Lecture 7

1 limsup and liminf ctd..
Theorem 1.0.1. If {a,}is a convergent sequence, then

liminf a, = lim a, = limsup a,.
n—00 n—o0 n—00

Proof. Let L = 1i_>m an. Then given € > 0 there exists N € N such that
n—,oo
la, — L| <€, ¥Yn>N.

Equivalently L — e < a, < L+ ¢, for all n > N. Thus, if n > N, L 4+ ¢ is an upper bound
for the set {ax|k > N}. If oy, := sup{ax|k > n}, then we note that L — e < ay < L + € and
any1 < L+e€, ...,an < L+e€foralln > N (As ay, is decreasing). Alsoa, >L—¢, n> N —
an > L —¢€, n> N. Therefore, lim o, = L. Hence limsup a, = L. Similarly, one can prove the
liminf a,, = L.

/1]

Theorem 1.0.2. If {a,}is a bounded sequence and if limsup a, = liminf a, = L, L € R, then
n—o0o n—00

{an}is a convergent sequence.

Proof. Notice that

limsup a, = lim (sup{ax|k > n})
n—0o0 n—00

and

linrr_1>i£fan = nli_)r&(inf{aﬂk > n}).

Given that L = lim sup a,. Thus for € > 0, there exists N1 € N such that

n—oo

|sup{an, ant1,...} — L| <€, ¥Vn > Ni.

This implies
an, < L+e€ Vn>N; (1.1)

Similarly there exists Ny € N such that
|inf{an, ant1,...} — L] <€, Vn> Nj.

This implies
L—e<ayp, Vn> Ny (1.2)

Let N = max{Ny, No}. Then from (1.1)and (1.2) we get

lap, — L| < €,Vn>N.



Thus the sequence {a, }converges. ///

Example 1.0.3.

: " K1
nlg{.lO <1 + n) = e. Assume that e = nlgrolOkZ_O ik

no1 1\"
Solution. Let a, = ) 7 and b, = (1 + ) . Now,
k=0R"

This implies

limsup b, < limsup a, =e.
n—oo n—oo

Further, if n > m, then
b= (141 n—znj C 1k>§m: c 1k—2+§:1kﬁ1 L
" n _k:On M\n) = "k\n) T 2]{:!2’:1 nj)’

Keeping m fized and letting n — oo, we get
1
fninf b 2 )i
k=0
which implies a, < liminf b,. Hence
n—oo

e = liminf a, <liminf b,.
n—oo n—oo

Finally we have the following more precise version of theorem 1.6.6

Theorem 1.0.4. Let {a,} be any sequence of nonzero real numbers. Then we have

Gn+41 1/n an+1

lim inf

< liminf |a,|"™ < limsup |a,|"/" < lim sup

n an

Proof. The inequality in the middle is trivial. Now we show the right end inequality. Let
L =limsup [*2*4|. W.l.g assume L < co. Let ¢ > 0. Then there exists N € N such that

an+1

<L+¢€¢ VYn>N.

an



Then for any n > N, we can write

Now taking a = (L —€)~N|ay|), we have, |a,|'/" < (L+€)a'/" for n > N. Since lim a'/™ =1,

n—oo
we conclude that limsup |a,|'/" < (L + €). Since € is arbitrary, we get the result. Similarly, we

can prove the first inequality.
The following example shows that the inequality can be strict in the above theorem.

2n n is even
Example 1.0.5. Let a,, = . Then
2=l nisodd
. An+1 . 1/n 1
lim sup =4 >limsupa,/" = =
Gn



