
Lecture 7

1 lim sup and lim inf ctd..

Theorem 1.0.1. If {an}is a convergent sequence, then

lim inf
n→∞

an = lim
n→∞

an = lim sup
n→∞

an.

Proof. Let L = lim
n→∞

an. Then given ε > 0 there exists N ∈ N such that

|an − L| < ε, ∀ n ≥ N.

Equivalently L − ε < an < L + ε, for all n ≥ N . Thus, if n ≥ N , L + ε is an upper bound

for the set {ak|k ≥ N}. If αk := sup{ak|k ≥ n}, then we note that L − ε < αN ≤ L + ε and

αN+1 < L+ ε, ....,αn < L+ ε for all n ≥ N (As αn is decreasing). Also an > L− ε, n ≥ N =⇒
αn ≥ L− ε, n ≥ N . Therefore, limαn = L. Hence lim sup an = L. Similarly, one can prove the

lim inf an = L.

///

Theorem 1.0.2. If {an}is a bounded sequence and if lim sup
n→∞

an = lim inf
n→∞

an = L, L ∈ R, then

{an}is a convergent sequence.

Proof. Notice that

lim sup
n→∞

an = lim
n→∞

(sup{ak|k ≥ n})

and

lim inf
n→∞

an = lim
n→∞

(inf{ak|k ≥ n}).

Given that L = lim sup
n→∞

an. Thus for ε > 0, there exists N1 ∈ N such that

| sup{an, an+1, ...} − L| < ε, ∀ n ≥ N1.

This implies

an < L+ ε, ∀ n ≥ N1 (1.1)

Similarly there exists N2 ∈ N such that

| inf{an, an+1, ...} − L| < ε, ∀ n ≥ N2.

This implies

L− ε < an, ∀ n ≥ N2 (1.2)

Let N = max{N1, N2}. Then from (1.1)and (1.2) we get

|an − L| < ε,∀ n ≥ N.
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Thus the sequence {an}converges. ///

Example 1.0.3.

lim
n→∞

(
1 +

1

n

)n

= e. Assume that e = lim
n→∞

n∑
k=0

1

k!
.

Solution. Let an =
n∑

k=0

1

k!
and bn =

(
1 +

1

n

)n

. Now,

bn =

n∑
k=0

nCk

(
1

n

)k

= 2 +

n∑
k=2

1

k!

k−1
Π
i=1

(
1− i

n

)
≤ an.(see (1.6)

This implies

lim sup
n→∞

bn ≤ lim sup
n→∞

an = e.

Further, if n ≥ m, then

bn =

(
1 +

1

n

)n

=
n∑

k=0

nCk

(
1

n

)k

≥
m∑
k=0

nCk

(
1

n

)k

= 2 +
m∑
k=2

1

k!

k−1
Π
i=1

(
1− i

n

)
.

Keeping m fixed and letting n→∞, we get

lim inf
n→∞

bn ≥
m∑
k=0

1

k!

which implies an ≤ lim inf
n→∞

bn. Hence

e = lim inf
n→∞

an ≤ lim inf
n→∞

bn.

Finally we have the following more precise version of theorem 1.6.6

Theorem 1.0.4. Let {an} be any sequence of nonzero real numbers. Then we have

lim inf

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup

∣∣∣∣an+1

an

∣∣∣∣ .
Proof. The inequality in the middle is trivial. Now we show the right end inequality. Let

L = lim sup |an+1

an
|. W.l.g assume L <∞. Let ε > 0. Then there exists N ∈ N such that∣∣∣∣an+1

an

∣∣∣∣ < L+ ε ∀n ≥ N.
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Then for any n > N , we can write

|an| =
∣∣∣∣ anan−1

∣∣∣∣ ∣∣∣∣an−1an−1

∣∣∣∣ ... ∣∣∣∣aN+1

aN

∣∣∣∣ |aN |
< (L+ ε)n−N |aN |
= (L+ ε)n((L+ ε)−N |aN |).

Now taking a = ((L− ε)−N |aN |), we have, |an|1/n < (L+ ε)a1/n for n > N . Since lim
n→∞

a1/n = 1,

we conclude that lim sup |an|1/n ≤ (L+ ε). Since ε is arbitrary, we get the result. Similarly, we

can prove the first inequality.

The following example shows that the inequality can be strict in the above theorem.

Example 1.0.5. Let an =

{
2n n is even

2n−1 n is odd
. Then

lim sup
an+1

an
= 4 > lim sup a1/nn =

1

2
.
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