Lecture 4

1 Bolzano-Weierstrass Theorem

1.1 Divergent sequence and Monotone sequences

Definition 1.1.1. Let $\{a_n\}$ be a sequence of real numbers. We say that a_n approaches infinity or diverges to infinity, if for any real number M > 0, there is a positive integer N such that

$$n \ge N \implies a_n \ge M.$$

- If a_n approaches infinity, then we write $a_n \to \infty$ as $n \to \infty$.
- A similar definition is given for the sequences diverging to $-\infty$. In this case we write $a_n \to -\infty$ as $n \to \infty$.

Examples 1.1.2.

(i) The sequence $\{\log(1/n)\}_1^{\infty}$ diverges to $-\infty$. In order to prove this, for any M > 0, we must produce a $N \in \mathbb{N}$ such that

$$\log(1/n) < -M, \quad \forall \ n \ge N$$

But this is equivalent to saying that $n > e^M$, $\forall n \ge N$. Choose $N \ge e^M$. Then, for this choice of N,

$$\log(1/n) < -M, \quad \forall \ n \ge N.$$

Thus $\{\log(1/n)\}_1^\infty$ diverges to $-\infty$.

Definition 1.1.3. If a sequence $\{a_n\}$ does not converge to a value in \mathbb{R} and also does not diverge to ∞ or $-\infty$, we say that $\{a_n\}$ oscillates.

Theorem 1.1.4. Let $\{a_n\}$ and $\{b_n\}$ be two sequences.

- (i) If $\{a_n\}$ and $\{b_n\}$ both diverges to ∞ , then the sequences $\{a_n + b_n\}$ and $\{a_n b_n\}$ also diverges to ∞ .
- (ii) If $\{a_n\}$ diverges to ∞ and $\{b_n\}$ converges then $\{a_n + b_n\}$ diverges to ∞ .

Example 1.1.5. Consider the sequence $\{\sqrt{n+1} - \sqrt{n}\}_{n=1}^{\infty}$. We know that $\sqrt{n+1}$ and \sqrt{n} both diverges to ∞ . But the sequence $\{\sqrt{n+1} - \sqrt{n}\}_{n=1}^{\infty}$ converges to 0. To see this, notice that, for a given $\epsilon > 0$, $\sqrt{n+1} - \sqrt{n} < \epsilon$ if and only if $1 < \epsilon^2 + 2\epsilon\sqrt{n}$. Thus, if N is such that $N > \frac{1}{4\epsilon^2}$, then for all $n \ge N$, $\sqrt{n+1} - \sqrt{n} < \epsilon$. Thus $\sqrt{n+1} - \sqrt{n}$ converges to 0. This example shows that the sequence formed by taking difference of two diverging sequences may converge.

Definition 1.1.6. Monotone sequence

A sequence $\{a_n\}$ of real numbers is called a nondecreasing sequence if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$

and $\{a_n\}$ is called a nonincreasing sequence if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$. A sequence that is nondecreasing or nonincreasing is called a monotone sequence.

Examples 1.1.7.

- (i) The sequences $\{1 1/n\}, \{n^3\}$ are nondecreasing sequences.
- (ii) The sequences $\{1/n\}, \{1/n^2\}$ are nonincreasing sequences.
- (iii) The sequences $\{(-1)^n\}$, $\{\cos(\frac{n\pi}{3})\}$, $\{(-1)^nn\}$, $\{\frac{(-1)^n}{n}\}$ and $\{n^{1/n}\}$ are not monotonic sequences.

Remark 1.1.

- (i) A nondecreasing sequence which is not bounded above diverges to ∞ .
- (i) A nonincreasing sequence which is not bounded below diverges to $-\infty$.

Example 1.1.8. If b > 1, then the sequence $\{b^n\}_1^{\infty}$ diverges to ∞ .

Theorem 1.1.9.

- (i) A nondecreasing sequence which is bounded above is convergent.
- (ii) A nonincreasing sequence which is bounded below is convergent.

Proof. (i) Let $\{a_n\}$ be a nondecreasing, bounded above sequence and $a = \sup_{n \in \mathbb{N}} a_n$. Since the sequence is bounded, $a \in \mathbb{R}$. We claim that a is the limit point of the sequence $\{a_n\}$. Indeed, let $\epsilon > 0$ be given. Since $a - \epsilon$ is not an upper bound for $\{a_n\}$, there exists $N \in \mathbb{N}$ such that $a_N > a - \epsilon$. As the sequence is nondecreasing, we have $a - \epsilon < a_N \leq a_n$ for all $n \geq N$. Also it is clear that $a_n \leq a$ for all $n \in \mathbb{N}$. Thus,

$$a - \epsilon \le a_n \le a + \epsilon, \ \forall \ n \ge N.$$

Hence the proof.

The proof of (ii) is similar to (i) and is left as an exercise to the students.

Examples 1.1.10.

(i) If 0 < b < 1, then the sequence $\{b^n\}_1^\infty$ converges to 0.

