
Lecture 39

1 Surface Area and Surface integrals

1.1 Surface Area

Consider a surface S defined with f(x, y, z) = c. Let R be its projection on xy-plane. Assume

that this projection is one-one, onto. Let Rk be a small rectangle with area ∆Ak and let

∆σk be the piece of surface above this rectangle. Let ∆Pk be the tangent plane at (xk, yk, zk)

of the surface ∆σk. Now consider the parallelogram with ∆Pk and ∆Ak as upper and lower

planes of the parallelogram. We approximate the area of the surface with the area of the

tangent plane ∆Pk.

Now let p̂ be the unit normal to the plane containing Rk and ∇f is the normal to the

surface. Let uk, vk be the vectors along the sides of the tangent plane ∆Pk. Then the area

of ∆Pk is |uk × vk| and uk × vk is the normal vector to ∆Pk. Thus ∇f and uk × vk are both

normals to the tangent plane ∆Pk.

The angle between the plane ∆Ak and ∆Pk is same as the angle between their normals.

i.e., the angle between p̂ and uk × vk. From the geometry, the area of the projection of this

tangent plane is |(uk× vk) · p̂|(proof of this can be seen in Thomas calculus Appendix 8). i.e.,

∆Ak = |(uk × vk) · p̂| = |(uk × vk)||p̂|| cos(angle between (uk × vk) and p̂)

In other words,

∆Pk| cos γk| = ∆Ak or ∆Pk =
∆Ak
| cos γk|

where γk = angle between (uk× vk) and p̂. This angle can be calculated easily by noting that

∇f and uk × vk are both normals to the tangent plane.

(This formula is simple in case of straight lines: Let OP be the line from origin and let

R be the projection of P on x-axis. Then OR = OP cos γ where γ is the angle between OP

and OR. Now imagine the Area of plane is nothing but ”sum” of lengths of lines.)

So

|∇f · p̂| = |∇f ||p̂|| cos γk|

Therefore,

Surface Area ≈
∑
k

∆Pk =
∑
k

|∇f |
|∇f · p̂|

∆Ak

This sum converges to

Surface Area =

∫∫
R

|∇f |
|∇f · p̂|

dA

where R is the projection of S on to one of the planes and p̂ is the unit normal to the plane

of projection.
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Figure 1: Paraboloid cut by z=2.

Example 1.1.1 Find the surface area of the curved surface of paraboloid z = x2 + y2 that is

cut by the plane z = 2.

Solution: The equation of surface is f(x, y, z) = z − x2 − y2 = 0. Clearly this is one-one

from xy-plane to IR3. So the projection of the surface {(x, y, x2 + y2) : x2 + y2 ≤ 2} is the

disc R : x2 + y2 ≤ 2. Since the plane of projection is xy-plane, p̂ = k̂. Hence

∇f = −2xî− 2yĵ + k̂

S =

∫∫
R

|∇f |
|∇f · p̂

dA

=

∫∫
R

√
4x2 + 4y2 + 1 dA

Going to polar coordinates x = r cos θ, y = r sin θ,

S =

∫ 2π

0

∫ √
2

r=0

√
1 + 4r2r dr dθ = 13π

Example 1.1.2 Find the surface area of the cap obtained by cutting the hemisphere x2+y2+

z2 = 2 by the cone z =
√
x2 + y2.

Solution: The equation of surface is f(x, y, z) = x2 + y2 + z2 − 2 = 0 and we can take the

projection onto xy-plane. So p̂ = k̂. The projection is obtained by solving x2 + y2 + z2 =

2, z =
√
x2 + y2. i.e., R = x2 + y2 = 1.

∇f = 2xî+ 2yĵ + 2zk̂

|∇f · p̂| = 2z = 2
√

2− x2 − y2
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Figure 2: Cap obtained by cutting the hemisphere by the cone.

Therefore, using polar coordinates x = r cos θ, y = r sin θ,

S =

∫∫
R

√
2√

2− x2 − y2
dA

=

∫ 2π

0

∫ 1

0

√
2√

2− r2
r dr dθ = 2π(2−

√
2).

Surface area of solids of revolution: If a surface is generated by revolving a curve

z = f(y), y ∈ (0, ρ) in the yz-plane about the z-axis. This surface is the graph of function

z = f(
√
x2 + y2). Then by taking g(x, y, z) = z − f(

√
x2 + y2) over the circular domain R

which is the projection of the solid. So, we get

S =

∫∫
R

|∇g|
|∇g · k|

dxdy =

∫∫
R

(1 + f ′(
√
x2 + y2))dxdy

Now using poloar coordinates x = r cos θ, y = r sin θ, we get

S =

∫ 2π

0

∫ ρ

0

√
1 + (f ′(r))2 rdrdθ = 2π

∫ ρ

r=0

√
1 + (f ′(r))2 rdr

1.2 Surface Integrals

Let g(x, y, z) be a function defined over a surface S. Then we can think of integration of

g over S. Suppose, a surface S is heated up, we have a temperature distributed over this

surface. Let T (x, y, z) be the temperature at (x, y, z) of the surface. Then we can calculate

the total temperature on S using the Riemann integration.

