
Lecture 4

1 Bolzano-Weierstrass Theorem

1.1 Divergent sequence and Monotone sequences

Definition 1.1.1. Let {an}be a sequence of real numbers. We say that an approaches infinity

or diverges to infinity, if for any real number M > 0, there is a positive integer N such that

n ≥ N =⇒ an ≥M.

� If an approaches infinity, then we write an →∞ as n→∞.

� A similar definition is given for the sequences diverging to −∞. In this case we write

an → −∞ as n→∞.

Examples 1.1.2.

(i) The sequence {log(1/n)}∞1 diverges to −∞. In order to prove this, for any M > 0, we

must produce a N ∈ N such that

log(1/n) < −M, ∀ n ≥ N.

But this is equivalent to saying that n > eM , ∀ n ≥ N . Choose N ≥ eM . Then, for this

choice of N ,

log(1/n) < −M, ∀ n ≥ N.

Thus {log(1/n)}∞1 diverges to −∞.

Definition 1.1.3. If a sequence {an}does not converge to a value in R and also does not diverge

to ∞ or −∞, we say that {an}oscillates.

Theorem 1.1.4. Let {an}and {bn} be two sequences.

(i) If {an}and {bn} both diverges to ∞, then the sequences {an+ bn} and {anbn} also diverges

to ∞.

(ii) If {an}diverges to ∞ and {bn} converges then {an + bn} diverges to ∞.

Example 1.1.5. Consider the sequence {
√
n+ 1−

√
n}∞n=1. We know that

√
n+ 1 and

√
n both

diverges to ∞. But the sequence {
√
n+ 1−

√
n}∞n=1 converges to 0. To see this, notice that, for

a given ε > 0,
√
n+ 1−

√
n < ε if and only if 1 < ε2 + 2ε

√
n. Thus, if N is such that N >

1

4ε2
,

then for all n ≥ N,
√
n+ 1 −

√
n < ε. Thus

√
n+ 1 −

√
n converges to 0. This example shows

that the sequence formed by taking difference of two diverging sequences may converge.

Definition 1.1.6. Monotone sequence

A sequence {an} of real numbers is called a nondecreasing sequence if an ≤ an+1 for all n ∈ N
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and {an} is called a nonincreasing sequence if an ≥ an+1 for all n ∈ N. A sequence that is

nondecreasing or nonincreasing is called a monotone sequence.

Examples 1.1.7.

(i) The sequences {1− 1/n}, {n3} are nondecreasing sequences.

(ii) The sequences {1/n}, {1/n2} are nonincreasing sequences.

(iii) The sequences {(−1)n}, {cos(nπ3 )}, {(−1)nn}, { (−1)
n

n } and {n1/n} are not monotonic

sequences.

Remark 1.1.

(i) A nondecreasing sequence which is not bounded above diverges to ∞.

(i) A nonincreasing sequence which is not bounded below diverges to −∞.

Example 1.1.8. If b > 1, then the sequence {bn}∞1 diverges to ∞.

Theorem 1.1.9.

(i) A nondecreasing sequence which is bounded above is convergent.

(ii) A nonincreasing sequence which is bounded below is convergent.

Proof. (i) Let {an}be a nondecreasing, bounded above sequence and a = sup
n∈N

an. Since the

sequence is bounded, a ∈ R. We claim that a is the limit point of the sequence {an}. Indeed,

let ε > 0 be given. Since a − ε is not an upper bound for {an}, there exists N ∈ N such that

aN > a− ε. As the sequence is nondecreasing, we have a− ε < aN ≤ an for all n ≥ N . Also it

is clear that an ≤ a for all n ∈ N. Thus,

a− ε ≤ an ≤ a+ ε, ∀ n ≥ N.

Hence the proof.

The proof of (ii) is similar to (i) and is left as an exercise to the students. ///

Examples 1.1.10.

(i) If 0 < b < 1, then the sequence {bn}∞1 converges to 0.

