Lecture 7

1 lim sup and lim inf ctd..

Theorem 1.0.1. If $\{a_n\}$ is a convergent sequence, then

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Proof. Let $L = \lim_{n \to \infty} a_n$. Then given $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|a_n - L| < \epsilon, \ \forall \ n \ge N.$$

Equivalently $L - \epsilon < a_n < L + \epsilon$, for all $n \ge N$. Thus, if $n \ge N$, $L + \epsilon$ is an upper bound for the set $\{a_k | k \ge N\}$. If $\alpha_k := \sup\{a_k | k \ge n\}$, then we note that $L - \epsilon < \alpha_N \le L + \epsilon$ and $\alpha_{N+1} < L + \epsilon$, ..., $\alpha_n < L + \epsilon$ for all $n \ge N$ (As α_n is decreasing). Also $a_n > L - \epsilon$, $n \ge N \Longrightarrow \alpha_n \ge L - \epsilon$, $n \ge N$. Therefore, $\lim \alpha_n = L$. Hence $\limsup a_n = L$. Similarly, one can prove the $\liminf a_n = L$.

///

Theorem 1.0.2. If $\{a_n\}$ is a bounded sequence and if $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = L$, $L \in \mathbb{R}$, then $\{a_n\}$ is a convergent sequence.

Proof. Notice that

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} (\sup\{a_k | k \ge n\})$$

and

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} (\inf\{a_k | k \ge n\}).$$

Given that $L = \lim \sup_{n \to \infty} a_n$. Thus for $\epsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that

$$|\sup\{a_n, a_{n+1}, ...\} - L| < \epsilon, \ \forall \ n \ge N_1.$$

This implies

$$a_n < L + \epsilon, \ \forall \ n \ge N_1$$
 (1.1)

Similarly there exists $N_2 \in \mathbb{N}$ such that

$$|\inf\{a_n, a_{n+1}, ...\} - L| < \epsilon, \ \forall \ n \ge N_2.$$

This implies

$$L - \epsilon < a_n, \ \forall \ n \ge N_2 \tag{1.2}$$

Let $N = \max\{N_1, N_2\}$. Then from (1.1) and (1.2) we get

$$|a_n - L| < \epsilon, \forall n > N.$$

Thus the sequence $\{a_n\}$ converges.

///

Example 1.0.3.

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e. \text{ Assume that } e = \lim_{n\to\infty} \sum_{k=0}^n \frac{1}{k!}.$$

Solution. Let $a_n = \sum_{k=0}^n \frac{1}{k!}$ and $b_n = \left(1 + \frac{1}{n}\right)^n$. Now,

$$b_n = \sum_{k=0}^{n} {}_{n}C_k \left(\frac{1}{n}\right)^k = 2 + \sum_{k=2}^{n} \frac{1}{k!} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right) \le a_n. (see (1.6))$$

This implies

$$\limsup_{n \to \infty} b_n \le \limsup_{n \to \infty} a_n = e.$$

Further, if $n \ge m$, then

$$b_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n {}_nC_k \left(\frac{1}{n}\right)^k \ge \sum_{k=0}^m {}_nC_k \left(\frac{1}{n}\right)^k = 2 + \sum_{k=2}^m \frac{1}{k!} \prod_{i=1}^{k-1} \left(1 - \frac{i}{n}\right).$$

Keeping m fixed and letting $n \to \infty$, we get

$$\liminf_{n \to \infty} b_n \ge \sum_{k=0}^{m} \frac{1}{k!}$$

which implies $a_n \leq \liminf_{n \to \infty} b_n$. Hence

$$e = \liminf_{n \to \infty} a_n \le \liminf_{n \to \infty} b_n.$$

Finally we have the following more precise version of theorem 1.6.6

Theorem 1.0.4. Let $\{a_n\}$ be any sequence of nonzero real numbers. Then we have

$$\liminf \left| \frac{a_{n+1}}{a_n} \right| \le \liminf |a_n|^{1/n} \le \limsup |a_n|^{1/n} \le \limsup \left| \frac{a_{n+1}}{a_n} \right|.$$

Proof. The inequality in the middle is trivial. Now we show the right end inequality. Let $L=\limsup |\frac{a_{n+1}}{a_n}|$. W.l.g assume $L<\infty$. Let $\epsilon>0$. Then there exists $N\in\mathbb{N}$ such that

$$\left| \frac{a_{n+1}}{a_n} \right| < L + \epsilon \ \forall n \ge N.$$

Then for any n > N, we can write

$$|a_n| = \left| \frac{a_n}{a_{n-1}} \right| \left| \frac{a_{n-1}}{a_{n-1}} \right| \dots \left| \frac{a_{N+1}}{a_N} \right| |a_N|$$
$$< (L+\epsilon)^{n-N} |a_N|$$
$$= (L+\epsilon)^n ((L+\epsilon)^{-N} |a_N|).$$

Now taking $a = ((L - \epsilon)^{-N} |a_N|)$, we have, $|a_n|^{1/n} < (L + \epsilon)a^{1/n}$ for n > N. Since $\lim_{n \to \infty} a^{1/n} = 1$, we conclude that $\limsup |a_n|^{1/n} \le (L + \epsilon)$. Since ϵ is arbitrary, we get the result. Similarly, we can prove the first inequality.

The following example shows that the inequality can be strict in the above theorem.

Example 1.0.5. Let
$$a_n = \begin{cases} 2^n & n \text{ is even} \\ 2^{n-1} & n \text{ is odd} \end{cases}$$
. Then

$$\limsup \frac{a_{n+1}}{a_n} = 4 > \limsup a_n^{1/n} = \frac{1}{2}.$$