Lecture 38

1 Cylindrical and Spherical coordinates

1.1 Cylindrical coordinates

A point P in the space $\left(\mathbb{R}^{3}\right)$ is represented by (r, θ, z) where r, θ are polar coordinates of the projection of P on to $x y$-plane and z is the z distance of the projection from P. When we take the transformation $x=r \cos \theta, y=r \sin \theta, z=z$, the Jacobian is

$$
J=\left|\begin{array}{lll}
x_{r} & x_{\theta} & x_{z} \\
y_{r} & y_{\theta} & y_{z} \\
z_{r} & z_{\theta} & z_{z}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r
$$

Example 1.1.1 Find the volume of the cylinder $x^{2}+(y-1)^{2}=1$ bounded by $z=x^{2}+y^{2}$ and $z=0$.

Figure 1: Volume bounded.

Solution: Drawing a line parallel to z axis, we see that the limits of z are from 0 to $x^{2}+y^{2}$ and the projection onto $x y$-plane is the disc: $R: x^{2}+(y-1)^{2} \leq 1$. Therefore,

$$
V=\iint_{R} \int_{z=0}^{x^{2}+y^{2}} d z d A
$$

Now taking the cylindrical coordinates $x=r \cos \theta, y=r \sin \theta, z=z$ we get the projection to be

$$
\begin{gathered}
r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2 r \sin \theta=0 \\
\text { i.e., } r(r-2 \sin \theta)=0 \Longrightarrow r=0 \text { to } r=2 \sin \theta
\end{gathered}
$$

$$
\begin{aligned}
V & =\int_{\theta=0}^{\pi} \int_{r=0}^{2 \sin \theta} \int_{z=0}^{r^{2}} r d z d r d \theta \\
& =\int_{\theta=0}^{\pi} \int_{r=0}^{2 \sin \theta} r^{3} d r d \theta \\
& =4 \int_{0}^{\pi} \sin ^{4} \theta d \theta=\frac{5 \pi}{4}
\end{aligned}
$$

1.2 Spherical polar coordinates

A point P in the space is represented by (ρ, θ, ϕ) where ρ is the distance of P from the origin, ϕ is the angle made by the ray $O P$ with positive z axis and θ is the angle made by the projection of P (onto $x y$-plane) with positive x-axis. So it is not difficult to see that the relation with cartesian coordinates: The projection of P on $x y$-plane has polar representation: $x=r \cos \theta, y=r \sin \theta$ where r is the distance of the projected point to origin. Therefore $r=\rho \sin \phi$. From the definition of ϕ it is easy to see that $z=\rho \cos \phi$ and

$$
x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi
$$

The Jacobian in this case is

$$
J=\left|\begin{array}{lll}
x_{\rho} & x_{\theta} & x_{\phi} \\
y_{\rho} & y_{\theta} & y_{\phi} \\
z_{\rho} & z_{\theta} & z_{\phi}
\end{array}\right|=\left|\begin{array}{ccc}
\rho \sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\
\rho \sin \phi \sin \theta & r \cos \theta \sin \phi & 0 \\
\cos \phi & 0 & -\rho \sin \phi
\end{array}\right|=\rho^{2} \sin \phi
$$

To find limits of integration in spherical coordinates,

1. Draw a ray from the origin to find the surfaces $\rho=g(\theta, \phi), \rho=g_{2}(\theta, \phi)$ where it enters the region and leaves the region.
2. Rotate this ray away and towards z-axis to find the limits of ϕ
3. Identify the projection R of the domain on the $x y$-plane and polar form of R to write the limits of θ.
Example 1.2.1 Evaluate $\iiint_{\Omega} \frac{d V}{\sqrt{1+x^{2}+y^{2}+z^{2}}}$ where Ω is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
Solution: Going to spherical polar coordinates $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$, we get

$$
\begin{aligned}
I & =\int_{\rho=0}^{1} \int_{\theta=0}^{2 \pi} \int_{\phi=0}^{\pi} \frac{\rho^{2}}{\sqrt{1+\rho^{2}}} \sin \phi d \phi d \theta d \rho \\
& =(2 \pi \times 2) \int_{0}^{1} \frac{\rho^{2}}{\sqrt{1+\rho^{2}}} d \rho=4 \pi\left(\sqrt{2}-\frac{1}{2} \ln (\sqrt{2}+1)\right) .
\end{aligned}
$$

Example 1.2.2 Evaluate $I=\iiint_{\Omega} x d V$ where Ω is the part of the ball $x^{2}+y^{2}+z^{2} \leq 4$ in the first octant.

