Lecture 6

1 Limit superior and limit inferior

Definition 1.0.1. Let $\{a_n\}$ be a bounded sequence. Then limit superior of the sequence $\{a_n\}$, denoted by $\limsup a_n$, is defined as

 $n \rightarrow \infty$

$$\limsup_{n \to \infty} a_n := \inf_{k \in \mathbb{N}} \sup_{n \ge k} a_n.$$

Similarly limit inferior of the sequence $\{a_n\}$, denoted by $\liminf_{n\to\infty} a_n$, is defined as

$$\liminf_{n \to \infty} a_n := \sup_{k \in \mathbb{N}} \inf_{n \ge k} a_n.$$

Examples 1.0.2. 1. Consider the sequence $\{a_n\} = \{0, 1, 0, 1, \dots\}$. Then $\beta_n = \sup\{a_m, m \ge n\} = 1$ and $\alpha_n = \inf\{a_m, m \ge n\} = 0$. Therefore, $\liminf a_n = 0$, $\limsup a_n = 1$.

2. Consider the sequence $a_n = \sin \frac{n\pi}{3}$. Then by listing the elements of $\{a_n\}$, it is easy to see that $\beta_n = \sup\{a_m, m \ge n\} = \frac{\sqrt{3}}{2}$. Therefore $\limsup a_n = \frac{\sqrt{3}}{2}$. Similarly one can see $\liminf a_n = -\frac{\sqrt{3}}{2}$.

3. Consider the sequence
$$a_n = (-1)^n \frac{n+1}{n}$$
.
Let $\beta_n = \sup\{(-1)^n \frac{n+1}{n}, (-1)^{n+1} \frac{n+2}{n+1}, ...\}$. Then $\beta_n = \begin{cases} \frac{n+1}{n} & n \text{ even} \\ \frac{n+2}{n+1} & n \text{ odd} \end{cases}$. It is easy to see that $\beta_n \to 1$. Therefore, $\limsup a_n = 1$. Similarly, $\liminf a_n = -1$.

4. Consider the sequence $\{a_n\} = \{\frac{1}{2}, \frac{2}{3}, \frac{1}{3}, \frac{3}{4}, \dots\}$. Then for large k

$$1 \ge \sup\{a_m, m \ge k\} \ge \lim \frac{k-1}{k}$$
$$0 < \inf\{a_m, m \ge k\} \le \lim \frac{1}{k}$$

Then by sandwich theorem, we see that $\limsup a_n = 1$ and $\liminf a_n = 0$.

Lemma 1.0.3.

- (i) If $\{a_n\}$ is a bounded sequence, then $\limsup_{n \to \infty} a_n \ge \liminf_{n \to \infty} a_n$.
- (ii) If $\{a_n\}$ and $\{b_n\}$ are bounded sequences of real numbers and if $a_n \leq b_n$ for all $n \in \mathbb{N}$, then

$$\limsup_{n \to \infty} a_n \le \limsup_{n \to \infty} b_n$$

and

$$\liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n$$

(iii) Let $\{a_n\}$ and $\{b_n\}$ are bounded sequences of real numbers. Then

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_r$$

and

$$\liminf_{n \to \infty} (a_n + b_n) \ge \liminf_{n \to \infty} a_n + \liminf_{n \to \infty} b_n.$$

Example 1.0.4. Consider the sequences $\{(-1)^n\}$ and $\{(-1)^{n+1}\}$. Here $a_n = (-1)^n$ and $b_n = (-1)^{n+1}$. Also $\limsup_{n \to \infty} a_n = \limsup_{n \to \infty} b_n = 1$. But $a_n + b_n = 0$ for all $n \in \mathbb{N}$ and hence $\limsup_{n \to \infty} (a_n + b_n) = 0$. Thus a strict inequality may hold in (iii) the above Lemma.

Theorem 1.0.5. If $\{a_n\}$ is a bounded sequence, then there exists subsequences $\{a_{n_k}\}$ and $\{b_{n_k}\}$ such that

$$\limsup a_n = \lim a_{n_k}$$
 and $\liminf a_n = \lim b_{n_k}$.

Proof. Since $\{a_n\}$ is bounded, $\limsup a_n = \alpha$ exists. Then from the definition, for each k large enough

$$\alpha < \sup_{n > k} a_n < \alpha + \frac{1}{k}$$

i.e., there exits a_{n_k} such that

$$\alpha - \frac{1}{k} < a_{n_k} < \alpha + \frac{1}{k}$$

Therefore, $a_{n_k} \to \alpha$ as $k \to \infty$. Similarly, one can obtain b_{n_k} .

Theorem 1.0.6. If there exists a subsequence $a_{n_k} \to t$. Then $t \leq s := \limsup a_n$.

Proof. Suppose NOT. Then choose $\epsilon > 0$ such that $t - \epsilon > s$. Then we can find N such that

$$n \ge N \implies a_n < t - \epsilon$$

Therefore $|a_n - t| > \epsilon$ for all $n \ge N$. Hence such a sequence cannot have a convergent subsequence.

Remark 1.1. From the above two theorems we can say that the limsup is the supremum of all limits of subsequences of a sequence.

Remark 1.2. In case of unbounded sequences, either \limsup or \limsup or \limsup or both can approach ∞ . Even in this case, one can show the existence of subsequences that approach infinity.

Remark 1.3. If we can find the limits of all subsequences of $\{a_n\}$. Then \limsup is nothing but the supremum of all these limits. Similarly, \liminf is the infimum of all these limits.

Example 1.0.7. Find lim sup and lim inf of $\{a_n\}$ where $a_n = (1 + (-1)^n + \frac{1}{2^n})^{\frac{1}{n}}$. The sequence $\{a_n\}$ is bounded and has two convergent subsequences $\{\frac{1}{2}\}$ and $\{(2 + \frac{1}{2^n})^{\frac{1}{n}}\}$. So the two limits are $\frac{1}{2}$ and 1. Therefore, $\limsup a_n = 1$ and $\liminf a_n = \frac{1}{2}$.

///

///