Lecture 4

1 Bolzano-Weierstrass Theorem

1.1 Divergent sequence and Monotone sequences

Definition 1.1.1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. We say that a_{n} approaches infinity or diverges to infinity, if for any real number $M>0$, there is a positive integer N such that

$$
n \geq N \Longrightarrow a_{n} \geq M
$$

- If a_{n} approaches infinity, then we write $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
- A similar definition is given for the sequences diverging to $-\infty$. In this case we write $a_{n} \rightarrow-\infty$ as $n \rightarrow \infty$.

Examples 1.1.2.

(i) The sequence $\{\log (1 / n)\}_{1}^{\infty}$ diverges to $-\infty$. In order to prove this, for any $M>0$, we must produce a $N \in \mathbb{N}$ such that

$$
\log (1 / n)<-M, \quad \forall n \geq N
$$

But this is equivalent to saying that $n>e^{M}, \forall n \geq N$. Choose $N \geq e^{M}$. Then, for this choice of N,

$$
\log (1 / n)<-M, \quad \forall n \geq N
$$

Thus $\{\log (1 / n)\}_{1}^{\infty}$ diverges to $-\infty$.
Definition 1.1.3. If a sequence $\left\{a_{n}\right\}$ does not converge to a value in \mathbb{R} and also does not diverge to ∞ or $-\infty$, we say that $\left\{a_{n}\right\}$ oscillates.

Theorem 1.1.4. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences.
(i) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both diverges to ∞, then the sequences $\left\{a_{n}+b_{n}\right\}$ and $\left\{a_{n} b_{n}\right\}$ also diverges to ∞.
(ii) If $\left\{a_{n}\right\}$ diverges to ∞ and $\left\{b_{n}\right\}$ converges then $\left\{a_{n}+b_{n}\right\}$ diverges to ∞.

Example 1.1.5. Consider the sequence $\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}$. We know that $\sqrt{n+1}$ and \sqrt{n} both diverges to ∞. But the sequence $\{\sqrt{n+1}-\sqrt{n}\}_{n=1}^{\infty}$ converges to 0 . To see this, notice that, for a given $\epsilon>0, \sqrt{n+1}-\sqrt{n}<\epsilon$ if and only if $1<\epsilon^{2}+2 \epsilon \sqrt{n}$. Thus, if N is such that $N>\frac{1}{4 \epsilon^{2}}$, then for all $n \geq N, \sqrt{n+1}-\sqrt{n}<\epsilon$. Thus $\sqrt{n+1}-\sqrt{n}$ converges to 0 . This example shows that the sequence formed by taking difference of two diverging sequences may converge.

Definition 1.1.6. Monotone sequence
A sequence $\left\{a_{n}\right\}$ of real numbers is called a nondecreasing sequence if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$
and $\left\{a_{n}\right\}$ is called a nonincreasing sequence if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$. A sequence that is nondecreasing or nonincreasing is called a monotone sequence.

Examples 1.1.7.

(i) The sequences $\{1-1 / n\},\left\{n^{3}\right\}$ are nondecreasing sequences.
(ii) The sequences $\{1 / n\},\left\{1 / n^{2}\right\}$ are nonincreasing sequences.
(iii) The sequences $\left\{(-1)^{n}\right\},\left\{\cos \left(\frac{n \pi}{3}\right)\right\},\left\{(-1)^{n} n\right\},\left\{\frac{(-1)^{n}}{n}\right\}$ and $\left\{n^{1 / n}\right\}$ are not monotonic sequences.

Remark 1.1.

(i) A nondecreasing sequence which is not bounded above diverges to ∞.
(i) A nonincreasing sequence which is not bounded below diverges to $-\infty$.

Example 1.1.8. If $b>1$, then the sequence $\left\{b^{n}\right\}_{1}^{\infty}$ diverges to ∞.

Theorem 1.1.9.

(i) A nondecreasing sequence which is bounded above is convergent.
(ii) A nonincreasing sequence which is bounded below is convergent.

Proof. (i) Let $\left\{a_{n}\right\}$ be a nondecreasing, bounded above sequence and $a=\sup _{n \in \mathbb{N}} a_{n}$. Since the sequence is bounded, $a \in \mathbb{R}$. We claim that a is the limit point of the sequence $\left\{a_{n}\right\}$. Indeed, let $\epsilon>0$ be given. Since $a-\epsilon$ is not an upper bound for $\left\{a_{n}\right\}$, there exists $N \in \mathbb{N}$ such that $a_{N}>a-\epsilon$. As the sequence is nondecreasing, we have $a-\epsilon<a_{N} \leq a_{n}$ for all $n \geq N$. Also it is clear that $a_{n} \leq a$ for all $n \in \mathbb{N}$. Thus,

$$
a-\epsilon \leq a_{n} \leq a+\epsilon, \forall n \geq N .
$$

Hence the proof.
The proof of (ii) is similar to (i) and is left as an exercise to the students.

Examples 1.1.10.

(i) If $0<b<1$, then the sequence $\left\{b^{n}\right\}_{1}^{\infty}$ converges to 0 .

Solution. We may write $b^{n+1}=b^{n} b<b^{n}$. Hence $\left\{b^{n}\right\}$ is nonincreasing. Since $b^{n}>0$ for all $n \in \mathbb{N}$, the sequence $\left\{b^{n}\right\}$ is bounded below. Hence, by the above theorem, $\left\{b^{n}\right\}$ converges. Let $L=\lim _{n \rightarrow \infty} b^{n}$. Further, $\lim _{n \rightarrow \infty} b^{n+1}=\lim _{n \rightarrow \infty} b \cdot b^{n}=b \cdot \lim _{n \rightarrow \infty} b^{n}=b \cdot L$. Thus the sequence $\left\{b^{n+1}\right\}$ converges to $b \cdot L$. On the other hand, $\left\{b^{n+1}\right\}$ is a subsequence of $\left\{b^{n}\right\}$. Hence $L=b \cdot L$ which implies $L=0$ as $b \neq 1$.
(ii) The sequence $\left\{(1+1 / n)^{n}\right\}_{1}^{\infty}$ is convergent.

