
Lecture 35

Transforming improper integrals:

Sometimes improper integrals may be transformed into proper integrals. For example con-

sider the improper integral I =

∫ 3

1

dx
√
x
√

3− x
. Taking the transformation y =

1

3− x
, we

get I =

∫ ∞
1/2

dy

y
√

3y − 1
. This is an improper integral of first kind. Instead, if we choose the

transformation 3− x = u2 then I =

∫ √2

0

2udu

u
√

3− u2
, which is a proper integral.

Remark 1.0.1. It is important to note that the ”symmetric” limit could be convergent but the

limit may not exist. For example,∫ 1

−1

dx

x3
=

∫ 0

−1

dx

x3
+

∫ 1

0

dx

x3

= lim
ε1→0

∫ −ε1
−1

dx

x3
+ lim
ε2→0

∫ 1

ε2

dx

x3

=
1

2
lim

ε1,ε2→0
(

1

ε21
− 1

ε22
), (1.1)

where ε1, ε2 → 0 as n → ∞. It is easy to see that if one takes ε1 = ε2, then the limit exits and

is equal to 0. But if one takes ε1 = 1
(n+1)2

, ε2 = 1
n2 , then the above limit in (1.1) does not exist.

So through different sequences, we are getting different limits. By now, by our familiarity with

existence of limits, we say integral diverges.

Gamma and Beta functions:

Consider the Gamma function defined as improper integral for p > 0,

Γ(p) =

∫ ∞
0

xp−1e−xdx

This integral is improper of second kind in the neighbourhood of 0 as xp−1 goes to infinity as

x→ 0 (when p < 1). Since the domain of integration is (0,∞), the integral is improper of first

kind. To prove the convergence, we divide the integral into

Γ(p) =

∫ 1

0
xp−1e−xdx+

∫ ∞
1

xp−1e−xdx

=I1 + I2

To see the convergence of I1 we take f(x) = xp−1e−x and g(x) = xp−1, then lim
x→0

f(x)

g(x)
= 1 and
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∫ 1

0
xp−1dx converges. To see the convergence of I2, take f(x) = xp−1e−x and g(x) = 1

x2
. Then

lim
x→∞

f(x)

g(x)
= lim

x→∞
x2+p−1e−x = 0 and

∫∞
1

1
x2
dx converges. Hence by (2) of limit comparison

theorem, the integral converges.

Next we consider the Beta function defined as improper integral for p > 0, q > 0,

β(p, q) =

∫ 1

0
xp−1(1− x)q−1dx

If p > 1 and q > 1, then the integral is definite integral. When p < 1 and/or q < 1, this integral

is improper of second kind at 0 and/or 1. To prove the convergence, we divide as before∫ 1

0
xp−1(1− x)q−1dx =

∫ 1/2

0
xp−1(1− x)q−1dx+

∫ 1

1/2
xp−1(1− x)q−1dx

= I1 + I2.

To see the convergence of I1, take f(x) = xp−1(1 − x)q−1 and g(x) = xp−1. Then lim
x→0

f(x)

g(x)
=

lim
x→0

(1 − x)q−1 = 1 and

∫ 1/2

0
xp−1dx converges. Similarly, for convergence of I2, we take

f(x) = xp−1(1− x)q−1 and g(x) = (1− x)q−1.

Some identities of beta and gamma functions:

1. Γ(1) =
∫∞

0 e−xdx = 1.

2. Γ(α+ 1) = αΓ(α).

Integration by parts formula implies,

Γ(α+ 1) =

∫ ∞
0

xαe−x = −(xαe−x)|∞0 + α

∫ ∞
0

xα−1e−xdx = αΓ(α).

Therefore, Γ(m+ 1) = m! ∀m ∈ IN .

3. Γ(1
2) =

√
π.(

Γ(
1

2
)

)2

=4

∫ ∞
0

∫ ∞
0

e−u
2
e−v

2
dudv, take u = r cos θ, v = r sin θ,

=4

∫ ∞
0

∫ π/2

0
e−r

2
rdrdθ = π
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4. β(m,n) = β(n,m). Substituting t = 1− x in the definition of β(m,n), we get

β(m,n) =

∫ 1

0
tn−1(1− t)m−1dt = β(n,m)

5. β(m,n) = 2

∫ π/2

0
sin2m−1 θ cos2n−1 θdθ

Taking x = sin2 θ in β(m,n), we get

β(m,n) =

∫ π

0
cos2m−2 θ sin2n−2 θ cos θ sin θdθ = 2

∫ π/2

0
cos2m−1 θ sin2n−1 θdθ.

6. β(m,n) = Γ(m)Γ(n)
Γ(m+n) .

Problem 1.0.1. Evaluate (i)

∫ ∞
0

x2/3e−
√
xdx (ii)

∫ 1

0
x

3
2 (1−

√
x)

1
2dx

For (i), take t =
√
x, then the given integral becomes∫ ∞

0
t4/3e−t2tdt = 2

∫ ∞
0

e−tt7/3dt = 2Γ(
10

3
) =

56

27
Γ(1/3).