Solution. We may write $b^{n+1} = b^n b < b^n$. Hence $\{b^n\}$ is nonincreasing. Since $b^n > 0$ for all $n \in \mathbb{N}$, the sequence $\{b^n\}$ is bounded below. Hence, by the above theorem, $\{b^n\}$ converges. Let $L = \lim_{n \to \infty} b^n$. Further, $\lim_{n \to \infty} b^{n+1} = \lim_{n \to \infty} b \cdot b^n = b \cdot \lim_{n \to \infty} b^n = b \cdot L$. Thus the sequence $\{b^{n+1}\}$ converges to $b \cdot L$. On the other hand, $\{b^{n+1}\}$ is a subsequence of $\{b^n\}$. Hence $L = b \cdot L$ which implies L = 0 as $b \neq 1$.

(ii) The sequence $\{(1+1/n)^n\}_1^\infty$ is convergent.

Solution. Let $a_n = (1 + 1/n)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{n}\right)^k$. For k = 1, 2, ..., n, the $(k+1)^{th}$ term in the expansion is

in the expansion is

$$\frac{n(n-1)(n-2)\cdots(n-k+1)}{1\cdot 2\cdots k}\frac{1}{n^k} = \frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{k-1}{n}\right).$$
 (1.1)

Similarly, if we expand a_{n+1} , then we obtain (n+2) terms in the expansion and for $k = 1, 2, 3, ..., the (k+1)^{th}$ term is

$$\frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \cdots \left(1 - \frac{k-1}{n+1} \right) < \frac{1}{k!}.$$
 (1.2)

It is clear that (1.2) is greater than or equal to (1.1) and hence $a_n \leq a_{n+1}$ which implies that $\{a_n\}$ is nondecreasing. Further,

$$a_n = (1+1/n)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{n}\right)^k < 1 + \sum_{k=1}^n \frac{1}{k!} < 1+2 = 3.$$

 $\left(k! > 2^{k-1} \implies \sum_{k=1}^{n} \frac{1}{k!} < \sum_{k=1}^{n} \frac{1}{2^{k-1}} < 2\right) \text{ for each } n. \text{ Thus } \{a_n\} \text{ is a bounded monotone sequence and hence convergent.}$

Theorem 1.1.11. Every sequence has a monotone subsequence.

Proof. Pick x_{N_1} such that $x_n \leq x_{N_1}$ for all $n > N_1$. We call such x_N as "peak". If we are able to pick infinitely many $x'_{N_i}s$, then $\{x_{N_i}\}$ is decreasing and we are done. If there are only finitely many $x'_N s$ and let x_{n_1} be the last peak. Then for $n_2 > n_1$, x_{n_2} is not a peak. That means we can choose n_3 such that $x_{n_3} \geq x_{n_2}$. Again x_{n_3} is not a peak. So we can choose x_{n_4} such that $x_{n_4} \geq x_{n_3}$. Proceeding this way, we get a non-decreasing sub-sequence $\{x_{n_2}, x_{n_3}, x_{n_4}, \ldots\}$. /// The following theorem is Bolzano-Weierstrass theorem. Proof is a consequence of Theorem1.1.11

Theorem 1.1.12. Every bounded sequence has a convergent subsequence.

Theorem 1.1.13. Nested Interval theorem: Let $I_n = [a_n, b_n], n \ge 1$ be non-empty closed, bounded intervals such that

$$I_1 \supset I_2 \supset I_3 \dots \supset I_n \supset I_{n+1} \dots$$

and $\lim_{n\to\infty}(b_n-a_n)=0$. Then $\bigcap_{n=1}^{\infty}I_n$ contains precisely one point

Proof. Since $\{a_n\}, \{b_n\} \subset [a_1, b_1], \{a_n\}, \{b_n\}$ are bounded sequences. By Bolzano-Weierstrass theorem, there exists sub sequences a_{n_k}, b_{n_k} and a, b such that $a_{n_k} \to a, b_{n_k} \to b$. Since a_n is increasing $a_1 < a_2 < \dots \leq a$ and $b_1 > b_2 > \dots \geq b$. It is easy to see that $a \leq b$. Also since $0 = \lim a_n - b_n = a - b$, we have a = b.

///

It is easy to show that there is no other point in $\bigcap_{n=1}^{\infty} I_n$.

Remark 1.2. closedness of I_n cannot be dropped. for example the sequence $\{(0, \frac{1}{n})\}$. Then $\bigcap_{n=1}^{\infty}(0, \frac{1}{n}) = \emptyset$ because there cannot be any element x such that $0 < x < \frac{1}{n}$ else Archimedean property fails.

Corollary 1.1.14. \mathbb{R} *is uncountable.*

Proof. It is enough to show that [0,1] is uncountable. If not, there exists an onto map $f : \mathbb{N} \to [0,1]$. Now subdivide [0,1] into 3 equal parts so that choose J_1 such that $f(1) \notin J_1$. Now subdivide J_1 into 3 equal parts and choose J_2 so that $f(2) \notin J_2$. Continue the process to obtain J_n so that $f(n) \notin J_n$. These J_n satisfy the hypothesis of above theorem, so $\bigcap_{n=1}^{\infty} = \{x\}$ and $x \in [0,1]$. By the construction, there is no $n \in \mathbb{N}$ such that f(n) = x. contradiction to f is onto.