Solution: Going to cylindrical coordinates, $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$. Since the domain is the ball of radius 4 , we see that the limits of ρ are from 0 to 2. Again since it is cut by the xy-plane below, ϕ varies from 0 to $\pi / 2$. The projection is the circle in the first quadrant with radius 2 . So θ varies from 0 to $\pi / 2$. Hence,

$$
\begin{aligned}
I & =\int_{\rho=0}^{2} \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{\pi / 2} \rho \sin \phi \cos \theta\left(\rho^{2} \sin \phi\right) d \rho d \theta d \phi \\
& =4 \int_{\theta=0}^{\pi / 2} \int_{\phi=0}^{\pi / 2} \sin ^{2} \phi \cos \theta d \phi d \theta=\pi
\end{aligned}
$$

Volume of solids of revolution: Consider a function $f(x) \geq 0, a \leq x \leq b$ and revolve it around x-axis. Then the region can be represented as

$$
R=\left\{(x, y, z): a \leq x \leq b, \sqrt{y^{2}+z^{2}} \leq f(x)\right\}
$$

Taking the cylindrical coordinates $x=x, y=r \sin \theta, z=r \cos \theta$, we get

$$
R=\{(x, r, \theta): a \leq x \leq b, 0 \leq r \leq f(x), 0 \leq \theta \leq 2 \pi\}
$$

Therefore, the voloume is

$$
\begin{aligned}
V & =\int_{a}^{b} \int_{0}^{2 \pi} \int_{0}^{f(x)} r d r d \theta d x \\
& =2 \pi \int_{a}^{b} \frac{[f(x)]^{2}}{2}=\pi \int_{a}^{b}(f(x))^{2} d x
\end{aligned}
$$

Parametrizations of Surfaces: Let

$$
\mathbf{r}(u, v)=f(u, v) \hat{i}+g(u, v) \hat{j}+h(u, v) \hat{k}
$$

be a continuous vector function defined on a plane region R. The variable u and v are parameters and R is the parameter domain. The range of r is called the surface S. We assume that r is one-to-one on the interior of R so that S does not cross itself.

Examples 1.2.3 1. A parametrization of the cone

$$
z=\sqrt{x^{2}+y^{2}}, \quad 0 \leq z \leq 1
$$

Here cylindrical coordinates provide everything we need. Let

$$
x(r, \theta)=r \cos \theta, y(r, \theta)=r \sin \theta z=\sqrt{x^{2}+y^{2}}=r
$$

the domain of r, θ is $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. So the required parametrization is

$$
\mathbf{r}(r, \theta)=r \cos \theta \hat{i}+r \sin \theta \hat{j}+r \hat{k}, 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi .
$$

2. A parametrization of sphere

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

Here we take spherical coordinates. Let $x=a \sin \phi \cos \theta, y=a \sin \phi \sin \theta$, and $z=$ $a \cos \phi, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$. Taking $u=\phi$ and $v=\theta$, we get

$$
\mathbf{r}(\theta, \phi)=a \sin \phi \cos \theta \hat{i}+a \sin \phi \sin \theta \hat{j}+a \cos \phi \hat{k}, \quad 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi .
$$

3. A parametrization of cylinder $x^{2}+(y-3)^{2}=9,0 \leq z \leq 5$ we take cylindrical coordinates,

$$
x(r, \theta)=r \cos \theta, y(r, \theta)=r \sin \theta z=z
$$

Substituting in $x^{2}+(y-3)^{2}=9$ we get $r^{2}+6 r \cos \theta=0$. Therefore, $r=6 \sin \theta$.

$$
\mathbf{r}(\theta, z)=3 \sin 2 \theta \hat{i}+6 \sin ^{2} \theta \hat{j}+z \hat{k}, 0 \leq \theta \pi, 0 \leq z \leq 5
$$