For (ii), again take t =
√
x, then the integral becomes

2

∫ 1

0
t3(1− t)1/2tdt = 2

∫
t4(1− t)1/2dt = 2β(5, 3/2) = 2

Γ(5)Γ(3/2)

Γ(13/2)
=

512

3465

Cauchy Principal Value:

Consider the improper integral I =
∫∞

0 sinxdx. It is easy to see from the definition that

I = lima→∞(1− cos a) which does not exist.Similarily,
∫ 0
−∞ sinxdx does not exist. But

lim
c→∞

∫ c

−c
sinxdx

exists and is equal to 0. Though the improper integral does not exist, this symmetric limit

exists. This is called Cauchy Principal value of improper integral

Definition 1.0.1. The Cauchy Principal value of improper integral of first kind is defined as

CPV

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx

For the improper integral of second kind, with c ∈ (a, b) as point of discontinuity of f(x) as

CPV

∫ b

a
f(x)dx = lim

δ→0

∫ c−δ

a
f(x)dx+

∫ b

c+δ
f(x)dx
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Examples 1.0.2. First kind:
∫∞
−∞ x

2n+1dx for all n = 1, 2, 3, .... In this case it is easy to check

that lim
a→∞

∫ a

−a
x2n+1 = 0. But the the improper integrals

∫∞
0 x2n+1 and

∫ 0
−∞ x

2n+1 does not con-

verge.

Second kind:
∫ 1
−1 x

−(2n+1)dx, for n = 1, 2, 3, .... Simply evaluate

∫ −ε
−1

x−(2n+1) +

∫ 1

ε
x−(2n+1)

to see that the the limit is 0.

Integrals dependent on a Parameter

Consider an integral

I(α) =

∫ b

a
f(x, α)dx

where the integrand is depend on the parameter α. At times we can differentiate under the

integral sign to evaluate the integral. It is sometimes not possible and leads to wrong assertions.

For example, we know that I =
∫∞

0
sinx
x = π

2 . It is easy to notice with change of variable formula,

taking tx = y, that I = I(t) =
∫∞

0
sin(tx)
x = π

2 . Now differentiating this, taking derivative inside

integral, we get I ′(t) =
∫∞

0 cos(tx)dx = 0, which doesn’t make sense.

Here we have a theorem, which explains under which conditions we can do the differentiation

under integral sign.

Theorem 1.0.3. Suppose,

1. Suppose f, d
dαf(x, α) are continuous functions for x ∈ [a, b] and α in an interval of con-

taining α0.

2. |f(x, α)| ≤ A(x), | ddαf(x, α)| ≤ B(x) such that a, b are integrable on [a, b]. If the domain

in unbounded, then the improper integrals
∫ b
a Adx,

∫ b
a Bdx converge.

Then I is differentiable, and

I ′(α) =

∫ b

a

d

dα
f(x, α)dx.

Proof. .

d

dα
I(α) = lim

∆α→0

I(α+ ∆α)− I(α)

∆α

= lim
1

∆α

[∫ b

a
(f(x, α+ ∆α)− f(x, α))dx

]
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Now by Taylor’s theorem, f(x, α + ∆α) − f(x, α) = ∆α d
dαf(x, α + θ∆α). Since d

dαf(x, α) is

continuous, we have d
dαf(x, α+ θ∆α) = d

dαf(x, α) + ε, where 0 < θ < 1 and ε→ 0 as ∆α→ 0.

Thus
d

dα
I(α) = lim

∆α→0

∫ b

a

d

dα
f(x, α) + ε =

∫ b

a

d

dα
f(x, α)dx

///

In fact the following holds.

Newton-Leibnitz Formula:

Let h(x) =

∫ b(x)

a(x)
f(x, t)dt. Then h′(x) =

∫ b(x)

a(x)

df

dx
(x, t)dt+ f(x, b(x))b′(x)− f(x, a(x))a′(x)

Examples 1.0.4. 1. Evaluate I(α) =

∫ ∞
0

e−x
sinαx

x
dx.

By the above formula, I ′(α) =
∫∞

0 e−x cosαxdx = 1
1+α2 . Therefore, I(α) = arctanα + C.

Also I(0) =
∫∞

0 e−x sin 0x = 0. Hence C = 0.

2. Test the convergence and evaluate the integral

∫ ∞
0

e
1
2

(t2−x2) cos(tx)dx.

|I| ≤ et2/2
∫ ∞

0
|e−x2 cos(tx)|dx ≤ C

∫ ∞
0

e−x
2
dx =

1

2
Γ(

1

2
).

Hence the integral converges. By Newton Leibnitz formula,

I ′a(t) =

∫ a

0
e

1
2

(t2−x2)(t cos tx− x sin tx)dx

=

∫ a

0

∂

∂x
e

1
2

(t2−x2) sin txdx

= e
1
2

(t2−a2) sin at

Therefore, I ′(t) = lima→∞ I
′
a(t) = 0. Now note that I(0) =

∫∞
0 e−x

2/2dx = 1√
2
Γ(1/2).

Hence I(t) =
√

π
2 .
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