Lecture 37

1 Voume integrals and change of varibles

1.1 Triple (Volume) integrals

Let $f(x, y, z)$ be a real valued function defined over a closed and bounded region of space \mathbb{R}^{3}. For example the solid ball or rectangular box. Now we want to define the definite integral of $f(x, y, z)$ over such regions.
We partition the region by small planes parallel to the coordinate axes. Then we obtain small rectangular cubes over which the function will be approximated by $f\left(x_{k} y_{k}, z_{k}\right)$. We form the Riemann sum

$$
S_{n}=\sum_{k} f\left(x_{k}, y_{k}, z_{k}\right)\left|\Omega_{k}\right|
$$

where $\left|\Omega_{k}\right|$ is the volume of the small rectangle. Now by our understanding of Riemann sums we choose refinement of partitions in such way that $\max _{k}\left|\Omega_{k}\right| \rightarrow 0$. Then we obtain the definite integral as

$$
\iiint_{\Omega} f(x, y, z) d V=\lim _{n \rightarrow \infty} S_{n}
$$

Evaluation of integrals in three dimensions is done again using Fubini's theorem. In this case again Fubini's theorem states

Theorem 1.1.1 Suppose $f(x, y, z)$ is integrable over $\Omega \subset \mathbb{R}^{3}$, then

$$
\begin{aligned}
\iiint_{\Omega} f(x, y, z) d V= & \int_{x} \int_{y} \int_{z} f(x, y, z) d z d y d x=\int_{x} \int_{z} \int_{y} f(x, y, z) d x d z d y \\
& \int_{z} \int_{x} \int_{y} f(x, y, z) d y d x d z=\int_{z} \int_{y} \int_{x} f(x, y, z) d x d y d z \\
= & \int_{y} \int_{x} \int_{z} f(x, y, z) d z d x d y=\int_{y} \int_{z} \int_{x} f(x, y, z) d y d z d x
\end{aligned}
$$

To evaluate the triple integrals we follow the following steps:

1. Draw a line parallel to z axis that passes through the point (x, y) of R where R is the projection of Ω onto \mathbb{R}^{2}.
2. Identify the upper surface and lower surface through which this line passes at most once.
3. Identify the upper curve and lower curve of the projection R and limits of integration.

It is easy to see from the definition, the volume of Ω is

$$
V=\lim _{k \rightarrow \infty} \sum_{k}\left|\Omega_{k}\right|=\lim _{k \rightarrow \infty} \sum_{k} 1\left|\Omega_{k}\right|=\iiint_{\Omega} 1 d V
$$

Figure 1: Volume bounded by the surfaces

Problem 1.1.1 Find the volume of the region bounded by the surfaces $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.

Solution: The volume is $V=\iiint_{\Omega} d z d y d x$, where Ω is bounded above by the surface $z=$ $8-x^{2}-y^{2}$ and below by the surface $z=x^{2}+3 y^{2}$. Therefore, the limits of z are from $z=x^{2}+3 y^{2}$ to $z=8-x^{2}-y^{2}$.

The Projection of Ω on $x y$-plane is the solution of

$$
8-x^{2}-y^{2}=x^{2}+3 y^{2} \Longrightarrow x^{2}+2 y^{2}=4 .
$$

Therefore the limits of x and y are to be determined by $R: x^{2}+2 y^{2}=4$. Hence

$$
\begin{aligned}
V= & \iint_{R} \int_{y=x^{2}+3 y^{2}}^{8-x^{2}-y^{2}} d z d A \\
& =\int_{-2}^{2} \int_{-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(8-2 x^{2}-4 y^{2}\right) d y d x \\
& =\int_{-2}^{2}\left(\left(8-x^{2}\right) y-\frac{4}{3} y^{3}\right)_{y=-\sqrt{\left(4-x^{2}\right) / 2}}^{\sqrt{\left(4-x^{2}\right) / 2}} \\
& =\frac{4 \sqrt{2}}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x=8 \pi \sqrt{2} .
\end{aligned}
$$

Problem 1.1.2 Find the volume of the region bounded by $x+z=1, y+2 z=2$ in the first quadrant.

