Lecture 41

1 Integral theorems

1.1 Green's theorem in the plane

Theorem 1.1.1 Let R be a closed bounded region in \mathbb{R}^{2} whose boundary \mathcal{C} consists of finitely many smooth curves. Let $\vec{F}(x, y)=F_{1}(x, y) \hat{i}+F_{2}(x, y) \hat{j}$ be continuous and has continuous partial derivatives everywhere in some domain containing R. Then

$$
\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=\oint_{C} \vec{F} \cdot d \vec{r}
$$

where the line integral is along the boundary \mathcal{C} of R such that R is on the left as we advance on the boundary.

Proof. We omit the proof. A proof in special case can be found in the reference/text book.

Example 1.1.1 Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ for $\vec{F}=\left(y^{2}-7 y\right) \hat{i}+(2 x y+2 x) \hat{j}$ and $C: x^{2}+y^{2}=1$.

Solution:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=9 \iint_{R} d A=9 \pi
$$

Greens theorem can be applied to non simply connected domains like annular regions for example

Example 1.1.2 Let R be the domain $\left\{(x, y): 1<x^{2}+y^{2}<2\right\}$ and let C be the (positively oriented) boundary of the domain R. Then evaluate $\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}$.

Solution: Boundary of R consists of two circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=2$. Therefore Green's theorem can be applied. Take $\vec{F}=F_{1} \hat{i}+F_{2} \hat{j}=\frac{1}{x^{2}+y^{2}}(y \hat{i}-x \hat{j})$. Then

$$
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=0 \Longrightarrow \iint_{R} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} d A=0
$$

Therefore by Green's theorem

$$
\int_{C} \frac{y d x-x d y}{x^{2}+y^{2}}=\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} d A=0 .
$$

However the following we give an important example

Example 1.1.3 Let the region R be the punctured disc $\left\{(x, y): x^{2}+y^{2} \leq 1\right\} \backslash\{0\}$. and let $\vec{F}=-\frac{y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}$. Then $\frac{\partial F_{2}}{\partial x}=\frac{\partial F_{1}}{\partial y}$ and $\iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)=0$. But the line integral $\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{2 \pi} \sin ^{2} \theta+\cos ^{2} \theta=2 \pi$. (taking the parametrization $x=\cos \theta, y=\sin \theta, 0$ varies from 0 to 2π)

Another application of the Green's theorem is

Problem 1.1.1 Let C be the closed curve defined as $C=C_{1}+C_{2}$ where $C_{1}: y+|x|=$ $2,0 \leq y \leq 2,-2 \leq x \leq 2$ and $C_{2}: x^{2}+y^{2}=4,-2 \leq y \leq 0,-2 \leq x \leq 2$. Suppose $\vec{F}=-\frac{y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}$. Then find $\int_{C} \vec{F} \cdot d \vec{r}$.

Solution: Let R_{1} be the region bounded by C. Consider the annural Region R defined as $R_{1} \backslash B_{1}(0)$. Note that

$$
\frac{\partial F_{2}}{\partial x}=\frac{\partial F_{1}}{\partial y} \Longrightarrow \iint_{R}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)=0 .
$$

Now by Green's theorem

$$
\int_{C \cup \partial B_{1}(0)} \vec{F} \cdot d \vec{r}=0 .
$$

Therefore

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{\partial B_{1}(0)} \vec{F} \cdot d \vec{r}=2 \pi
$$

Area of plane region:

Using Green's theorem, we can write area of a plane region as a line integral over the boundary.
Choose $F_{1}=0, F_{2}=x$ and then $F_{=-y}, F_{2}=0$. This gives

$$
\iint_{R} d A=\int_{C} x d y \text { and } \iint_{R} d A=-\int_{C} y d x
$$

respectively. The double integral is the area A of R. By addition we have

$$
A=\frac{1}{2} \int_{C}(x d y-y d x)
$$

Example 1.1.4 Area bounded by ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
solution: Take $x=a \cos t, y=b \sin t, 0 \leq t \leq 2 \pi$. Then by above formula

$$
A=\frac{1}{2} \int_{0}^{2 \pi}\left(x y^{\prime}-y x^{\prime}\right) d t=\frac{1}{2}\left(a b \cos ^{2} t-\left(-a b \sin ^{2} t\right)\right) d t=\pi a b
$$

1.2 Gauss and Stokes theorems

Let S be a smooth surface and we may choose unit normal \hat{n} at P of S. The direction of \hat{n} is called positive normal direction of S at P. We call a smooth surface S orientable surface if the positive normal at P can be continued in a unique and continuous way to the entire surface. For example the Mobius strip is not orientable. A normal at a point P of this strip is displaced continuously along a closed curve C, the resulting normal upon returning to P is opposite to the original vector at P.

