Lecture 7

1 limsup and liminf ctd..

Theorem 1.0.1. If $\left\{a_{n}\right\}$ is a convergent sequence, then

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} a_{n}
$$

Proof. Let $L=\lim _{n \rightarrow \infty} a_{n}$. Then given $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|a_{n}-L\right|<\epsilon, \forall n \geq N
$$

Equivalently $L-\epsilon<a_{n}<L+\epsilon$, for all $n \geq N$. Thus, if $n \geq N, L+\epsilon$ is an upper bound for the set $\left\{a_{k} \mid k \geq N\right\}$. If $\alpha_{k}:=\sup \left\{a_{k} \mid k \geq n\right\}$, then we note that $L-\epsilon<\alpha_{N} \leq L+\epsilon$ and $\alpha_{N+1}<L+\epsilon, \ldots, \alpha_{n}<L+\epsilon$ for all $n \geq N$ (As α_{n} is decreasing). Also $a_{n}>L-\epsilon, n \geq N \Longrightarrow$ $\alpha_{n} \geq L-\epsilon, n \geq N$. Therefore, $\lim \alpha_{n}=L$. Hence $\lim \sup a_{n}=L$. Similarly, one can prove the $\liminf a_{n}=L$.

Theorem 1.0.2. If $\left\{a_{n}\right\}$ is a bounded sequence and if $\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=L, L \in \mathbb{R}$, then $\left\{a_{n}\right\}$ is a convergent sequence.

Proof. Notice that

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\sup \left\{a_{k} \mid k \geq n\right\}\right)
$$

and

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\inf \left\{a_{k} \mid k \geq n\right\}\right)
$$

Given that $L=\lim \sup _{n \rightarrow \infty} a_{n}$. Thus for $\epsilon>0$, there exists $N_{1} \in \mathbb{N}$ such that

$$
\left|\sup \left\{a_{n}, a_{n+1}, \ldots\right\}-L\right|<\epsilon, \forall n \geq N_{1}
$$

This implies

$$
\begin{equation*}
a_{n}<L+\epsilon, \forall n \geq N_{1} \tag{1.1}
\end{equation*}
$$

Similarly there exists $N_{2} \in \mathbb{N}$ such that

$$
\left|\inf \left\{a_{n}, a_{n+1}, \ldots\right\}-L\right|<\epsilon, \forall n \geq N_{2}
$$

This implies

$$
\begin{equation*}
L-\epsilon<a_{n}, \forall n \geq N_{2} \tag{1.2}
\end{equation*}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. Then from (1.1) and (1.2) we get

$$
\left|a_{n}-L\right|<\epsilon, \forall n \geq N
$$

Thus the sequence $\left\{a_{n}\right\}$ converges.

Example 1.0.3.

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e . \text { Assume that } e=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{1}{k!} \text {. }
$$

Solution. Let $a_{n}=\sum_{k=0}^{n} \frac{1}{k!}$ and $b_{n}=\left(1+\frac{1}{n}\right)^{n}$. Now,

$$
\begin{equation*}
b_{n}=\sum_{k=0}^{n}{ }_{n} C_{k}\left(\frac{1}{n}\right)^{k}=2+\sum_{k=2}^{n} \frac{1}{k!} \prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right) \leq a_{n} \cdot(\text { see }(1 \tag{1.6}
\end{equation*}
$$

This implies

$$
\limsup _{n \rightarrow \infty} b_{n} \leq \limsup _{n \rightarrow \infty} a_{n}=e .
$$

Further, if $n \geq m$, then

$$
b_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}{ }_{n} C_{k}\left(\frac{1}{n}\right)^{k} \geq \sum_{k=0}^{m}{ }_{n} C_{k}\left(\frac{1}{n}\right)^{k}=2+\sum_{k=2}^{m} \frac{1}{k!} \prod_{i=1}^{k-1}\left(1-\frac{i}{n}\right) .
$$

Keeping m fixed and letting $n \rightarrow \infty$, we get

$$
\liminf _{n \rightarrow \infty} b_{n} \geq \sum_{k=0}^{m} \frac{1}{k!}
$$

which implies $a_{n} \leq \liminf _{n \rightarrow \infty} b_{n}$. Hence

$$
e=\liminf _{n \rightarrow \infty} a_{n} \leq \liminf _{n \rightarrow \infty} b_{n} .
$$

Finally we have the following more precise version of theorem 1.6.6
Theorem 1.0.4. Let $\left\{a_{n}\right\}$ be any sequence of nonzero real numbers. Then we have

$$
\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right| \leq \liminf \left|a_{n}\right|^{1 / n} \leq \lim \sup \left|a_{n}\right|^{1 / n} \leq \lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|
$$

Proof. The inequality in the middle is trivial. Now we show the right end inequality. Let $L=\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|$. W.l.g assume $L<\infty$. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<L+\epsilon \forall n \geq N .
$$

Then for any $n>N$, we can write

$$
\begin{aligned}
\left|a_{n}\right| & =\left|\frac{a_{n}}{a_{n-1}}\right|\left|\frac{a_{n-1}}{a_{n-1}}\right| \ldots\left|\frac{a_{N+1}}{a_{N}}\right|\left|a_{N}\right| \\
& <(L+\epsilon)^{n-N}\left|a_{N}\right| \\
& =(L+\epsilon)^{n}\left((L+\epsilon)^{-N}\left|a_{N}\right|\right) .
\end{aligned}
$$

Now taking $a=\left((L-\epsilon)^{-N}\left|a_{N}\right|\right)$, we have, $\left|a_{n}\right|^{1 / n}<(L+\epsilon) a^{1 / n}$ for $n>N$. Since $\lim _{n \rightarrow \infty} a^{1 / n}=1$, we conclude that $\lim \sup \left|a_{n}\right|^{1 / n} \leq(L+\epsilon)$. Since ϵ is arbitrary, we get the result. Similarly, we can prove the first inequality.
The following example shows that the inequality can be strict in the above theorem.
Example 1.0.5. Let $a_{n}=\left\{\begin{array}{ll}2^{n} & n \text { is even } \\ 2^{n-1} & n \text { is odd }\end{array}\right.$. Then

$$
\lim \sup \frac{a_{n+1}}{a_{n}}=4>\lim \sup a_{n}^{1 / n}=\frac{1}{2}
$$

