
Lecture 41

1 Integral theorems

1.1 Green’s theorem in the plane

Theorem 1.1.1 Let R be a closed bounded region in IR2 whose boundary C consists of finitely

many smooth curves. Let
−→
F (x, y) = F1(x, y)̂i + F2(x, y)ĵ be continuous and has continuous

partial derivatives everywhere in some domain containing R. Then∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∮
C

−→
F · d−→r ,

where the line integral is along the boundary C of R such that R is on the left as we advance

on the boundary. �

Proof. We omit the proof. A proof in special case can be found in the reference/text book.

�

Example 1.1.1 Evaluate
∫
C

−→
F · d−→r for

−→
F = (y2 − 7y)̂i+ (2xy + 2x)ĵ and C : x2 + y2 = 1.

Solution: ∫
C

−→
F · d−→r =

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA = 9

∫∫
R
dA = 9π.

�

Greens theorem can be applied to non simply connected domains like annular regions for

example

Example 1.1.2 Let R be the domain {(x, y) : 1 < x2 + y2 < 2} and let C be the (positively

oriented) boundary of the domain R. Then evaluate
∫
C
ydx−xdy
x2+y2

.

Solution: Boundary of R consists of two circles x2 + y2 = 1 and x2 + y2 = 2. Therefore

Green’s theorem can be applied. Take
−→
F = F1î+ F2ĵ = 1

x2+y2
(yî− xĵ). Then

∂F2

∂x
− ∂F1

∂y
= 0 =⇒

∫∫
R

∂F2

∂x
− ∂F1

∂y
dA = 0.

Therefore by Green’s theorem∫
C

ydx− xdy
x2 + y2

=

∫
C

−→
F · d−→r =

∫∫
R

∂F2

∂x
− ∂F1

∂y
dA = 0.

However the following we give an important example
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Example 1.1.3 Let the region R be the punctured disc {(x, y) : x2 + y2 ≤ 1}\{0}. and let
−→
F = − y

x2 + y2
î+

x

x2 + y2
ĵ. Then

∂F2

∂x
=
∂F1

∂y
and

∫∫
R

(
∂F2
∂x −

∂F1
∂y

)
= 0. But the line integral∫

C

−→
F ·d−→r =

∫ 2π

0
sin2 θ+cos2 θ = 2π. (taking the parametrization x = cos θ, y = sin θ, 0 varies

from 0 to 2π )

Another application of the Green’s theorem is

Problem 1.1.1 Let C be the closed curve defined as C = C1 + C2 where C1 : y + |x| =

2, 0 ≤ y ≤ 2, − 2 ≤ x ≤ 2 and C2 : x2 + y2 = 4, − 2 ≤ y ≤ 0, − 2 ≤ x ≤ 2. Suppose
−→
F = − y

x2+y2
î+ x

x2+y2
ĵ. Then find

∫
C

−→
F · d−→r .

Solution: Let R1 be the region bounded by C. Consider the annural Region R defined as

R1\B1(0). Note that

∂F2

∂x
=
∂F1

∂y
=⇒

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
= 0.

Now by Green’s theorem ∫
C∪∂B1(0)

−→
F · d−→r = 0.

Therefore ∫
C

−→
F · d−→r =

∫
∂B1(0)

−→
F · d−→r = 2π.

Area of plane region:

Using Green’s theorem, we can write area of a plane region as a line integral over the boundary.

Choose F1 = 0, F2 = x and then F= − y, F2 = 0. This gives∫∫
R
dA =

∫
C
xdy and

∫∫
R
dA = −

∫
C
ydx

respectively. The double integral is the area A of R. By addition we have

A =
1

2

∫
C

(xdy − ydx)

Example 1.1.4 Area bounded by ellipse x2

a2
+ y2

b2
= 1.

solution: Take x = a cos t, y = b sin t, 0 ≤ t ≤ 2π. Then by above formula

A =
1

2

∫ 2π

0
(xy′ − yx′)dt =

1

2

(
ab cos2 t− (−ab sin2 t)

)
dt = πab
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1.2 Gauss and Stokes theorems

Let S be a smooth surface and we may choose unit normal n̂ at P of S. The direction of n̂

is called positive normal direction of S at P . We call a smooth surface S orientable surface

if the positive normal at P can be continued in a unique and continuous way to the entire

surface. For example the Mobius strip is not orientable. A normal at a point P of this strip

is displaced continuously along a closed curve C, the resulting normal upon returning to P is

opposite to the original vector at P .

