Lecture 41

1 Integral theorems

1.1 Green's theorem in the plane

Theorem 1.1.1 Let R be a closed bounded region in \mathbb{R}^2 whose boundary C consists of finitely many smooth curves. Let $\overrightarrow{F}(x,y) = F_1(x,y)\hat{i} + F_2(x,y)\hat{j}$ be continuous and has continuous partial derivatives everywhere in some domain containing R. Then

$$\iint_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA = \oint_{C} \overrightarrow{F} \cdot d\overrightarrow{r},$$

where the line integral is along the boundary C of R such that R is on the left as we advance on the boundary.

Proof. We omit the proof. A proof in special case can be found in the reference/text book. \Box

Example 1.1.1 Evaluate $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$ for $\overrightarrow{F} = (y^2 - 7y)\hat{i} + (2xy + 2x)\hat{j}$ and $C: x^2 + y^2 = 1$.

Solution:

$$\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = \iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA = 9 \iint_R dA = 9\pi.$$

Greens theorem can be applied to non simply connected domains like annular regions for example

Example 1.1.2 Let R be the domain $\{(x, y) : 1 < x^2 + y^2 < 2\}$ and let C be the (positively oriented) boundary of the domain R. Then evaluate $\int_C \frac{ydx - xdy}{x^2 + y^2}$.

Solution: Boundary of R consists of two circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$. Therefore Green's theorem can be applied. Take $\overrightarrow{F} = F_1\hat{i} + F_2\hat{j} = \frac{1}{x^2+y^2}(y\hat{i} - x\hat{j})$. Then

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 0 \implies \iint_R \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} dA = 0.$$

Therefore by Green's theorem

$$\int_{C} \frac{ydx - xdy}{x^2 + y^2} = \int_{C} \overrightarrow{F} \cdot d\overrightarrow{r} = \iint_{R} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} dA = 0.$$

However the following we give an important example

Example 1.1.3 Let the region R be the punctured disc $\{(x,y) : x^2 + y^2 \leq 1\} \setminus \{0\}$. and let $\overrightarrow{F} = -\frac{y}{x^2 + y^2} \hat{i} + \frac{x}{x^2 + y^2} \hat{j}$. Then $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ and $\iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) = 0$. But the line integral $\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = \int_0^{2\pi} \sin^2 \theta + \cos^2 \theta = 2\pi$. (taking the parametrization $x = \cos \theta, y = \sin \theta, 0$ varies from 0 to 2π)

Another application of the Green's theorem is

Problem 1.1.1 Let *C* be the closed curve defined as $C = C_1 + C_2$ where $C_1 : y + |x| = 2, \ 0 \le y \le 2, \ -2 \le x \le 2$ and $C_2 : x^2 + y^2 = 4, \ -2 \le y \le 0, \ -2 \le x \le 2$. Suppose $\overrightarrow{F} = -\frac{y}{x^2 + y^2}\hat{i} + \frac{x}{x^2 + y^2}\hat{j}$. Then find $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$.

Solution: Let R_1 be the region bounded by C. Consider the annural Region R defined as $R_1 \setminus B_1(0)$. Note that

$$\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y} \implies \iint_R \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) = 0.$$

Now by Green's theorem

$$\int_{C\cup\partial B_1(0)} \overrightarrow{F} \cdot d\overrightarrow{r} = 0.$$

Therefore

$$\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{\partial B_1(0)} \overrightarrow{F} \cdot d\overrightarrow{r} = 2\pi.$$

Area of plane region:

Using Green's theorem, we can write area of a plane region as a line integral over the boundary. Choose $F_1 = 0, F_2 = x$ and then $F_{=} - y, F_2 = 0$. This gives

$$\iint_R dA = \int_C x dy \text{ and } \iint_R dA = -\int_C y dx$$

respectively. The double integral is the area A of R. By addition we have

$$A = \frac{1}{2} \int_C (xdy - ydx)$$

Example 1.1.4 Area bounded by ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

solution: Take $x = a \cos t, y = b \sin t, 0 \le t \le 2\pi$. Then by above formula

$$A = \frac{1}{2} \int_0^{2\pi} (xy' - yx')dt = \frac{1}{2} \left(ab\cos^2 t - (-ab\sin^2 t) \right) dt = \pi ab$$

1.2 Gauss and Stokes theorems

Let S be a smooth surface and we may choose unit normal \hat{n} at P of S. The direction of \hat{n} is called positive normal direction of S at P. We call a smooth surface S orientable surface if the positive normal at P can be continued in a unique and continuous way to the entire surface. For example the Mobius strip is not orientable. A normal at a point P of this strip is displaced continuously along a closed curve C, the resulting normal upon returning to P is opposite to the original vector at P.