Solution: Draw line parallel to z-axis and note that the upper surfaces are: $2 z+y=2$ over triangle bounded by $x=0, y=1 y=2 x$ and $z=1-x$ over the triangle bounded by $y=0, x=1, y=2 x$. Therefore,

$$
V=\int_{y=0}^{2} \int_{x=0}^{y / 2} \int_{z=0}^{\frac{2-y}{2}} d z d x d y+\int_{x=0}^{1} \int_{y=0}^{2 x} \int_{z=0}^{1-x} d z d y d x
$$

On the other hand, by first drawing the line parallel to x-axis, we get

$$
V=\int_{z=0}^{1} \int_{y=0}^{2-2 z} \int_{x=0}^{1-z} d x d y d z
$$

Taking the line parallel to y-axis we get

$$
V=\int_{x=0}^{1} \int_{z=0}^{1-x} \int_{y=0}^{2-2 z} d y d z d x
$$

Example 1.1.1 (Order of integration) Evaluate $\int_{z=0}^{4} \int_{y=0}^{1} \int_{x=2 y}^{2} \frac{2 \cos \left(x^{2}\right)}{\sqrt{z}} d x d y d z$.
Note that the projection of Ω onto $x y$ plane is the triangle bounded by $y=0, x=2$ and $x=2 y$. So changing the order of integration in x and y, we get

$$
\begin{aligned}
I & =\int_{z=0}^{4} \int_{x=0}^{2} \int_{y=0}^{x / 2} \frac{2 \cos \left(x^{2}\right)}{\sqrt{z}} d y d x d z . \\
& =\int_{z=0}^{4} \int_{x=0}^{2} \frac{x \cos \left(x^{2}\right)}{\sqrt{z}} d x d z=2 \sin 4 .
\end{aligned}
$$

1.2 Substitutions in multiple integrals

Suppose a domain G in $u v$-plane is transformed onto a domain Ω of $x y$-plane by a transformation $x=g(u, v), y=h(u, v)$. Then any function of x, y may be written as a function of u, v. Then the relation between the double integral over G and Ω is

$$
\iint_{\Omega} f(x, y) d x d y=\iint_{G} f(g(u, v), h(u, v))|J(u, v)| d u d v
$$

where J is the Jacobian given by

$$
J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|
$$

The main idea of the proof is as follows. Let $(u, v),(u+\Delta u, v),(u+\Delta u, v+\Delta v)$ and $(u, v+\Delta v)$ be the vertices of the rectangle in the $u v$-plane. Let ΔA_{k} be its area element. Under the transformation this points are mapped to $\left(x_{1}, y_{1}\right)=(g(u, v), h(u, v)),\left(x_{2}, y_{2}\right)=$ $(g(u+\Delta u, v), h(u+\Delta u, v)),\left(x_{3}, y_{3}\right)=\left(g(u+\Delta u, v+\Delta v)\right.$ and $\left(x_{4}, y_{4}\right)=(g(u, v+\Delta v), h(u, v+$ $\Delta v)$). Then by Taylor's theorem

$$
g(u+\Delta u, v)=g(u, v)+\frac{\partial g}{\partial u} \Delta u+o\left((\Delta u)^{2}\right)
$$

$$
g(u+\Delta u, v+\Delta v)=g(u, v)+\frac{\partial g}{\partial u} \Delta u+\frac{\partial g}{\partial v} \Delta v+o\left((\Delta u)^{2}\right)+o\left((\Delta v)^{2}\right)
$$

Then the area of the "rectangle" in $x y$-plane $\Delta \tilde{A_{k}}$ is

$$
\begin{aligned}
\Delta \tilde{A}_{k} & \approx\left|\left(x_{3}-x_{1}\right)\left(y_{3}-y_{1}\right)-\left(x_{3}-x_{2}\right)\left(y_{3}-y_{2}\right)\right| \\
& \approx|J| \Delta u \Delta v+o\left((\Delta u)^{2}\right)+o\left((\Delta v)^{2}\right)
\end{aligned}
$$