Let R be the projection of S on the plane. We partition R into small rectangles Ak.

Let ∆Sk be the surface above the ∆Ak. We approximate this surface area element with its
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tangent plane ∆Pk. As we refine the rectangular partition this ∆PK approximated the ∆Sk.

Then the total temperature may be approximated as∑
k

g(xk, yk, zk)∆Pk =
∑
k

g(xk, yk, zk)
∆Ak
| cos γk|

=
∑
k

g(xk, yk, zk)
|∇f |
|∇f · p̂|

dA

where p̂ is the unit normal to R or the plane of projection. Now taking limit n→∞, we get∫∫
S
g(x, y, z)dS =

∫∫
R
g(x, y, z)

|∇f |
|∇f · p̂|

dA

If the surface is defined as f = z − h(x, y) = 0, then∫∫
S
g(x, y, z)dS =

∫∫
R
g(x, y, h(x, y))

|∇f |
|∇f · k̂|

dA.

Example 1.2.1 Integrate g(x, y, z) = z over the surface S cut from the cylinder y2 + z2 =

1, z ≥ 0, by the planes x = 0 and x = 1.

Solution: f = y2 + z2 and this surface can be projected 1-1, onto to R of xy plane. This

projection is the rectangle with vertices (1,−1), (1, 1), (0, 1), (0,−1). So p̂ = k̂

|∇f |
|∇f · p̂

=
2
√
y2 + z2

|2z|
=

1

z

Therefore, ∫∫
S
zdS =

∫∫
R
z

1

z
dA = Area(R) = 2

Parametrizations of Surfaces: Let

r(u, v) = f(u, v)̂i+ g(u, v)ĵ + h(u, v)k̂

be a parametrized surface.

Definition 1.2.2 (Smooth surface): A parametrized surface r(u, v) is called smooth surface

if ru and rv are continuous and ru × rv is never zero.

Surface Area: We approximate the surface area element by the parallelogram on the tangent

plane whose sides are determined by the vectors ru∆u and rv∆v. The total surface area is

approximately equal to the sum of area of of this parallelograms

S ∼
∑
u

∑
v

|ru × rv|∆u∆v

This sum is a Riemann sum of the integral
∫ b
a

∫ b
a |ru × rv| dudv. Therefore we have

The Surface area of smooth surface: r(u, v) = f(u, v)̂i + g(u, v)ĵ + h(u, v)k̂, a ≤ u ≤
b, c ≤ v ≤ d is

S =

∫ b

a

∫ d

c
|ru × rv| dudv
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Problem 1.2.1 Find the surface are of the surface of the cone

z =
√
x2 + y2, 0 ≤ z ≤ 1

Solution: We found a parametrization of the cone as

r(r, θ) = r cos θ î+ r sin θ ĵ + r k̂, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

We can find that

|rr × rθ|
√
r2 cos2 θ + r2 sin2 θ + r2 =

√
2r

Therefore,

Surface Area =

∫ 2π

0

∫ 1

0

√
2rdrdθ = π

√
2

Surface integrals: Let F (u, v) be a continuous function defined on the parametrized surface

S: r(u, v) : R→ S, where R : a ≤ u ≤ b, c ≤ v ≤ d. Then∫∫
S
FdS =

∫ b

a

∫ d

c
F (u, v)|ru × rv|dudv

Problem 1.2.2 Evaluate the surface integral
∫∫
S(x + y + z)dS over the surface of cylinder

x2 + y2 = 9, 0 ≤ z ≤ 4.

Solution: Using the cylindrical coordinates: x = 3 cos θ, y = 3 sin θ, z = z over the parameter

domain {(θ, z) : 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 4}. The surface can be represented as

T (θ, z) = 3 cos θî+ 3 sin θĵ + zk̂.

Then |Tθ × Tz| =
√

9 cos2 θ + 9 sin2 θ = 3. The given integral is equal to∫∫
S

(x+ y + z)dS =

∫∫
S

(3 cos θ + 3 sin θ + z)|Tθ × Tz|dθdz∫ 4

z=0

∫ 2π

θ=0
(3 cos θ + 3 sin θ + z)dθdz = 6π

∫ 4

0
zdz = 48π.
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