Theorem 1.2.1 Gauss Divergence Theorem

Let Ω be a closed, bounded region in IR3 whose boundary is a piecewise smooth orientable

surface S. Let
−→
F (x, y, z) be a continuous function that has continuous partial derivatives in

some domain containing Ω. Then∫∫∫
Ω
∇ · FdV =

∫∫
S

−→
F · n̂dS

where n̂ is the outer unit normal vector of S.

Proof. We omit the proof. A proof in special case can be found in the reference/text book.

�

Example 1.2.1 Evaluate

∫∫
∂Ω

−→
F .n̂dA where ∂Ω is the boundary of the domain inside the

cylinder x2 + y2 = 1 and between the planes z = 0, z = x + 2 and
−→
F = (x2 + yez )̂i + (y2 +

ze2)ĵ + (z2 + xey)k̂.

Solution: With the given
−→
F , it is not difficult to obtain, ∇·

−→
F = 2x+2y+2z. By Divergence

theorem∫∫
∂Ω

−→
F · n̂dS =

∫∫∫
Ω

2(x+ y + z)dV = 2

∫∫
x2+y2≤1

(∫ x+2

z=0
(x+ y + z)dz

)
dxdy

Theorem 1.2.2 Stokes’s theorem

Let S be a piecewise smooth oriented surface with boundary and let boundary C be a simple

closed curve. Let
−→
F be a continuous function which has continuous partial derivatives in a

domain containing S. Then ∫∫
S

(∇×
−→
F ) · n̂dS =

∫
C

−→
F · d−→r

where n̂ is a unit normal vector of S and, depending on n̂, the integration around C is taken

in the way that S lies in the left of C. Here n̂ is the direction of your head while moving along

the boundary with surface on your left.

Proof. We omit the proof. A proof in special case can be found in the reference/text book.

�

3



Example 1.2.2 Evaluate
∫
C
−→
F · d−→r where

−→
F = x2y3î + ĵ + zk̂ and C The intersection of

the cylinder x2 + y2 = 4 and the hemisphere x2 + y2 + z2 = 16, z ≥ 0.

Solution: The intersection of cylinder and sphere is the boundary of cylinder on the plane

z =
√

12. The unit normal to the surface is n̂ = 1
4(xî + yĵ + zk̂). The projection R of S on

the xy-plane is the disc x2 + y2 ≤ 2 , ∇ ×
−→
F = −3x2y2k̂ and |∇f |

|∇f ·p̂| = 4
z . Hence by Stoke’s

theorem ∮
C

−→
F ·
−→
dr =

∫∫
R

(−3

4
)x2y2z

4

z
dA

=− 3

∫ 2π

θ=0

∫ 2

r=0
(r2 cos2 θ)(r2 sin2 θ)rdrdθ = −8π.

Suppose S1, S2 be two surfaces having the same boundary curve C. An important conse-

quence of Stoke’s theorem is that flux through S1 or S2 is same.

Example 1.2.3 Suppose S is a surface of a light bulb over the unit disc x2 + y2 = 1 oriented

with outward pointing normal. Suppose
−→
F = ez

2−2zxî + (sin(xyz) + y + 1)ĵ + ez
2

sin(z2)k̂.

Compute

∫∫
S

(∇×
−→
F ) · n̂dS.

Solution: Enough to take any surface with boundary x2 + y2 = 1. So we take the unit disc

x2+y2 ≤ 1, z = 0. Then
−→
F on this is

−→
F = xî+(y+1)ĵ. Then∇×

−→
F = 0. Hence

∫
C

−→
F ·d−→r = 0.
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