Solution. We may write bn+1 = bnb < bn. Hence {bn} is nonincreasing. Since bn > 0

for all n ∈ N, the sequence {bn} is bounded below. Hence, by the above theorem, {bn}
converges. Let L = lim

n→∞
bn. Further, lim

n→∞
bn+1 = lim

n→∞
b · bn = b · lim

n→∞
bn = b ·L. Thus the

sequence {bn+1} converges to b · L. On the other hand, {bn+1} is a subsequence of {bn}.
Hence L = b · L which implies L = 0 as b 6= 1.

(ii) The sequence {(1 + 1/n)n}∞1 is convergent.
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Solution. Let an = (1 + 1/n)n =
n∑
k=0

(
n

k

)(
1

n

)k
. For k = 1, 2, ..., n, the (k + 1)th term

in the expansion is

n(n− 1)(n− 2) · · · (n− k + 1)

1 · 2 · · · k
1

nk
=

1

k!

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
. (1.1)

Similarly, if we expand an+1, then we obtain (n + 2) terms in the expansion and for

k = 1, 2, 3, ..., the (k + 1)th term is

1

k!

(
1− 1

n+ 1

)(
1− 2

n+ 1

)
· · ·
(

1− k − 1

n+ 1

)
<

1

k!
. (1.2)

It is clear that (1.2) is greater than or equal to (1.1) and hence an ≤ an+1 which implies

that {an}is nondecreasing. Further,

an =(1 + 1/n)n =

n∑
k=0

(
n

k

)(
1

n

)k
< 1 +

n∑
k=1

1

k!
< 1 + 2 = 3.

(
k! > 2k−1 =⇒

n∑
k=1

1

k!
<

n∑
k=1

1

2k−1
< 2

)
for each n. Thus {an}is a bounded monotone

sequence and hence convergent.

Theorem 1.1.11. Every sequence has a monotone subsequence.

Proof. Pick xN1 such that xn ≤ xN1 for all n > N1. We call such xN as ”peak”. If we are able

to pick infinitely many x′Ni
s, then {xNi} is decreasing and we are done. If there are only finitely

many x′Ns and let xn1 be the last peak. Then for n2 > n1, xn2 is not a peak. That means we

can choose n3 such that xn3 ≥ xn2 . Again xn3 is not a peak. So we can choose xn4 such that

xn4 ≥ xn3 . Proceeding this way, we get a non-decreasing sub-sequence {xn2 , xn3 , xn4 , ...}. ///

The following theorem is Bolzano-Weierstrass theorem. Proof is a consequence of Theorem1.1.11

Theorem 1.1.12. Every bounded sequence has a convergent subsequence.

Theorem 1.1.13. Nested Interval theorem: Let In = [an, bn], n ≥ 1 be non-empty closed,

bounded intervals such that

I1 ⊃ I2 ⊃ I3... ⊃ In ⊃ In+1...

and lim
n→∞

(bn − an) = 0. Then ∩∞n=1In contains precisely one point

Proof. Since {an}, {bn} ⊂ [a1, b1], {an}, {bn} are bounded sequences. By Bolzano-Weierstrass

theorem, there exists sub sequences ank
, bnk

and a, b such that ank
→ a, bnk

→ b. Since an is

increasing a1 < a2 < ...... ≤ a and b1 > b2 > .... ≥ b. It is easy to see that a ≤ b. Also since

0 = lim an − bn = a− b, we have a = b.

It is easy to show that there is no other point in ∩∞n=1In. ///
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Remark 1.2. closedness of In cannot be dropped. for example the sequence {(0, 1n)}. Then

∩∞n=1(0,
1
n) = ∅ because there cannot be any element x such that 0 < x < 1

n else Archimedean

property fails.

Corollary 1.1.14. R is uncountable.

Proof. It is enough to show that [0, 1] is uncountable. If not, there exists an onto map f :

N→ [0, 1]. Now subdivide [0, 1] into 3 equal parts so that choose J1 such that f(1) 6∈ J1. Now

subdivide J1 into 3 equal parts and choose J2 so that f(2) 6∈ J2. Continue the process to obtain

Jn so that f(n) 6∈ Jn. These Jn satisfy the hypothesis of above theorem, so ∩∞n=1 = {x} and

x ∈ [0, 1]. By the construction, there is no n ∈ N such that f(n) = x. contradiction to f is onto.
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