Solution. Let $a_{n}=(1+1 / n)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}$. For $k=1,2, \ldots, n$, the $(k+1)^{\text {th }}$ term in the expansion is

$$
\begin{equation*}
\frac{n(n-1)(n-2) \cdots(n-k+1)}{1 \cdot 2 \cdots k} \frac{1}{n^{k}}=\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{k-1}{n}\right) . \tag{1.1}
\end{equation*}
$$

Similarly, if we expand a_{n+1}, then we obtain $(n+2)$ terms in the expansion and for $k=1,2,3, \ldots$, the $(k+1)^{\text {th }}$ term is

$$
\begin{equation*}
\frac{1}{k!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right) \cdots\left(1-\frac{k-1}{n+1}\right)<\frac{1}{k!} . \tag{1.2}
\end{equation*}
$$

It is clear that (1.2) is greater than or equal to (1.1) and hence $a_{n} \leq a_{n+1}$ which implies that $\left\{a_{n}\right\}$ is nondecreasing. Further,

$$
\begin{aligned}
& \qquad a_{n}=(1+1 / n)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}<1+\sum_{k=1}^{n} \frac{1}{k!}<1+2=3 . \\
& \left(k!>2^{k-1} \Longrightarrow \sum_{k=1}^{n} \frac{1}{k!}<\sum_{k=1}^{n} \frac{1}{2^{k-1}}<2\right) \text { for each n. Thus }\left\{a_{n}\right\} \text { is a bounded monotone } \\
& \text { sequence and hence convergent. }
\end{aligned}
$$

Theorem 1.1.11. Every sequence has a monotone subsequence.
Proof. Pick $x_{N_{1}}$ such that $x_{n} \leq x_{N_{1}}$ for all $n>N_{1}$. We call such x_{N} as "peak". If we are able to pick infinitely many $x_{N_{i}}^{\prime} s$, then $\left\{x_{N_{i}}\right\}$ is decreasing and we are done. If there are only finitely many $x_{N}^{\prime} s$ and let $x_{n_{1}}$ be the last peak. Then for $n_{2}>n_{1}, x_{n_{2}}$ is not a peak. That means we can choose n_{3} such that $x_{n_{3}} \geq x_{n_{2}}$. Again $x_{n_{3}}$ is not a peak. So we can choose $x_{n_{4}}$ such that $x_{n_{4}} \geq x_{n_{3}}$. Proceeding this way, we get a non-decreasing sub-sequence $\left\{x_{n_{2}}, x_{n_{3}}, x_{n_{4}}, \ldots\right\}$. /// The following theorem is Bolzano-Weierstrass theorem. Proof is a consequence of Theorem1.1.11
Theorem 1.1.12. Every bounded sequence has a convergent subsequence.
Theorem 1.1.13. Nested Interval theorem: Let $I_{n}=\left[a_{n}, b_{n}\right], n \geq 1$ be non-empty closed, bounded intervals such that

$$
I_{1} \supset I_{2} \supset I_{3} \ldots \supset I_{n} \supset I_{n+1} \cdots
$$

and $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$. Then $\cap_{n=1}^{\infty} I_{n}$ contains precisely one point
Proof. Since $\left\{a_{n}\right\},\left\{b_{n}\right\} \subset\left[a_{1}, b_{1}\right],\left\{a_{n}\right\},\left\{b_{n}\right\}$ are bounded sequences. By Bolzano-Weierstrass theorem, there exists sub sequences $a_{n_{k}}, b_{n_{k}}$ and a, b such that $a_{n_{k}} \rightarrow a, b_{n_{k}} \rightarrow b$. Since a_{n} is increasing $a_{1}<a_{2}<\ldots \ldots \leq a$ and $b_{1}>b_{2}>\ldots \geq b$. It is easy to see that $a \leq b$. Also since $0=\lim a_{n}-b_{n}=a-b$, we have $a=b$.
It is easy to show that there is no other point in $\cap_{n=1}^{\infty} I_{n}$.

Remark 1.2. closedness of I_{n} cannot be dropped. for example the sequence $\left\{\left(0, \frac{1}{n}\right)\right\}$. Then $\cap_{n=1}^{\infty}\left(0, \frac{1}{n}\right)=\emptyset$ because there cannot be any element x such that $0<x<\frac{1}{n}$ else Archimedean property fails.
Corollary 1.1.14. \mathbb{R} is uncountable.
Proof. It is enough to show that $[0,1]$ is uncountable. If not, there exists an onto map f : $\mathbb{N} \rightarrow[0,1]$. Now subdivide $[0,1]$ into 3 equal parts so that choose J_{1} such that $f(1) \notin J_{1}$. Now subdivide J_{1} into 3 equal parts and choose J_{2} so that $f(2) \notin J_{2}$. Continue the process to obtain J_{n} so that $f(n) \notin J_{n}$. These J_{n} satisfy the hypothesis of above theorem, so $\cap_{n=1}^{\infty}=\{x\}$ and $x \in[0,1]$. By the construction, there is no $n \in \mathbb{N}$ such that $f(n)=x$. contradiction to f is onto.

