Lecture 39

1 Surface Area and Surface integrals

1.1 Surface Area

Consider a surface S defined with $f(x, y, z)=c$. Let R be its projection on $x y$-plane. Assume that this projection is one-one, onto. Let R_{k} be a small rectangle with area ΔA_{k} and let $\Delta \sigma_{k}$ be the piece of surface above this rectangle. Let ΔP_{k} be the tangent plane at (x_{k}, y_{k}, z_{k}) of the surface $\Delta \sigma_{k}$. Now consider the parallelogram with ΔP_{k} and ΔA_{k} as upper and lower planes of the parallelogram. We approximate the area of the surface with the area of the tangent plane ΔP_{k}.

Now let \hat{p} be the unit normal to the plane containing R_{k} and ∇f is the normal to the surface. Let u_{k}, v_{k} be the vectors along the sides of the tangent plane ΔP_{k}. Then the area of ΔP_{k} is $\left|u_{k} \times v_{k}\right|$ and $u_{k} \times v_{k}$ is the normal vector to ΔP_{k}. Thus ∇f and $u_{k} \times v_{k}$ are both normals to the tangent plane ΔP_{k}.

The angle between the plane ΔA_{k} and ΔP_{k} is same as the angle between their normals. i.e., the angle between \hat{p} and $u_{k} \times v_{k}$. From the geometry, the area of the projection of this tangent plane is $\left|\left(u_{k} \times v_{k}\right) \cdot \hat{p}\right|$ (proof of this can be seen in Thomas calculus Appendix 8). i.e.,

$$
\Delta A_{k}=\left|\left(u_{k} \times v_{k}\right) \cdot \hat{p}\right|=\left|\left(u_{k} \times v_{k}\right)\right| \hat{p} \| \cos \left(\text { angle between }\left(u_{k} \times v_{k}\right) \text { and } \hat{p}\right)
$$

In other words,

$$
\Delta P_{k}\left|\cos \gamma_{k}\right|=\Delta A_{k} \text { or } \Delta P_{k}=\frac{\Delta A_{k}}{\left|\cos \gamma_{k}\right|}
$$

where $\gamma_{k}=$ angle between $\left(u_{k} \times v_{k}\right)$ and \hat{p}. This angle can be calculated easily by noting that ∇f and $u_{k} \times v_{k}$ are both normals to the tangent plane.
(This formula is simple in case of straight lines: Let $O P$ be the line from origin and let R be the projection of P on x-axis. Then $O R=O P \cos \gamma$ where γ is the angle between $O P$ and $O R$. Now imagine the Area of plane is nothing but "sum" of lengths of lines.)

So

$$
|\nabla f \cdot \hat{p}|=|\nabla f||\hat{p}|\left|\cos \gamma_{k}\right|
$$

Therefore,

$$
\text { Surface Area } \approx \sum_{k} \Delta P_{k}=\sum_{k} \frac{|\nabla f|}{|\nabla f \cdot \hat{p}|} \Delta A_{k}
$$

This sum converges to

$$
\text { Surface Area }=\iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \hat{p}|} d A
$$

where R is the projection of S on to one of the planes and \hat{p} is the unit normal to the plane of projection.

Figure 1: Paraboloid cut by $\mathrm{z}=2$.

Example 1.1.1 Find the surface area of the curved surface of paraboloid $z=x^{2}+y^{2}$ that is cut by the plane $z=2$.

Solution: The equation of surface is $f(x, y, z)=z-x^{2}-y^{2}=0$. Clearly this is one-one from $x y$-plane to \mathbb{R}^{3}. So the projection of the surface $\left\{\left(x, y, x^{2}+y^{2}\right): x^{2}+y^{2} \leq 2\right\}$ is the disc $R: x^{2}+y^{2} \leq 2$. Since the plane of projection is $x y$-plane, $\hat{p}=\hat{k}$. Hence

$$
\begin{aligned}
& \nabla f=-2 x \hat{i}-2 y \hat{j}+\hat{k} \\
S & =\iint_{R} \frac{|\nabla f|}{\mid \nabla f \cdot \hat{p}} d A \\
= & \iint_{R} \sqrt{4 x^{2}+4 y^{2}+1} d A
\end{aligned}
$$

Going to polar coordinates $x=r \cos \theta, y=r \sin \theta$,

$$
S=\int_{0}^{2 \pi} \int_{r=0}^{\sqrt{2}} \sqrt{1+4 r^{2}} r d r d \theta=13 \pi
$$

Example 1.1.2 Find the surface area of the cap obtained by cutting the hemisphere $x^{2}+y^{2}+$ $z^{2}=2$ by the cone $z=\sqrt{x^{2}+y^{2}}$.

