Lecture 5

1 Cauchy sequences

Definition 1.0.1. A sequence $\left\{a_{n}\right\}$ is called a Cauchy sequence if for any given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $n, m \geq N \Longrightarrow\left|a_{n}-a_{m}\right|<\epsilon$.

Example 1.0.2. Let $\left\{a_{n}\right\}$ be a sequence such that $\left\{a_{n}\right\}$ converges to L (say). Let $\epsilon>0$ be given. Then there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\frac{\epsilon}{2} \forall n \geq N .
$$

Thus if $n, m \geq N$, we have

$$
\left|a_{n}-a_{m}\right| \leq\left|a_{n}-L\right|+\left|a_{m}-L\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Thus $\left\{a_{n}\right\}$ is Cauchy.
Lemma 1.0.3. If $\left\{a_{n}\right\}$ is a Cauchy sequence, then $\left\{a_{n}\right\}$ is bounded.
Proof. Since $\left\{a_{n}\right\}$ forms a Cauchy sequence, for $\epsilon=1$ there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}-a_{m}\right|<1, \forall n, m \geq N .
$$

In particular,

$$
\left|a_{n}-a_{N}\right|<1, \forall n \geq N .
$$

Hence if $n \geq N$, then

$$
\left|a_{n}\right| \leq\left|a_{n}-a_{N}\right|+\left|a_{N}\right|<1+\left|a_{N}\right|, \forall n \geq N .
$$

Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|, 1+\left|a_{N}\right|\right\}$. Then $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Hence $\left\{a_{n}\right\}$ is bounded.

Theorem 1.0.4. If $\left\{a_{n}\right\}$ is a Cauchy sequence, then $\left\{a_{n}\right\}$ is convergent.
Proof. Let $a_{n_{k}}$ be a monotone subsequence of the Cauchy sequence $\left\{a_{n}\right\}$. Then $a_{n_{k}}$ is a bounded, monotone subsequence. Hence $\left\{a_{n_{k}}\right\}$ converges to L (say). Now we claim that the sequence $\left\{a_{n}\right\}$ itself converges to L. Let $\epsilon>0$. Choose N_{1}, N_{2} such that

$$
\begin{gathered}
n, n_{k} \geq N_{1} \Longrightarrow\left|a_{n}-a_{n_{k}}\right|<\epsilon / 2 \\
n_{k} \geq N_{2} \Longrightarrow\left|a_{n_{k}}-a\right|<\epsilon / 2
\end{gathered}
$$

Then

$$
n, n_{k} \geq \max \left\{N, N_{1}\right\} \Longrightarrow\left|a_{n}-a\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|\left|a_{n_{k}}-a\right|<\epsilon .\right.
$$

Hence the claim.

Therefore, we have the following Criterion:
Cauchy's Criterion for convergence: A sequence $\left\{a_{n}\right\}$ converges if and only if for every $\epsilon>0$, there exists N such that

$$
\left|a_{n}-a_{m}\right|<\epsilon \forall m, n \geq N .
$$

Example 1.0.5. Let $\left\{a_{n}\right\}$ be defined as $a_{1}=1, a_{n+1}=1+\frac{1}{a_{n}}$. The show that $\left\{a_{n}\right\}$ is Cauchy. Note that $a_{n}>1$ and $a_{n} a_{n-1}=a_{n-1}+1>2$. Then

$$
\left|a_{n+1}-a_{n}\right|=\left|\frac{a_{n-1}-a_{n}}{a_{n} a_{n-1}}\right| \leq \frac{1}{2}\left|a_{n}-a_{n-1}\right| \leq \frac{1}{2^{n-1}}\left|a_{2}-a_{1}\right|, \quad \forall n \geq 2 .
$$

Hence

$$
\left|a_{m}-a_{n}\right| \leq\left|a_{m}-a_{m-1}\right|+\left|a_{m-1}-a_{m-2}\right|+\ldots+\left|a_{n+1}-a_{n}\right| \leq\left|a_{2}-a_{1}\right| \frac{\alpha^{n-1}}{1-\alpha}, \alpha=\frac{1}{2}
$$

So given, $\epsilon>0$, we can choose N such that $\frac{1}{2^{N-1}}<\frac{\epsilon}{2}$.
Indeed the following holds,
Theorem 1.0.6. Let $\left\{a_{n}\right\}$ be a sequence such that $\left|a_{n+1}-a_{n}\right|<\alpha\left|a_{n}-a_{n-1}\right|$ for all $n \geq N$ for some N and $0<\alpha<1$. Then $\left\{a_{n}\right\}$ is a Cauchy sequence.

Proof. Proof follows as in the previous example.
In the above theorem if $\alpha=1$, then we cannot say if the sequence is Cauchy or Not. For example
Example 1.0.7. Let $a_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Then it is easy to see that

$$
\frac{\left|a_{n+1}-a_{n}\right|}{\mid a_{n}-a_{n-1}}=\frac{n}{n+1}<1 .
$$

But the sequence $\left\{a_{n}\right\}$ diverges. Indeed, $a_{2^{n}}>1+\frac{n}{2}$, by induction.
On the other hand if we choose $a_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$. Then

$$
\frac{\left|a_{n+1}-a_{n}\right|}{\mid a_{n}-a_{n-1}}=\frac{n^{2}}{(n+1)^{2}}<1 .
$$

But the sequence $\left\{a_{n}\right\}$ converges (This will be proved in the next section while studying infinite series).

