
Lecture 34

2 Improper Integrals

In the previous section, we defined Riemann integral for functions defined on closed and bounded

interval [a, b]. In this section our aim is to extend the concept of integration to the the following

cases:

1. The function f(x) defined on unbounded interval [a,∞) and f ∈ R[a, b] for all b > a.

2. The function is not defined at some points on the interval [a, b].

We first consider

Improper integral of first kind: Suppose f is a bounded function defined on [a,∞) and

f ∈ R[a, b] for all b > a.

Definition 2.0.1. The improper integral of f on [a,∞) is defined as∫ ∞
a

f(x)dx := lim
b→∞

∫ b

a
f(x)dx.

If the limit exists and is finite, we say that the improper integral converges. If the limit goes to

infinity or does not exist, then we say that the improper integral diverges.

Examples 2.0.2. 1. (i)
∫∞
1

1
x2
dx = limb→∞

∫ b
1

1
x2
dx = limb→∞ 1− 1

b = 1.

2. (ii)
∫∞
0

dx
1+x2

= limb→∞
∫ b
0

dx
1+x2

= limb→∞ arctanxb0 = π
2 .

Theorem 2.0.3. Comparison test: Suppose 0 ≤ f(x) ≤ φ(x) for all x ≥ a, then

1.
∫∞
a f(x)dx converges if

∫∞
a φ(x)dx converges.

2.
∫∞
a φ(x)dx diverges if

∫∞
a f(x)dx diverges.

Proof. Define F (x) =
∫ x
a f(t)dt and G(x) =

∫ x
a g(t)dt. Then by properties of Riemann integral,

0 ≤ F (x) ≤ G(x) and we are given that lim
x→∞

G(x) exists. So G(x) is bounded. F is monotoni-

cally increasing and bounded above. Therefore, lim
x→∞

F (x) exists.

Examples 2.0.4. 1.
∫∞
1

dx
x2(1+ex)

. Note that 1
x2(1+ex)

< 1
x2

and
∫∞
1

dx
x2

converges.

2.
∫∞
1

x3

x+1dx. Note that x3

x+1 >
x2

2 on [1,∞) and
∫∞
1 x2dx diverges.

Definition 2.0.5. Let f ∈ R[a, b] for all b > a. Then we say
∫∞
a f(x)dx converges absolutely if∫∞

a |f(x)|dx converges.
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In the following we show that absolutely convergence implies convergence of improper inte-

gral.

Theorem 2.0.6. If the integral
∫∞
a |f(x)|dx converges, then the integral

∫∞
a f(x)dx converges.

Proof. Note that 0 ≤ f(x) + |f(x)| ≤ 2|f(x)|. So the improper integral
∫∞
a f(x) + |f(x)|dx

converges by comparison theorem above. Also
∫∞
a |f(x)| converges. Therefore,

∫∞
a f(x)dx =∫∞

a f(x) + |f(x)|dx−
∫∞
a |f(x)|dx also converges. ///

The converse of the above theorem is not true. For example take the integral
∫∞
π

sinx
x dx. This

integral does not converge absolutely. Indeed,∫ ∞
π

| sinx|
x

dx =

∞∑
n=1

∫ (n+1)π

nπ

| sinx|
x

dx

≥
∞∑
n=1

1

nπ

∫ (n+1)π

nπ
| sinx|

=
∞∑
n=0

1

nπ

∫ π

0
sinx =

2

π

∞∑
n=1

1

n
.

On the other hand, by integration by parts,

lim
b→∞

∫ b

1

sinx

x
dx = lim

b→∞

∫ b

1

1

x
d(1− cosx)

= lim
b→∞

(
(1− cos b

b
+

∫ b

1

1− cosx

x2
dx

)
It is not difficult to show that the limits on the right exist.

Examples 2.0.7. 1.
∫∞
1

sinx
x3
dx. Easy to see that | sinx

x3
| ≤ | 1

x3
| and

∫∞
1

dx
x3

converges.

2.
∫∞
0

e−x2 sinx
log(1+x) . Here first note that limx→0

e−x2 sinx
log(1+x) = 1. Therefore the integral is proper at

x = 0. For x > 10(say):

|f(x)| ≤ e−x
2

log(1 + x)
< e−x

2 ≤ e−x

Hence the integral
∫∞
10

e−x2 sinx
log(1+x) converges by comparison theorem.

Theorem 2.0.8. Limit comparison test: Let f(x), g(x) are defined and positive for all x ≥ a

and lim
x→∞

f(x)

g(x)
= L.
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1. If L ∈ (0,∞), then the improper integrals
∫∞
a f(x)dx and

∫∞
a g(x)dx are either both con-

vergent or both divergent. i.e.,
∫∞
a f(x)dx converges ⇐⇒

∫∞
a g(x) converges.

2. If L = 0, then
∫∞
a f(x)dx converges if

∫∞
a g(x)dx converges. i.e,

∫∞
a g(x)dx converges

=⇒
∫∞
a f(x)dx converges.