Solution: The equation of surface is $f(x, y, z)=x^{2}+y^{2}+z^{2}-2=0$ and we can take the projection onto $x y$-plane. So $\hat{p}=\hat{k}$. The projection is obtained by solving $x^{2}+y^{2}+z^{2}=$ $2, z=\sqrt{x^{2}+y^{2}}$. i.e., $R=x^{2}+y^{2}=1$.

$$
\begin{gathered}
\nabla f=2 x \hat{i}+2 y \hat{j}+2 z \hat{k} \\
|\nabla f \cdot \hat{p}|=2 z=2 \sqrt{2-x^{2}-y^{2}}
\end{gathered}
$$

Figure 2: Cap obtained by cutting the hemisphere by the cone.

Therefore, using polar coordinates $x=r \cos \theta, y=r \sin \theta$,

$$
\begin{aligned}
S & =\iint_{R} \frac{\sqrt{2}}{\sqrt{2-x^{2}-y^{2}}} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \frac{\sqrt{2}}{\sqrt{2-r^{2}}} r d r d \theta=2 \pi(2-\sqrt{2}) .
\end{aligned}
$$

Surface area of solids of revolution: If a surface is generated by revolving a curve $z=f(y), y \in(0, \rho)$ in the $y z$-plane about the z-axis. This surface is the graph of function $z=f\left(\sqrt{x^{2}+y^{2}}\right)$. Then by taking $g(x, y, z)=z-f\left(\sqrt{x^{2}+y^{2}}\right)$ over the circular domain R which is the projection of the solid. So, we get

$$
S=\iint_{R} \frac{|\nabla g|}{|\nabla g \cdot k|} d x d y=\iint_{R}\left(1+f^{\prime}\left(\sqrt{x^{2}+y^{2}}\right)\right) d x d y
$$

Now using poloar coordinates $x=r \cos \theta, y=r \sin \theta$, we get

$$
S=\int_{0}^{2 \pi} \int_{0}^{\rho} \sqrt{1+\left(f^{\prime}(r)\right)^{2}} r d r d \theta=2 \pi \int_{r=0}^{\rho} \sqrt{1+\left(f^{\prime}(r)\right)^{2}} r d r
$$

1.2 Surface Integrals

Let $g(x, y, z)$ be a function defined over a surface S. Then we can think of integration of g over S. Suppose, a surface S is heated up, we have a temperature distributed over this surface. Let $T(x, y, z)$ be the temperature at (x, y, z) of the surface. Then we can calculate the total temperature on S using the Riemann integration.

Let R be the projection of S on the plane. We partition R into small rectangles A_{k}. Let ΔS_{k} be the surface above the ΔA_{k}. We approximate this surface area element with its
tangent plane ΔP_{k}. As we refine the rectangular partition this ΔP_{K} approximated the ΔS_{k}. Then the total temperature may be approximated as

$$
\sum_{k} g\left(x_{k}, y_{k}, z_{k}\right) \Delta P_{k}=\sum_{k} g\left(x_{k}, y_{k}, z_{k}\right) \frac{\Delta A_{k}}{\left|\cos \gamma_{k}\right|}=\sum_{k} g\left(x_{k}, y_{k}, z_{k}\right) \frac{|\nabla f|}{|\nabla f \cdot \hat{p}|} d A
$$

where \hat{p} is the unit normal to R or the plane of projection. Now taking limit $n \rightarrow \infty$, we get

$$
\iint_{S} g(x, y, z) d S=\iint_{R} g(x, y, z) \frac{|\nabla f|}{|\nabla f \cdot \hat{p}|} d A
$$

If the surface is defined as $f=z-h(x, y)=0$, then

$$
\iint_{S} g(x, y, z) d S=\iint_{R} g(x, y, h(x, y)) \frac{|\nabla f|}{|\nabla f \cdot \hat{k}|} d A .
$$

Example 1.2.1 Integrate $g(x, y, z)=z$ over the surface S cut from the cylinder $y^{2}+z^{2}=$ $1, z \geq 0$, by the planes $x=0$ and $x=1$.

