
Lecture 40

1 Vector Calculus

1.1 Line integrals and Green’s theorem

In many physical phenomena, the integrals over paths through vector filed plays important

role. For example, work done in moving an object along a path against a variable force or to

find work done by a vector field in moving an object along a path through the field. A vector

field on a domain in the plane or in the space is a vector valued function f : IR3 → IR3 with

components say M,N and P , for example

F (x, y, z) = M(x, y, z)̂i+N(x, y, z)ĵ + P (x, y, z)k̂

We assume that M,N,P are continuous functions. Suppose F represents a force throughout

a region in space and let r(t) = x(t)̂i+y(t)ĵ+z(t)k̂, a ≤ t ≤ b is a smooth curve in the region.

Then we introduce the partition a = t1 < t2..... < tn = b of [a, b].

If Fk denotes the value of F at the point on the corresponding to tk on the curve and Tk

denotes the curve’s unit tangent vector a this point. Then Fk · Tk is the scalar component of

F in the director of T at tk. Then the work done by F along the curve is approximately

n∑
k=1

Fk · Tk∆sk,

where ∆sk is the length of the curve between tk−1, tk. As the norm of the partition approaches

zero, these sum’s approaches∫ b

t=a
F · Tds =

∫ b

a

−→
F ·
−→
T

√
(
dx

dt
)2 + (

dy

dt
)2dt.

Now substituting T (t) =
−→r ′(t)
|−→r ′(t)| , we get∫ b

a

−→
F · −→r ′(t)dt.

The following can be shown:

Theorem 1.1.1 The Line integral is independent of choice of parametrization.

Definition 1.1.1 The orientation of a parameterized curve is the direction determined by

increasing values of the parameter.

The line integral over a parametrized curve depends on the orientation. If we change the

orientation, then the integral is equal to −1 times: That is,

−
∫
C
F · dr =

∫
−C
F · dr.
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Example 1.1.2 Find the work done by F = 3x2î + (2xz − y)ĵ − zk̂ over the curve r(t) =

t̂i+ t2ĵ + t3k̂, 0 ≤ t ≤ 1 from origin to (1, 1, 1)

Solution: The tangent along the curve T is dr
dt . Therefore,∫ 1

0
F · Tds =

∫ 1

0
F · d

−→r
dt

dt

=

∫ 1

0
3t2 + t5 − 2t3dt =

2

3
.

Definition 1.1.3 Conservative vector field: A verctor field
−→
F is called conservative vector

field if the line integral depends only on the end points. Equivalently, the line integral over

any closed curve is zero.

The following is knon as fundamental thoerem of Line integrals. Recall the fundamental

theorem of integral calculus.

Theorem 1.1.2 Let
−→
F be a vector field and if there exists a differentiable function f : IR3 →

IR such that
−→
F = ∇f . Then ∫ Q

P

−→
F · d−→r = f(Q)− f(P )

Proof. Suppose there exists f such that
−→
F = ∇f . let −→r (t) : {(x(t), y(t), z(t)), t ∈ [0, 1]}

represent a curve connecting P and Q. Then∫ Q

P

−→
F · d−→r =

∫ 1

0

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

)
dt

=

∫ 1

0

d

dt
(f(x(t), y(t), z(t)))dt

= f(Q)− f(P ).

It is clear that if P = Q, then above integral is zero.

Theorem 1.1.3 Let
−→
F = Mî+Nĵ+P k̂ be a conservative whose components are continuous

over an open connected domain D in R3. Then there exists a differential function f such that
−→
F = ∇f .

Proof. let X0 be a fixed point in D. For any point (x, y, z) in D, let C be a path from X0

to (x, y, z) . Define f (x, y, z) by

f (x, y, z) =

∫
C

−→
F · d−→r .

(Note that this definition of f makes sense only because it is independent of path). We want

to show that f satisfies ∇f =
−→
F .
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Since domain D is open, it is possible to find a disk centered at (x, y, z) such that the disk is

contained entirely inside D. Let (a, y, z) with a < x be a point in that disk. Let C be a path

from X0 to (x, y, z) that consists of two pieces: C1 and C2. The first piece, C1, is any path

from C to (a, y, z) that stays inside D and C2 is the horizontal line segment from (a, y, z) to

(x, y, z). Then

f(x, y, z) =

∫
C1

−→
F · d−→r +

∫
C2

−→
F · d−→r

Then differentiating this with respect to x, we see that the ∂
∂x of the first term on the right

hand side is zero. Therefore
∂f

∂x
=

∂

∂x

∫
C2

−→
F · d−→r

Now considering the parametrization−→r (t) = t̂i+yĵ+zk̂, a ≤ t ≤ x. Then
−→
F ·d−→r = M(t, y, z).

