Lecture 38

1 Cylindrical and Spherical coordinates

1.1 Cylindrical coordinates

A point P in the space (\mathbb{R}^3) is represented by (r, θ, z) where r, θ are polar coordinates of the projection of P on to xy-plane and z is the z distance of the projection from P. When we take the transformation $x = r \cos \theta, y = r \sin \theta, z = z$, the Jacobian is

	x_r	x_{θ}	x_z		$\cos heta$	$-r\sin\theta$	0	
J =	y_r	y_{θ}	y_z	=	$\sin heta$	$r\cos\theta$	0	= r
	z_r	z_{θ}	z_z		0	0	1	

Example 1.1.1 Find the volume of the cylinder $x^2 + (y-1)^2 = 1$ bounded by $z = x^2 + y^2$ and z = 0.

Figure 1: Volume bounded.

Solution: Drawing a line parallel to z axis, we see that the limits of z are from 0 to $x^2 + y^2$ and the projection onto xy-plane is the disc: $R: x^2 + (y-1)^2 \leq 1$. Therefore,

$$V = \iint_R \int_{z=0}^{x^2 + y^2} dz dA$$

Now taking the cylindrical coordinates $x = r \cos \theta$, $y = r \sin \theta$, z = z we get the projection to be

$$r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta - 2r\sin\theta = 0$$

i.e., $r(r - 2\sin\theta) = 0 \implies r = 0$ to $r = 2\sin\theta$

$$V = \int_{\theta=0}^{\pi} \int_{r=0}^{2\sin\theta} \int_{z=0}^{r^2} r dz \ dr \ d\theta$$
$$= \int_{\theta=0}^{\pi} \int_{r=0}^{2\sin\theta} r^3 dr \ d\theta$$
$$= 4 \int_0^{\pi} \sin^4\theta d\theta = \frac{5\pi}{4}$$

1.2 Spherical polar coordinates

A point P in the space is represented by (ρ, θ, ϕ) where ρ is the distance of P from the origin, ϕ is the angle made by the ray OP with positive z axis and θ is the angle made by the projection of P (onto xy-plane) with positive x-axis. So it is not difficult to see that the relation with cartesian coordinates: The projection of P on xy-plane has polar representation: $x = r \cos \theta, y = r \sin \theta$ where r is the distance of the projected point to origin. Therefore $r = \rho \sin \phi$. From the definition of ϕ it is easy to see that $z = \rho \cos \phi$ and

$$x = \rho \sin \phi \cos \theta, \ y = \rho \sin \phi \sin \theta, \ z = \rho \cos \phi$$

The Jacobian in this case is

$$J = \begin{vmatrix} x_{\rho} & x_{\theta} & x_{\phi} \\ y_{\rho} & y_{\theta} & y_{\phi} \\ z_{\rho} & z_{\theta} & z_{\phi} \end{vmatrix} = \begin{vmatrix} \rho \sin \phi \cos \theta & -\rho \sin \phi \sin \theta & \rho \cos \phi \cos \theta \\ \rho \sin \phi \sin \theta & r \cos \theta \sin \phi & 0 \\ \cos \phi & 0 & -\rho \sin \phi \end{vmatrix} = \rho^{2} \sin \phi$$

To find limits of integration in spherical coordinates,

- 1. Draw a ray from the origin to find the surfaces $\rho = g(\theta, \phi), \rho = g_2(\theta, \phi)$ where it enters the region and leaves the region.
- 2. Rotate this ray away and towards z-axis to find the limits of ϕ
- 3. Identify the projection R of the domain on the xy-plane and polar form of R to write the limits of θ .

Example 1.2.1 Evaluate $\iiint_{\Omega} \frac{dV}{\sqrt{1+x^2+y^2+z^2}}$ where Ω is the unit ball $x^2+y^2+z^2 \leq 1$.

Solution: Going to spherical polar coordinates $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, we get

$$I = \int_{\rho=0}^{1} \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \frac{\rho^2}{\sqrt{1+\rho^2}} \sin\phi \ d\phi \ d\theta \ d\rho$$
$$= (2\pi \times 2) \int_{0}^{1} \frac{\rho^2}{\sqrt{1+\rho^2}} d\rho = 4\pi(\sqrt{2} - \frac{1}{2}\ln(\sqrt{2} + 1)).$$

Example 1.2.2 Evaluate $I = \iiint_{\Omega} x dV$ where Ω is the part of the ball $x^2 + y^2 + z^2 \le 4$ in the first octant.