Solution: $f=y^{2}+z^{2}$ and this surface can be projected 1-1, onto to R of $x y$ plane. This projection is the rectangle with vertices $(1,-1),(1,1),(0,1),(0,-1)$. So $\hat{p}=\hat{k}$

$$
\frac{|\nabla f|}{\mid \nabla f \cdot \hat{p}}=\frac{2 \sqrt{y^{2}+z^{2}}}{|2 z|}=\frac{1}{z}
$$

Therefore,

$$
\iint_{S} z d S=\iint_{R} z \frac{1}{z} d A=\operatorname{Area}(R)=2
$$

Parametrizations of Surfaces: Let

$$
\mathbf{r}(u, v)=f(u, v) \hat{i}+g(u, v) \hat{j}+h(u, v) \hat{k}
$$

be a parametrized surface.
Definition 1.2.2 (Smooth surface): A parametrized surface $\mathbf{r}(u, v)$ is called smooth surface if \mathbf{r}_{u} and \mathbf{r}_{v} are continuous and $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is never zero.

Surface Area: We approximate the surface area element by the parallelogram on the tangent plane whose sides are determined by the vectors $r_{u} \Delta u$ and $r_{v} \Delta v$. The total surface area is approximately equal to the sum of area of of this parallelograms

$$
S \sim \sum_{u} \sum_{v}\left|r_{u} \times r_{v}\right| \Delta u \Delta v
$$

This sum is a Riemann sum of the integral $\int_{a}^{b} \int_{a}^{b}\left|r_{u} \times r_{v}\right| d u d v$. Therefore we have
The Surface area of smooth surface: $\mathbf{r}(u, v)=f(u, v) \hat{i}+g(u, v) \hat{j}+h(u, v) \hat{k}, a \leq u \leq$ $b, c \leq v \leq d$ is

$$
S=\int_{a}^{b} \int_{c}^{d}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

Problem 1.2.1 Find the surface are of the surface of the cone

$$
z=\sqrt{x^{2}+y^{2}}, \quad 0 \leq z \leq 1
$$

Solution: We found a parametrization of the cone as

$$
\mathbf{r}(r, \theta)=r \cos \theta \hat{i}+r \sin \theta \hat{j}+r \hat{k}, 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi
$$

We can find that

$$
\left|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right| \sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta+r^{2}}=\sqrt{2} r
$$

Therefore,

$$
\text { Surface Area }=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{2} r d r d \theta=\pi \sqrt{2}
$$

Surface integrals: Let $F(u, v)$ be a continuous function defined on the parametrized surface $S: \mathbf{r}(u, v): R \rightarrow S$, where $R: a \leq u \leq b, c \leq v \leq d$. Then

$$
\iint_{S} F d S=\int_{a}^{b} \int_{c}^{d} F(u, v)\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v
$$

Problem 1.2.2 Evaluate the surface integral $\iint_{S}(x+y+z) d S$ over the surface of cylinder $x^{2}+y^{2}=9,0 \leq z \leq 4$.

Solution: Using the cylindrical coordinates: $x=3 \cos \theta, y=3 \sin \theta, z=z$ over the parameter domain $\{(\theta, z): 0 \leq \theta \leq 2 \pi, 0 \leq z \leq 4\}$. The surface can be represented as

$$
T(\theta, z)=3 \cos \theta \hat{i}+3 \sin \theta \hat{j}+z \hat{k}
$$

Then $\left|T_{\theta} \times T_{z}\right|=\sqrt{9 \cos ^{2} \theta+9 \sin ^{2} \theta}=3$. The given integral is equal to

$$
\begin{aligned}
\iint_{S}(x+y+z) d S= & \iint_{S}(3 \cos \theta+3 \sin \theta+z)\left|T_{\theta} \times T_{z}\right| d \theta d z \\
& \int_{z=0}^{4} \int_{\theta=0}^{2 \pi}(3 \cos \theta+3 \sin \theta+z) d \theta d z=6 \pi \int_{0}^{4} z d z=48 \pi
\end{aligned}
$$

