is a continuous function on the

interval u([a,b]). Then
/f d:v—/U(b)f(y)dy
u(a) '

Proof. Note that f([a,b]) is a closed and bounded interval. Since f is continuous, it has primitive
F. ie., F(z) = [7 f(t)dt. Then by chain rule of differentiation, 4 F(u(t)) = F'(u(t))u/ (). ie.,
F(u(t)) is the primitive of f(u(t))u'(t) and by Newton-Leibnitz formula, we get

b
/ flu@®)u' (t)dt = F(u(b)) = F(u(a)).
On the other hand, for any two points in u([a, b]), we have (by Newton-Leibnitz formula)
B
|, fay = F(B) - Fa)

Hence B = u(b) and A = u(a).

Problem 1.0.2. FEvaluate fol V1 + 22dx.
Taking u =1+ 22, we get v’ = 2z and u(0) = 1,u(1) = 2. Then

/mmdm— /fdu—




