Lecture 31

Domain decompsition property

Let f be bounded on [a, b] and let $c \in (a, b)$. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and [c, b]. In this cases

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

Let f be integrable on [a, b]. For $\epsilon > 0$, there exists partition P such that

$$U(P,f) - L(P,f) < \epsilon. \tag{1.1}$$

With out loss of generality we can assume that P contain c. (otherwise we can refine P by adding c and the difference will be closer than before) Let $P_1 = P \cap [a, c]$ and $P_2 = P \cap [c, b]$. Then P_1 and P_2 are partitions on [a, c] and [c, b] respectively. Also by (1.1), $U(P_1, f) - L(P_1, f) < \epsilon$ and $U(P_2, f) - L(P_2, f) < \epsilon$. This implies f is integrable on [a, c] and [c, b]. Conversely, suppose f is integrable on [a, c] and [c, b]. Then for $\epsilon > 0$, there exists partitions P_1 of [a, c] and P_2 of [c, b] such that $U(P_1, f) - L(P_1, f) < \frac{\epsilon}{2}$ and $U(P_2, f) - L(P_2, f) < \epsilon$. So by Remark ??, there exists $\{P_n\}$ such that

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} S(P_{n}, f) = \lim_{n \to \infty} \sum_{P_{n}} f(\xi_{k})(x_{k-1} - x_{k})$$
$$= \sum_{P_{n} \cap [a,c]} f(\xi_{k})(x_{k} - x_{k-1}) + \sum_{P_{n} \cap [c,b]} f(\xi_{k})(x_{k} - x_{k-1})$$
$$\to \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Example 1.0.1. Consider the following function $f : [0,1] \to \mathbb{R}$.

$$f(x) = \begin{cases} 1 & x = \frac{1}{n} \text{ for some } n \in \mathbb{N}, n \ge 2\\ 0 & x \neq \frac{1}{n} \end{cases}$$

Solution: Let $\epsilon > 0$. Choose N such that $\frac{1}{N} < \frac{\epsilon}{2}$. Note that f(x) has only finitely many discontinuities in $[\frac{1}{N}, 1]$ say $\xi_1, \xi_2, ..., \xi_r$. Define the partition P_{ϵ} as

$$P_{\epsilon} = \{0, \frac{1}{N}, \xi_1 - \frac{\epsilon}{4r}, \xi_1 + \frac{\epsilon}{4r}, ..., \xi_r - \frac{\epsilon}{4r}, \xi_r + \frac{\epsilon}{4r}, 1\}.$$

Since ξ_r is the last discontinuity, f = 0 in $[\xi_r + \frac{\epsilon}{4r}, 1]$. Now $L(P_{\epsilon}, f) = 0$ and

$$U(P_{\epsilon}, f) = 1 \cdot \frac{1}{N} + \frac{\epsilon}{2r} + \frac{\epsilon}{2r} + \dots + \frac{\epsilon}{2r} + 0 \cdot (1 - \xi_r - \frac{\epsilon}{4r})$$
$$= \frac{1}{N} + \frac{\epsilon}{2} < \epsilon.$$

Therefore f is Riemann integrable.

Example 1.0.2. Consider the following function $f : [0,1] \to \mathbb{R}$.

$$f(x) = \begin{cases} 0 & x \in Q\\ \sin \frac{1}{x} & x \notin Q \end{cases}$$

Solution: We will show that f is not integrable on a sub interval of [0,1]. Consider the f on the subinterval $I_1 = [\frac{2}{\pi}, 1]$. Clearly L(P, f) = 0 for any partition P of I_1 because $f(x) \ge 0$ in the sub interval $[\frac{2}{\pi}, 1]$. Let M_k be the Supremum of f on subintervals $[x_{k-1}, x_k]$ of $[\frac{2}{\pi}, 1]$. Also the minimum of $M'_k s$ is sin 1. Therefore,

$$U(P,f) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) > (1 - \frac{2}{\pi})\sin 1.$$

Hence U(P, f) - L(P, f) can not be made less than ϵ for any $\epsilon < (1 - \frac{2}{\pi}) \sin 1$. Therefore f is not Riemann integrable.

The discussion above suggests that if a function has countably many discontinuities then it is integrable. In fact, we have the following:

Definition 1.0.3. (Zero set)

A subset $A \subset \mathbb{R}$ is said to be zero set if for every $\epsilon > 0$, there exists countable number of intervals I_i such that $A \subset \bigcup_i I_i$ and $\sum_i |I_i| < \epsilon$.

So it is clear that any finite set is a zero set. Moreover any countable set can always be covered by intervals of length $\epsilon/2^i$ for $i \in \mathbb{N}$. Moreover any countable union of zero sets is also a zero set.

Theorem 1.0.4. (*Riemann-Lebesgue theorem*)

A bounded function $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if its set of discontinuous points is a zero set.