Taking this as the area in the Riemann sum of $f(x, y)$ we get the required formula.
Example 1.2.1 Evaluate the integral $I=\int_{0}^{4} \int_{y / 2}^{1+\frac{y}{2}} \frac{2 x-y}{2} d x d y$.
Solution: The domain of integration is a parallelogram with vertices $(0,0),(1,0),(3,4)$ and $(2,4)$. One has to divide the domain into 3 domains. Instead we can take the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$. Then the inverse transformation is $x=u+v, y=2 v$. Then

$$
J=\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right|=2 .
$$

Under this transformation, the parallelogram is transformed into cube with vertices $(0,0),(1,0)(1,2)$ and $(0,2)$. Now by change of variable formula

$$
I=\iint f(u+v, 2 v) 2 d u d v=\int_{0}^{2} \int_{0}^{1} 2 u d u d v=2
$$

Example 1.2.2 Evaluate the integral $I=\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d A$.
Solution: The given domain is the triangle bounded by $x=0, y=0$ and $x+y=1$. In this case the integrand is complicated....so we can take transformation $u=x+y$ and $v=y-2 x$. Under this transformation, the given triangle will be transformed into triangle bounded by $v=u, v=-2 u$ and $u=1$. The inverse of this transformation is $x=\frac{u-v}{3}$ and $y=\frac{2 u+v}{3}$. Hence the Jacobian

$$
J=\left|\begin{array}{cc}
1 / 3 & -1 / 3 \\
2 / 3 & 1 / 3
\end{array}\right|=1 / 3 .
$$

Hence

$$
I=\int_{0}^{1} \int_{v=-2 u}^{u} \sqrt{u} v^{2} d v d u
$$

Example 1.2.3 Evaluate the integral $I=\iint_{R} \frac{d A}{\left(2-x^{2}-y^{2}\right)^{2}}$ over $R: x^{2}+y^{2} \leq 1$.
Solution: Taking the transformation $x=r \cos \theta, y=r \sin \theta$, we get

$$
J=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r .
$$

By substitution formula,

$$
I=\int_{0}^{2 \pi} \int_{r=0}^{1} \frac{r d r d \theta}{\left(2-r^{2}\right)^{2}}=2 \pi \int_{1}^{2} \frac{d t}{2 t^{2}}=\pi / 2 .
$$

Substitution formula for triple integrals

As discussed above suppose a three dimensional domain G is transformed onto a domain D with a transformation $x=x(u, v, w), y=y(u, v, w), z=z(u, v, w)$, then

$$
\iiint_{D} f(x, y, z) d V=\iiint_{G} F(u, v, w)|J(u, v, w)| d V
$$

where

$$
J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right| .
$$

Example 1.2.4 Evaluate $\iiint_{\Omega}\left(x^{2} y+3 x y z\right) d V$ where $R=\{(x, y, z): 1 \leq x \leq 2,0 \leq x y \leq$ $2,0 \leq z \leq 1\}$.
solution: We take the transformation $u=x, v=x y$ and $w=z$. Then the planes $x=1,2$ transforms to $u=1,2$. The plane $y=0$ transforms to $v=0$. The surface $x y=2$ transforms to $v=2$. Then the Jacobian J is

$$
\frac{1}{J}=\left|\begin{array}{lll}
1 & 0 & 0 \\
y & x & 0 \\
0 & 0 & 1
\end{array}\right|=x=u
$$

Now by substitution formula,

$$
\begin{aligned}
I & =\int_{u=1}^{2} \int_{v=0}^{2} \int_{w=0}^{1}(u v+3 v w) \frac{1}{u} d w d v d u \\
& =\int_{1}^{2} \int_{0}^{2}\left(v+\frac{3 v}{2 u}\right) d v d u \\
& =\int_{1}^{2}\left(2+\frac{3}{u}\right) d u=2+3 \ln 2 .
\end{aligned}
$$