Solution: Going to cylindrical coordinates, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Since the domain is the ball of radius 4, we see that the limits of ρ are from 0 to 2. Again since it is cut by the xy-plane below, ϕ varies from 0 to $\pi/2$. The projection is the circle in the first quadrant with radius 2. So θ varies from 0 to $\pi/2$. Hence,

$$I = \int_{\rho=0}^{2} \int_{\theta=0}^{\pi/2} \int_{\phi=0}^{\pi/2} \rho \sin \phi \cos \theta \ (\rho^{2} \sin \phi) \ d\rho \ d\theta \ d\phi$$
$$= 4 \int_{\theta=0}^{\pi/2} \int_{\phi=0}^{\pi/2} \sin^{2} \phi \cos \theta d\phi \ d\theta = \pi$$

Volume of solids of revolution: Consider a function $f(x) \ge 0, a \le x \le b$ and revolve it around x-axis. Then the region can be represented as

$$R = \{(x, y, z) : a \le x \le b, \sqrt{y^2 + z^2} \le f(x)\}$$

Taking the cylindrical coordinates $x = x, y = r \sin \theta, z = r \cos \theta$, we get

$$R = \{(x, r, \theta) : a \le x \le b, \ 0 \le r \le f(x), 0 \le \theta \le 2\pi\}$$

Therefore, the volume is

$$V = \int_{a}^{b} \int_{0}^{2\pi} \int_{0}^{f(x)} r dr d\theta dx$$

= $2\pi \int_{a}^{b} \frac{[f(x)]^{2}}{2} = \pi \int_{a}^{b} (f(x))^{2} dx$

Parametrizations of Surfaces: Let

$$\mathbf{r}(u,v) = f(u,v)\hat{i} + g(u,v)\hat{j} + h(u,v)\hat{k}$$

be a continuous vector function defined on a plane region R. The variable u and v are parameters and R is the parameter domain. The range of r is called the surface S. We assume that r is one-to-one on the interior of R so that S does not cross itself.

Examples 1.2.3 *1.* A parametrization of the cone

$$z = \sqrt{x^2 + y^2}, \quad 0 \le z \le 1$$

Here cylindrical coordinates provide everything we need. Let

$$x(r,\theta) = r\cos\theta, \ y(r,\theta) = r\sin\theta \ z = \sqrt{x^2 + y^2} = r$$

the domain of r, θ is $0 \le r \le 1$ and $0 \le \theta \le 2\pi$. So the required parametrization is

$$\mathbf{r}(r,\theta) = r\cos\theta \ \hat{i} + r\sin\theta \ \hat{j} + r \ \hat{k}, \ 0 \le r \le 1, 0 \le \theta \le 2\pi.$$

2. A parametrization of sphere

$$x^2 + y^2 + z^2 = a^2$$

Here we take spherical coordinates. Let $x = a \sin \phi \cos \theta$, $y = a \sin \phi \sin \theta$, and $z = a \cos \phi$, $0 \le \phi \le \pi$, $0 \le \theta \le 2\pi$. Taking $u = \phi$ and $v = \theta$, we get

$$\mathbf{r}(\theta,\phi) = a\sin\phi\cos\theta \ \hat{i} + a\sin\phi\sin\theta \ \hat{j} + a\cos\phi \ \hat{k}, \quad 0 \le \phi \le \pi, 0 \le \theta \le 2\pi.$$

3. A parametrization of cylinder $x^2 + (y-3)^2 = 9, \ 0 \le z \le 5$ we take cylindrical coordinates,

$$x(r,\theta) = r\cos\theta, \ y(r,\theta) = r\sin\theta \ z = z$$

Substituting in $x^2 + (y-3)^2 = 9$ we get $r^2 + 6r\cos\theta = 0$. Therefore, $r = 6\sin\theta$.

$$\mathbf{r}(\theta, z) = 3\sin 2\theta \ \hat{i} + 6\sin^2 \theta \ \hat{j} + z \ \hat{k}, \ 0 \le \theta\pi, 0 \le z \le 5$$