Theorem 1.2.1 Gauss Divergence Theorem

Let Ω be a closed, bounded region in \mathbb{R}^{3} whose boundary is a piecewise smooth orientable surface S. Let $\vec{F}(x, y, z)$ be a continuous function that has continuous partial derivatives in some domain containing Ω. Then

$$
\iiint_{\Omega} \nabla \cdot F d V=\iint_{S} \vec{F} \cdot \hat{n} d S
$$

where \hat{n} is the outer unit normal vector of S.
Proof. We omit the proof. A proof in special case can be found in the reference/text book.

Example 1.2.1 Evaluate $\iint_{\partial \Omega} \vec{F} . \hat{n} d A$ where $\partial \Omega$ is the boundary of the domain inside the cylinder $x^{2}+y^{2}=1$ and between the planes $z=0, z=x+2$ and $\vec{F}=\left(x^{2}+y e^{z}\right) \hat{i}+\left(y^{2}+\right.$ $\left.z e^{2}\right) \hat{j}+\left(z^{2}+x e^{y}\right) \hat{k}$.

Solution: With the given \vec{F}, it is not difficult to obtain, $\nabla \cdot \vec{F}=2 x+2 y+2 z$. By Divergence theorem

$$
\iint_{\partial \Omega} \vec{F} \cdot \hat{n} d S=\iiint_{\Omega} 2(x+y+z) d V=2 \iint_{x^{2}+y^{2} \leq 1}\left(\int_{z=0}^{x+2}(x+y+z) d z\right) d x d y
$$

Theorem 1.2.2 Stokes's theorem

Let S be a piecewise smooth oriented surface with boundary and let boundary \mathcal{C} be a simple closed curve. Let \vec{F} be a continuous function which has continuous partial derivatives in a domain containing S. Then

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S=\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}
$$

where \hat{n} is a unit normal vector of S and, depending on \hat{n}, the integration around C is taken in the way that S lies in the left of \mathcal{C}. Here \hat{n} is the direction of your head while moving along the boundary with surface on your left.

Proof. We omit the proof. A proof in special case can be found in the reference/text book.

Example 1.2.2 Evaluate $\int_{\mathcal{C}} \vec{F} \cdot d \vec{r}$ where $\vec{F}=x^{2} y^{3} \hat{i}+\hat{j}+z \hat{k}$ and C The intersection of the cylinder $x^{2}+y^{2}=4$ and the hemisphere $x^{2}+y^{2}+z^{2}=16, z \geq 0$.

Solution: The intersection of cylinder and sphere is the boundary of cylinder on the plane $z=\sqrt{12}$. The unit normal to the surface is $\hat{n}=\frac{1}{4}(x \hat{i}+y \hat{j}+z \hat{k})$. The projection R of S on the $x y$-plane is the disc $x^{2}+y^{2} \leq 2, \nabla \times \vec{F}=-3 x^{2} y^{2} \hat{k}$ and $\frac{|\nabla f|}{|\nabla f \cdot \hat{p}|}=\frac{4}{z}$. Hence by Stoke's theorem

$$
\begin{aligned}
\oint_{C} \vec{F} \cdot \overrightarrow{d r} & =\iint_{R}\left(-\frac{3}{4}\right) x^{2} y^{2} z \frac{4}{z} d A \\
& =-3 \int_{\theta=0}^{2 \pi} \int_{r=0}^{2}\left(r^{2} \cos ^{2} \theta\right)\left(r^{2} \sin ^{2} \theta\right) r d r d \theta=-8 \pi
\end{aligned}
$$

Suppose S_{1}, S_{2} be two surfaces having the same boundary curve C. An important consequence of Stoke's theorem is that flux through S_{1} or S_{2} is same.

Example 1.2.3 Suppose S is a surface of a light bulb over the unit disc $x^{2}+y^{2}=1$ oriented with outward pointing normal. Suppose $\vec{F}=e^{z^{2}-2 z} x \hat{i}+(\sin (x y z)+y+1) \hat{j}+e^{z^{2}} \sin \left(z^{2}\right) \hat{k}$. Compute $\iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S$.

Solution: Enough to take any surface with boundary $x^{2}+y^{2}=1$. So we take the unit disc $x^{2}+y^{2} \leq 1, z=0$. Then \vec{F} on this is $\vec{F}=x \hat{i}+(y+1) \hat{j}$. Then $\nabla \times \vec{F}=0$. Hence $\int_{C} \vec{F} \cdot d \vec{r}=0$.

References

1. Thomas' Calculus, Chapters 15, 16
2. Advanced engineering Mathematics, E.Kreyszig, Chapter 9