3. If L = ∞, then
∫∞
a f(x)dx diverges if

∫∞
a g(x)dx diverges. i.e.,

∫∞
a g(x)dx diverges =⇒∫∞

a f(x)dx diverges.

Proof. From the definition of limits, for any ε > 0, there exists M > 0 such that

x ≥M =⇒ L− ε < f(x)

g(x)
< L+ ε.

Thus for x ≥M , we have (L− ε)g(x) < f(x) < (L+ ε)g(x).

Now in case (1), since L > 0, we can find ε > 0 such that L− ε > 0. Using the property 3, it is

enough to prove the convergence/divergence for x large, say x ≥ M . In this interval, we have

the comparison (L− ε)g(x) < f(x) < (L+ ε)g(x). Now integrating this, we get the result.

In case (2), we have f(x) < (L+ ε)g(x). Again, integrate on both sides.

In case (3) by the definition, for every M > 0, there exists, R such that f(x) > Mg(x) for all

x > R. Now the result follows similar to (1) and (2).

Examples 2.0.9. 1.
∫∞
1

dx√
x+1

. Take f(x) = 1√
x+1

and g(x) = 1√
x

. Then limx→∞
f(x)
g(x) = 1

and
∫∞
1 g(x)dx diverges. So by above theorem,

∫∞
1 f(x)dx diverges.

2.
∫∞
1

dx
1+x2

. Take f(x) = 1
1+x2

and g(x) = 1
x2

. Then limx→∞
f(x)
g(x) = 1 and

∫∞
1 g(x)dx

converges. So by above theorem,
∫∞
1 f(x)dx converges.

3.
∫∞
0

x
coshxdx. Let f(x) = x

coshx = 2xex

e2x+1
∼ xe−x. So choose g(x) = xe−x. Then limx→∞

f(x)
g(x) =

2 and
∫∞
0 g(x) converges.

Improper integrals of second kind

Definition 2.0.10. Let f(x) be defined on [a, c) and f ∈ R[a, c − ε] for all ε > 0. Then we

define ∫ c

a
f(x)dx = lim

ε→0

∫ c−ε

a
f(x)dx.

Then
∫ b
a f(x)dx is said to converge if the limit exists and is finite. Otherwise, we say improper

integral
∫ b
a f(x)dx diverges.

Example:

∫ 1

0

dx√
x

= lim
ε→0

∫ 1

ε

dx√
x

= lim
ε→0

2(1−
√
ε) = 2.
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Suppose a1, a2, ....an are finitely many discontinuities of f(x) in [a, b]. Then∫ b

a
f(x)dx =

∫ a1

a
f(x)dx+

∫ a2

a1

f(x)dx+

∫ a3

a2

f(x)dx+ ....+

∫ b

an

f(x)dx

If all the improper integrals on the right hand side converge, then we say the improper integral

of f over [a, b] converges. Otherwise, we say it diverges.

The following comparison and Limit comparison tests can be proved following similar argu-

ments:

Theorem 2.0.11. (Comparison Theorem:) Suppose 0 ≤ φ(x) ≤ f(x) for all x ∈ [a, c) and are

discontinuous at c.

1. If
∫ c
a f(x)dx converges then

∫ c
a φ(x)dx converges.

2. If
∫ c
a φ(x)dx diverges then

∫ c
a f(x)dx diverges.

Problem 2.0.1. Test the convergence of
∫ 1
0

ex√
x
dx

Solution: ex < e for all x ∈ (0, 1). Therefore ex√
x
< e√

x
and

∫ 1
0

1√
x
dx converges. Therefore∫ 1

0
ex√
x
dx also converges.

Theorem 2.0.12. (Limit comparison theorem:) Suppose 0 < f(x), g(x) be continuous in [a, c)

and limx→c
f(x)
g(x) = L. Then

1. If L ∈ (0,∞). Then
∫ c
a f(x)dx and

∫ c
a g(x)dx both converge or diverge together.

2. If L = 0 and
∫ c
a g(x)dx converges then

∫ c
a f(x)dx converges.

3. If L =∞ and
∫ c
a g(x)dx diverges then

∫ c
a f(x)dx diverges.

Proof. From the definition of limit, for each ε > 0, there exists δ > 0 such that

x ∈ (c− δ, c) =⇒ (L− ε)g(x) < f(x) < (L+ ε)g(x)

Rest of the proof follows in the similar lines theorems on first kind, by choosing ε < L.

Problem 2.0.2. Test the convergence of the integral

∫ 1

0

e
√
x − 1

x
dx.

Solution: Let f(x) = e
√
x−1
x and g(x) =

√
x. Then by Taylor’s theorem (OR L’Hospital rule)

lim
x→0

f(x)

g(x)
= lim

x→0

√
x(e
√
x − 1)

x
= lim

x→

√
x(
√
x+ o(x))

x
= 1.

Also

∫ 1

0

1√
x
dx converges. Therefore f(x) is integrable.

4


