## Lecture 31

## Domain decompsition property

Let $f$ be bounded on $[a, b]$ and let $c \in(a, b)$. Then $f$ is integrable on $[a, b]$ if and only if $f$ is integrable on $[a, c]$ and $[c, b]$. In this cases

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Let $f$ be integrable on $[a, b]$. For $\epsilon>0$, there exists partition $P$ such that

$$
\begin{equation*}
U(P, f)-L(P, f)<\epsilon \tag{1.1}
\end{equation*}
$$

With out loss of generality we can assume that $P$ contain $c$. (otherwise we can refine $P$ by adding $c$ and the difference will be closer than before) Let $P_{1}=P \cap[a, c]$ and $P_{2}=P \cap[c, b]$. Then $P_{1}$ and $P_{2}$ are partitions on $[a, c]$ and $[c, b]$ respectively. Also by (1.1), $U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\epsilon$ and $U\left(P_{2}, f\right)-L\left(P_{2}, f\right)<\epsilon$. This implies $f$ is integrable on $[a, c]$ and $[c, b]$. Conversely, suppose $f$ is integrable on $[a, c]$ and $[c, b]$. Then for $\epsilon>0$, there exists partitions $P_{1}$ of $[a, c]$ and $P_{2}$ of $[c, b]$ such that $U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\frac{\epsilon}{2}$ and $U\left(P_{2}, f\right)-L\left(P_{2}, f\right)<\frac{\epsilon}{2}$. Now take $P=P_{1} \cup P_{2}$. Then $U(P, f)-L(P, f)<\epsilon$. So by Remark ??, there exists $\left\{P_{n}\right\}$ such that

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\lim _{n \rightarrow \infty} S\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} \sum_{P_{n}} f\left(\xi_{k}\right)\left(x_{k-1}-x_{k}\right) \\
& =\sum_{P_{n} \cap[a, c]} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)+\sum_{P_{n} \cap[c, b]} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \rightarrow \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{aligned}
$$

Example 1.0.1. Consider the following function $f:[0,1] \rightarrow \mathbb{R}$.

$$
f(x)= \begin{cases}1 & x=\frac{1}{n} \text { for some } n \in \mathbb{N}, n \geq 2 \\ 0 & x \neq \frac{1}{n}\end{cases}
$$

Solution: Let $\epsilon>0$. Choose $N$ such that $\frac{1}{N}<\frac{\epsilon}{2}$. Note that $f(x)$ has only finitely many discontinuities in $\left[\frac{1}{N}, 1\right]$ say $\xi_{1}, \xi_{2}, \ldots, \xi_{r}$. Define the partition $P_{\epsilon}$ as

$$
P_{\epsilon}=\left\{0, \frac{1}{N}, \xi_{1}-\frac{\epsilon}{4 r}, \xi_{1}+\frac{\epsilon}{4 r}, \ldots, \xi_{r}-\frac{\epsilon}{4 r}, \xi_{r}+\frac{\epsilon}{4 r}, 1\right\} .
$$

Since $\xi_{r}$ is the last discontinuity, $f=0$ in $\left[\xi_{r}+\frac{\epsilon}{4 r}, 1\right]$. Now $L\left(P_{\epsilon}, f\right)=0$ and

$$
\begin{aligned}
U\left(P_{\epsilon}, f\right) & =1 \cdot \frac{1}{N}+\frac{\epsilon}{2 r}+\frac{\epsilon}{2 r}+\ldots+\frac{\epsilon}{2 r}+0 \cdot\left(1-\xi_{r}-\frac{\epsilon}{4 r}\right) \\
& =\frac{1}{N}+\frac{\epsilon}{2}<\epsilon .
\end{aligned}
$$

Therefore $f$ is Riemann integrable.
Example 1.0.2. Consider the following function $f:[0,1] \rightarrow \mathbb{R}$.

$$
f(x)= \begin{cases}0 & x \in Q \\ \sin \frac{1}{x} & x \notin Q\end{cases}
$$

Solution: We will show that $f$ is not integrable on a sub interval of $[0,1]$. Consider the $f$ on the subinterval $I_{1}=\left[\frac{2}{\pi}, 1\right]$. Clearly $L(P, f)=0$ for any partition $P$ of $I_{1}$ because $f(x) \geq 0$ in the sub interval $\left[\frac{2}{\pi}, 1\right]$. Let $M_{k}$ be the Supremum of $f$ on subintervals $\left[x_{k-1}, x_{k}\right]$ of $\left[\frac{2}{\pi}, 1\right]$. Also the minimum of $M_{k}^{\prime} s$ is $\sin 1$. Therefore,

$$
U(P, f)=\sum_{k=1}^{n} f\left(\xi_{k}\right)\left(x_{k}-x_{k-1}\right)>\left(1-\frac{2}{\pi}\right) \sin 1 .
$$

Hence $U(P, f)-L(P, f)$ can not be made less than $\epsilon$ for any $\epsilon<\left(1-\frac{2}{\pi}\right) \sin 1$. Therefore $f$ is not Riemann integrable.
The discussion above suggests that if a function has countably many discontinuities then it is integrable. In fact, we have the following:

Definition 1.0.3. (Zero set)
A subset $A \subset \mathbb{R}$ is said to be zero set if for every $\epsilon>0$, there exists countable number of intervals $I_{i}$ such that $A \subset \cup_{i} I_{i}$ and $\sum_{i}\left|I_{i}\right|<\epsilon$.

