Lecture 41

1 Integral theorems

1.1 Green’s theorem in the plane

Theorem 1.1.1 Let R be a closed bounded region in IR? whose boundary C consists of finitely
many smooth curves. Let ?(:U,y) = Fi(z,y)i + Fy(z,y)] be continuous and has continuous

partial derivatives everywhere in some domain containing R. Then
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where the line integral is along the boundary C of R such that R is on the left as we advance

on the boundary. O

Proof. We omit the proof. A proof in special case can be found in the reference/text book.
O

Example 1.1.1 Evaluate [, F.d7 for F= (y2 — Ty)i + (2zy + 22)j and C : 2%+ > = 1.

/? A7 = // (aFQ—aFI>dA_9//dA_9w

Greens theorem can be applied to non simply connected domains like annular regions for

Solution:

O

example

Example 1.1.2 Let R be the domain {(z,y): 1 < 2?4+ y? < 2} and let C be the (positively
ydr—xdy
I2+y2

oriented) boundary of the domain R. Then evaluate fC

Solution: Boundary of R consists of two circles 22 + 4> = 1 and x? + y? = 2. Therefore
Green’s theorem can be applied. Take ? = Fli+Fy) = ﬁ(yi — 7). Then
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ox

Therefore by Green’s theorem
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However the following we give an important example



Example 1.1.3 Let the region R be the punctured disc {(z,y) : 2> + y*> < 1}\{0}. and let

5 OF: 8F
?:_xziy2i+ —T—yﬂ Then 8302 =1 dffR (@—8—?> = 0. But the line integral

2
/ ?d? = / sin’ +cos? 0 = 2. (takmg the parametrization r = cos 8,y = sin @, 0 varies
C 0
from 0 to 2w )

Another application of the Green’s theorem is
Problem 1.1.1 Let C be the closed curve defined as C = Ci + Cy where Cy : y + |x| =
2,0<y<2 —-2<z<2adCy:2>+y>=4, —2<y<0, —2<az <2 Suppose
F= o0+ 5t s]. Then find [, F - d7.

Solution: Let R; be the region bounded by C'. Consider the annural Region R defined as

R1\B1(0). Note that
or_0n [ (%590,
ox oz -

Now by Green’s theorem
/ F.d7 =0.
CUOB1(0)

/C?.d?Z F.dv =

9B1(0)

Therefore

Area of plane region:
Using Green’s theorem, we can write area of a plane region as a line integral over the boundary.
Choose F; =0, F5, = x and then F_ — y, F5, = 0. This gives

//RdAZ/dey and //RdA:_/Cyd””

respectively. The double integral is the area A of R. By addition we have

Azl/(a:dy—ydx)
2 Je

Example 1.1.4 Area bounded by ellipse 2—; + %j =1.

solution: Take x = acost,y = bsint,0 <t < 27. Then by above formula

2w 1
A= 5 / (2 — ya')dt = 3 (abcos®t — (—absin® t)) dt = mab
0

2



1.2 Gauss and Stokes theorems

Let S be a smooth surface and we may choose unit normal n at P of S. The direction of n
is called positive normal direction of S at P. We call a smooth surface S orientable surface
if the positive normal at P can be continued in a unique and continuous way to the entire
surface. For example the Mobius strip is not orientable. A normal at a point P of this strip
is displaced continuously along a closed curve C, the resulting normal upon returning to P is

opposite to the original vector at P.

Theorem 1.2.1 Gauss Divergence Theorem
Let Q be a closed, bounded region in IR® whose boundary is a piecewise smooth orientable
surface S. Let ?(x,y, z) be a continuous function that has continuous partial derivatives in

some domain containing Q. Then

//Qv-dez//S?-ﬁds

where N is the outer unit normal vector of S.
Proof. We omit the proof. A proof in special case can be found in the reference/text book.

0

Example 1.2.1 FEwvaluate / ?.ﬁdA where 0 is the boundary of the domain inside the
o0

cylinder 2 + y® = 1 and between the planes z = 0,z = x + 2 and ? = (22 +ye)i + (2 +

zeQ)j' + (22 + xey)/%.

Solution: With the given ?, it is not difficult to obtain, V- ? = 2x+2y+2z. By Divergence

theorem

/m?-ﬁdS:///{22(x+y+z)dV:2//xQ+y2S1 </:2(x+y+z)dz>dmdy

Theorem 1.2.2 Stokes’s theorem
Let S be a piecewise smooth oriented surface with boundary and let boundary C be a simple

closed curve. Let ? be a continuous function which has continuous partial derivatives in a

//S(VX?).MS:/C?-CZ?

where 1 1s a unit normal vector of S and, depending on 1, the integration around C' is taken

domain containing S. Then

in the way that S lies in the left of C. Here 1 is the direction of your head while moving along

the boundary with surface on your left.

Proof. We omit the proof. A proof in special case can be found in the reference/text book.
O



Example 1.2.2 FEvaluate fC ? - d7 where ? =22+ ]+ zk and C The intersection of
the cylinder z2 + y?> = 4 and the hemisphere x> + y? + 22 = 16,2 > 0.

Solution: The intersection of cylinder and sphere is the boundary of cylinder on the plane
z = 4/12. The unit normal to the surface is n = %(x% +yj + zl%) The projection R of S on
the zy-plane is the disc 22 +y?> < 2, V x F = —3:U2y212: and /L — %. Hence by Stoke’s

[Vf-pl
— 3 4
F.ar —// —S)2?y?2=dA

2 2
=— 3/ / (1% cos? ) (r? sin? O)rdrdf = —8r.
0=0 Jr=0

theorem

Suppose 51,52 be two surfaces having the same boundary curve C. An important conse-

quence of Stoke’s theorem is that flux through Sy or Ss is same.

Example 1.2.3 Suppose S is a surface of a light bulb over the unit disc %+ y? = 1 oriented
with outward pointing normal. Suppose F = 27 + (sin(zyz) + y + 1)] + e sin(z2)k.

Compute //S(V X ?) -ndS.

Solution: Enough to take any surface with boundary 22 4+ y? = 1. So we take the unit disc
2?+y? < 1,2 =0. Then ? on this is ? = zi+(y+1)j. Then Vx? = 0. Hence fC Fd? =0.
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