Mean Value Theorem

Theorem 1.0.5. Let f(x) be a continuous function on [a, b]. Then there exists $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a)$$

1	1	1
/	/	/

Proof. Let $m = \min_{x \in [a,b]} f(x)$ and $M = \max_{x \in [a,b]} f(x)$. Then by Property 3, we have

$$m(b-a) \le \int_{a}^{b} f \le M(b-a),$$

i.e.

$$m \le \frac{1}{(b-a)} \int_a^b f \le M.$$

Now since f(x) is continuous, it attains all values between it's maximum and minimum values. Therefore there exists $\xi \in [a, b]$ such that $f(\xi) = \frac{1}{(b-a)} \int_a^b f$. ///

Theorem 1.0.6. Fundamental Theorem: Let f(x) be a continuous function on [a, b] and let $\phi(x) = \int_{a}^{x} f(s) ds$. Then ϕ is differentiable and $\phi'(x) = f(x)$.

Proof. As $\frac{\phi(x + \Delta x) - \phi(x)}{\Delta x} = \frac{1}{\Delta x} \int_{x}^{x + \Delta x} f(s) ds$, By Mean value theorem, there exists $\xi \in [x, x + \Delta x]$ such that

$$\int_{x}^{x+\Delta x} f(s)ds = \Delta x f(\xi).$$

Therefore $\lim_{\Delta x \to 0} \frac{\phi(x + \Delta x) - \phi(x)}{\Delta x} = \lim_{\Delta x \to 0} f(\xi)$. Since f is continuous, $\lim_{\Delta x \to 0} f(\xi) = f(\lim_{\Delta x \to 0} \xi) = f(x)$. Thus $\phi'(x) = f(x)$.

Remark 1.0.1. If f is integrable then ϕ is continuous.

Now we ask the following important

Question: It is always not true that $\int_a^b f'(x) dx = f(b) - f(a)$?

The answer is NO. For example, take $f(x) = x^2 \sin \frac{1}{x}$ for $x \neq 0$ and f(0) = 0. Then f is differentiable on [0, 1]. Here the derivatives at the end points are the left/right derivatives. It is easy to check that $f'(x) = 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}$ for $x \in (0, 1)$ and f'(0) = 0. Therefore f' is not bounded and so not integrable.

Second Fundamental Theorem

Definition 1.0.7. A function F(x) is called anti-derivative of f(x), if F'(x) = f(x).

Theorem 1.0.8. Suppose F(x) is an anti- derivative of continuous function f(x). Then $\int_a^b f(x)dx = F(b) - F(a)$.

Proof. By First fundamental theorem, we have

$$\frac{d}{dx}\int_{a}^{x}f(s)ds = f(x).$$

Also F'(x) = f(x). Hence $\int_a^x f(s)ds = F(x) + c$ for some constant $c \in \mathbb{R}$. Taking x = a, we get c = -F(a). Now taking x = b we get $\int_a^b f(x)dx = F(b) - F(a)$. /// Moreover, one can prove the following more general theorem:

Theorem 1.0.9.

If f is integrable and if there exists F such that F' = f, then $\int_a^b f(x)dx = F(b) - F(a)$.

Proof. Proof follows from the neccessary and sufficient condition. Interested students may see the text book.

Problem 1.0.1. $\lim_{x \to 0} \frac{1}{x} \int_0^x \sin(t^2) dt = 0.$

Change of Variable formula

Theorem 1.0.10. Let u(t), u'(t) be continuous on [a, b] and f is a continuous function on the interval u([a, b]). Then

$$\int_{a}^{b} f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(y)dy.$$

Proof. Note that f([a, b]) is a closed and bounded interval. Since f is continuous, it has primitive F. i.e., $F(x) = \int_a^x f(t)dt$. Then by chain rule of differentiation, $\frac{d}{dt}F(u(t)) = F'(u(t))u'(t)$. i.e., F(u(t)) is the primitive of f(u(t))u'(t) and by Newton-Leibnitz formula, we get

$$\int_{a}^{b} f(u(t))u'(t)dt = F(u(b)) - F(u(a)).$$

On the other hand, for any two points in u([a, b]), we have (by Newton-Leibnitz formula)

$$\int_{A}^{B} f(y)dy = F(B) - F(A).$$

Hence B = u(b) and A = u(a).

Problem 1.0.2. Evaluate $\int_0^1 x\sqrt{1+x^2} dx$. Taking $u = 1 + x^2$, we get u' = 2x and u(0) = 1, u(1) = 2. Then

$$\int_0^1 x\sqrt{1+x^2}dx = \frac{1}{2}\int_1^2 \sqrt{u}du = \frac{1}{3}u^{\frac{2}{3}}\Big|_{u=1}^2 = \frac{1}{3}(2^{\frac{2}{3}}-1).$$