So it is clear that any finite set is a zero set. Moreover any countable set can always be covered by intervals of length $\epsilon / 2^{i}$ for $i \in \mathbb{N}$. Moreover any countable union of zero sets is also a zero set.

Theorem 1.0.4. (Riemann-Lebesgue theorem)
A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if its set of discontinuous points is a zero set.

## Mean Value Theorem

Theorem 1.0.5. Let $f(x)$ be a continuous function on $[a, b]$. Then there exists $\xi \in[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a)
$$

Proof. Let $m=\min _{x \in[a, b]} f(x)$ and $M=\max _{x \in[a, b]} f(x)$. Then by Property 3, we have

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

i.e.

$$
m \leq \frac{1}{(b-a)} \int_{a}^{b} f \leq M
$$

Now since $f(x)$ is continuous, it attains all values between it's maximum and minimum values.
Therefore there exists $\xi \in[a, b]$ such that $f(\xi)=\frac{1}{(b-a)} \int_{a}^{b} f$.
Theorem 1.0.6. Fundamental Theorem: Let $f(x)$ be a continuous function on $[a, b]$ and let $\phi(x)=\int_{a}^{x} f(s) d s$. Then $\phi$ is differentiable and $\phi^{\prime}(x)=f(x)$.
Proof. As $\frac{\phi(x+\Delta x)-\phi(x)}{\Delta x}=\frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(s) d s$, By Mean value theorem, there exists $\xi \in$ $[x, x+\Delta x]$ such that

$$
\int_{x}^{x+\Delta x} f(s) d s=\Delta x f(\xi)
$$

Therefore $\lim _{\Delta x \rightarrow 0} \frac{\phi(x+\Delta x)-\phi(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} f(\xi)$. Since $f$ is continuous, $\lim _{\Delta x \rightarrow 0} f(\xi)=f\left(\lim _{\Delta x \rightarrow 0} \xi\right)=$ $f(x)$. Thus $\phi^{\prime}(x)=f(x)$.

Remark 1.0.1. If $f$ is integrable then $\phi$ is continuous.
Now we ask the following important
Question: It is always not true that $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$.?
The answer is NO. For example, take $f(x)=x^{2} \sin \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$. Then $f$ is differentiable on $[0,1]$. Here the derivatives at the end points are the left/right derivatives. It is easy to check that $f^{\prime}(x)=2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}}$ for $x \in(0,1)$ and $f^{\prime}(0)=0$. Therefore $f^{\prime}$ is not bounded and so not integrable.

## Second Fundamental Theorem

Definition 1.0.7. A function $F(x)$ is called anti-derivative of $f(x)$, if $F^{\prime}(x)=f(x)$.
Theorem 1.0.8. Suppose $F(x)$ is an anti- derivative of continuous function $f(x)$. Then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Proof. By First fundamental theorem, we have

$$
\frac{d}{d x} \int_{a}^{x} f(s) d s=f(x)
$$

Also $F^{\prime}(x)=f(x)$. Hence $\int_{a}^{x} f(s) d s=F(x)+c$ for some constant $c \in \mathbb{R}$. Taking $x=a$, we get $c=-F(a)$. Now taking $x=b$ we get $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
Moreover, one can prove the following more general theorem:

## Theorem 1.0.9.

If $f$ is integrable and if there exists $F$ such that $F^{\prime}=f$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
Proof. Proof follows from the neccessary and sufficient condition. Interested students may see the text book.
Problem 1.0.1. $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} \sin \left(t^{2}\right) d t=0$.

## Change of Variable formula

Theorem 1.0.10. Let $u(t), u^{\prime}(t)$ be continuous on $[a, b]$ and $f$ is a continuous function on the interval $u([a, b])$. Then

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(y) d y .
$$

Proof. Note that $f([a, b])$ is a closed and bounded interval. Since $f$ is continuous, it has primitive $F$. i.e., $F(x)=\int_{a}^{x} f(t) d t$. Then by chain rule of differentiation, $\frac{d}{d t} F(u(t))=F^{\prime}(u(t)) u^{\prime}(t)$. i.e., $F(u(t))$ is the primitive of $f(u(t)) u^{\prime}(t)$ and by Newton-Leibnitz formula, we get

$$
\int_{a}^{b} f(u(t)) u^{\prime}(t) d t=F(u(b))-F(u(a)) .
$$

On the other hand, for any two points in $u([a, b])$, we have (by Newton-Leibnitz formula)

$$
\int_{A}^{B} f(y) d y=F(B)-F(A) .
$$

Hence $B=u(b)$ and $A=u(a)$.
Problem 1.0.2. Evaluate $\int_{0}^{1} x \sqrt{1+x^{2}} d x$.
Taking $u=1+x^{2}$, we get $u^{\prime}=2 x$ and $u(0)=1, u(1)=2$. Then

$$
\int_{0}^{1} x \sqrt{1+x^{2}} d x=\frac{1}{2} \int_{1}^{2} \sqrt{u} d u=\left.\frac{1}{3} u^{\frac{2}{3}}\right|_{u=1} ^{2}=\frac{1}{3}\left(2^{\frac{2}{3}}-1\right) .
$$