Hence
∂f

∂x
=

∂

∂x

∫ x

a
M(t, y, z)dt = M(x, y, z)

thanks to fundamental theorem of integral calculus. A similar argument using a lines parallel

to y-axis and z-axis rather than a line parallet to x−axis, shows that fy = N (x, y, z) and

fy = N (x, y, z). �

Divergence and Curl: For a vector field
−→
F = Mî+Nĵ + P k̂ the Divergence and curl are

defined as

div
−→
F = ∇ ·

−→
F =

∂M

∂x
+
∂N

∂y
+
∂P

∂z

curl
−→
F = ∇×

−→
F =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣∣
The following theorem is known as curl-div theorem:

Theorem 1.1.4 Suppose
−→
F is a vector field with all its components have continuous second

order partial derivaties then

div(curl
−→
F ) = 0.

Proof. Proof is a simple calculation. �

The following is a neccessary condition.

Theorem 1.1.5 Suppose F is a onservative vector field with all its components are differen-

tiable and partial derivatives are continuous in the domain D. Then curl
−→
F = 0.

Proof. Since
−→
F is conservative, there exists f such that

−→
F = ∇f . Therefore, second order

partial derivatives are continuous. Hence mixed derivatives are equal. Now it is easy to check

that ∇×∇f = 0. Therefore curl
−→
F = 0. �
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Definition 1.1.4 A vector field is irrotational if curl
−→
F = 0.

Now we ask the question: Is irrotational vector field is always conservative?

The answer is NO. The following example

Example 1.1.5 Let
−→
F = F1î + F2ĵ = − y

x2 + y2
î +

x

x2 + y2
ĵ. Then

∂F2

∂x
=
∂F1

∂y
implying

curl
−→
F = 0. But the line integral

∫
C

−→
F · d−→r =

∫ 2π

0
sin2 θ + cos2 θ = 2π.

But depending on the shape of the domain D, curl
−→
F = 0 implies

−→
F is conservative.

Definition 1.1.6 A subset D of Rn is called simply connected if it is path-connected and and

every loop in D can be contracted to a point without ever leaving the domain.

Examples 1.1.7 1. The whole space Rn is simply connected.

2. The unit ball {(x, y, z) : x2 + y2 + z2 < 1} is simply connected.

3. The annulus {(x, y, z) : 1 < x2 + y2 + z2 < 2} is NOT connected.

4. The punctured disc {(x, y) ∈ R2 : x2 + y2 < 1}\{(0, 0)} is NOT simply connected.

5. The punctured space {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}\{(0, 0, 0)} is simply connected.

6. {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}\{z − axis} is NOT simply connected.

Theorem 1.1.6 Let
−→
F be a vector field with its components are differentiable and partial

derivatives are continuous. Then curl
−→
F = 0 implies

−→
F is conservative.

Proof. Proof requires Stoke’s theorem. We omit it.

Example 1.1.8 Consider the vector field
−→
F = (3x2y2z + 5y3)̂i + (2x3yz + 15xy2 − 7z)ĵ +

(x3y2−7y+4z3)k̂ Determine whether
−→
F is conservative, and if it is, find a potential function

f for which
−→
F = ∇f .

Solution It is easy to check that curl
−→
F = 0 and domain of definition of

−→
F is the whole space

R3 which is simply connnected. Therefore,
−→
F is conservative.

To find the function f , we take

fx = 3x2y2z + 5y3, fy = 2x3yz + 15xy2 − 7z, fz = x3y2 − 7y + 4z3

Using the first equation we obtain

f(x, y, z) =

∫
(3x2y2z + 5y3)dx = x3y2z + 5y3x+ g(y, z)

Differentiation with respect to y and equating with second equation we get

2x3yz + 15y2x+ gy(y, z) = 2x3yz + 15xy2 − 7z =⇒ gy = −7z

Integrating gy we get g(y, z) = −7yz+h(z). Hence f = x3y2z+5y3x−7yz+h(z). Substituting

this the third equation, we get h′(z) = 4z3. Therefore h(z) = z4 + c. Hence f(x, y, z) =

x3y2z + 5y3x− 7yz + z4 + c. �
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Example 1.1.9 Consider the vector field
−→
F = 1

x2+y2+z2
(xî + yĵ + zk̂). Determine whether

−→
F is conservative, and if it is, find a potential function f for which

−→
F = ∇f .

Solution: In this case again the domain of definition is the punctured space R3\{(0, 0, 0)}
which is simply connected. Also it is easy to check

∇×
−→
F =

−2

(x2 + y2 + z2)2

(
(zy − yz)̂i+ (xz − zx)ĵ + (yx− xy)k̂

)
= 0.

Now following the steps as above, it is not difficult to find f as

f(x, y, z) =
1

2
ln(x2 + y2 + z2).
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