Theorem 1.2.1 Gauss Divergence Theorem

Let Ω be a closed, bounded region in \mathbb{R}^3 whose boundary is a piecewise smooth orientable surface S. Let $\overrightarrow{F}(x, y, z)$ be a continuous function that has continuous partial derivatives in some domain containing Ω . Then

$$\iiint_{\Omega} \nabla \cdot F dV = \iint_{S} \overrightarrow{F} \cdot \hat{n} dS$$

where \hat{n} is the outer unit normal vector of S.

Proof. We omit the proof. A proof in special case can be found in the reference/text book. \Box

Example 1.2.1 Evaluate $\iint_{\partial\Omega} \vec{F} \cdot \hat{n} dA$ where $\partial\Omega$ is the boundary of the domain inside the cylinder $x^2 + y^2 = 1$ and between the planes z = 0, z = x + 2 and $\vec{F} = (x^2 + ye^z)\hat{i} + (y^2 + ze^2)\hat{j} + (z^2 + xe^y)\hat{k}$.

Solution: With the given \overrightarrow{F} , it is not difficult to obtain, $\nabla \cdot \overrightarrow{F} = 2x + 2y + 2z$. By Divergence theorem

$$\iint_{\partial\Omega} \overrightarrow{F} \cdot \widehat{n}dS = \iiint_{\Omega} 2(x+y+z)dV = 2\iint_{x^2+y^2 \le 1} \left(\int_{z=0}^{x+2} (x+y+z)dz\right)dxdy$$

Theorem 1.2.2 Stokes's theorem

Let S be a piecewise smooth oriented surface with boundary and let boundary C be a simple closed curve. Let \overrightarrow{F} be a continuous function which has continuous partial derivatives in a domain containing S. Then

$$\iint_{S} (\nabla \times \overrightarrow{F}) \cdot \hat{n} dS = \int_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r'}$$

where \hat{n} is a unit normal vector of S and, depending on \hat{n} , the integration around C is taken in the way that S lies in the left of C. Here \hat{n} is the direction of your head while moving along the boundary with surface on your left.

Proof. We omit the proof. A proof in special case can be found in the reference/text book. \Box

Example 1.2.2 Evaluate $\int_{\mathcal{C}} \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F} = x^2 y^3 \hat{i} + \hat{j} + z\hat{k}$ and C The intersection of the cylinder $x^2 + y^2 = 4$ and the hemisphere $x^2 + y^2 + z^2 = 16, z \ge 0$.

Solution: The intersection of cylinder and sphere is the boundary of cylinder on the plane $z = \sqrt{12}$. The unit normal to the surface is $\hat{n} = \frac{1}{4}(x\hat{i} + y\hat{j} + z\hat{k})$. The projection R of S on the xy-plane is the disc $x^2 + y^2 \leq 2$, $\nabla \times \overrightarrow{F} = -3x^2y^2\hat{k}$ and $\frac{|\nabla f|}{|\nabla f \cdot \hat{p}|} = \frac{4}{z}$. Hence by Stoke's theorem

$$\oint_C \overrightarrow{F} \cdot \overrightarrow{dr} = \iint_R (-\frac{3}{4}) x^2 y^2 z \frac{4}{z} dA$$
$$= -3 \int_{\theta=0}^{2\pi} \int_{r=0}^2 (r^2 \cos^2 \theta) (r^2 \sin^2 \theta) r dr d\theta = -8\pi$$

Suppose S_1, S_2 be two surfaces having the same boundary curve C. An important consequence of Stoke's theorem is that flux through S_1 or S_2 is same.

Example 1.2.3 Suppose S is a surface of a light bulb over the unit disc $x^2 + y^2 = 1$ oriented with outward pointing normal. Suppose $\vec{F} = e^{z^2 - 2z} \hat{x}\hat{i} + (\sin(xyz) + y + 1)\hat{j} + e^{z^2} \sin(z^2)\hat{k}$. Compute $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} dS$.

Solution: Enough to take any surface with boundary $x^2 + y^2 = 1$. So we take the unit disc $x^2 + y^2 \leq 1, z = 0$. Then \overrightarrow{F} on this is $\overrightarrow{F} = x\hat{i} + (y+1)\hat{j}$. Then $\nabla \times \overrightarrow{F} = 0$. Hence $\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = 0$.

References

- 1. Thomas' Calculus, Chapters 15, 16
- 2. Advanced engineering Mathematics, E.Kreyszig, Chapter 9