Lecture 8

1 Infinite Series

1.1 Definitions \& convergence

Definition 1.1.1. Let $\left\{a_{n}\right\}$ be a sequence of real numbers.
a) An expression of the form

$$
a_{1}+a_{2}+\ldots+a_{n}+\ldots
$$

is called an infinite series.
b) The number a_{n} is called as the $n^{\text {th }}$ term of the series.
c) The sequence $\left\{s_{n}\right\}$, defined by $s_{n}=\sum_{k=1}^{n} a_{k}$, is called the sequence of partial sums of the series.
d) If the sequence of partial sums converges to a limit L, we say that the series converges and its sum is L.
e) If the sequence of partial sums does not converge, we say that the series diverges.

Examples 1.1.2.

1) If $0<x<1$, then $\sum_{n=0}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$.

Solution. Let us consider the sequence of partial sums $\left\{s_{n}\right\}$, where $s_{n}=\sum_{k=0}^{n} x^{k}$. Here

$$
s_{n}=\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}=\frac{1}{1-x}-\frac{x^{n+1}}{1-x}, n \in \mathbb{N} .
$$

As, $0<x<1, x^{n+1} \rightarrow 0$ as $n \rightarrow \infty$. Hence $s_{n} \rightarrow \frac{1}{1-x}$. Thus $\sum x^{n}$ converges to $\frac{1}{1-x}$.
2) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution. Consider the sequence of partial sums $\left\{s_{n}\right\}$, where $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Now, let us examine the subsequence $s_{2^{n}}$ of $\left\{s_{n}\right\}$. Here

$$
\begin{aligned}
& s_{2}=1+1 / 2=3 / 2 \\
& s_{4}=1+1 / 2+1 / 3+1 / 4>3 / 2+1 / 4+1 / 4=2
\end{aligned}
$$

Suppose $s_{2}{ }^{n}>(n+2) / 2$, then

$$
\begin{aligned}
s_{2^{n+1}} & =s_{2^{n}}+\sum_{k=1}^{2^{n}} \frac{1}{2^{n}+k} \\
& >\frac{n+2}{2}+\sum_{k=1}^{2^{n}} \frac{1}{2^{n+1}} \\
& =\frac{n+2}{2}+\frac{2^{n}}{2^{n+1}}=\frac{(n+1)+2}{2} .
\end{aligned}
$$

Thus the subsequence $\left\{s_{2^{n}}\right\}$ is not bounded above and as it is also increasing, it diverges. Hence the sequence diverges, i.e., the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
3) (Telescopic series:) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to 1 .

Solution. Consider the sequence of partial sums $\left\{s_{n}\right\}$. Then

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}=\sum_{k=1}^{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n+1} \rightarrow 1 .
$$

Summarizing this observation, one has the following theorem on Telescopic series
Theorem 1.1.3. Suppose $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n} \rightarrow L$. Then the series $\sum\left(a_{n}-a_{n+1}\right)$ converges to $a_{1}-L$.

Lemma 1.1.4.

1) If $\sum_{n=1}^{\infty} a_{n}$ converges to L and $\sum_{n=1}^{\infty} b_{n}$ converges to M, then the series $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges to $L+M$.
2) If $\sum_{n=1}^{\infty} a_{n}$ converges to L and if $c \in \mathbb{R}$, then the series $\sum_{n=1}^{\infty} c a_{n}$ converges to $c L$.

Lemma 1.1.5. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Proof. Suppose $\sum_{n=1}^{\infty} a_{n}=L$. Then the sequence of partial sums $\left\{s_{n}\right\}$ also converges to L. Now

$$
a_{n}=s_{n}-s_{n-1} \rightarrow L-L=0
$$

Example 1.1.6. If $x>1$, then the series $\sum_{n=1}^{\infty} x^{n}$ diverges.
Solution. Assume to the contrary that the series $\sum_{n=1}^{\infty} x^{n}$ converges. Then the $n^{\text {th }}$ term, i.e., $x^{n} \rightarrow 0$. But as $x>1, x^{n} \geq 1$ for all $n \in \mathbb{N}$ and hence $\lim _{n \rightarrow \infty} x^{n} \geq 1$, which is a contradiction. Hence the series $\sum_{n=1}^{\infty} x^{n}$ diverges.

As a first result we have the following comparison theorem:
Theorem 1.1.7. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be sequences of positive reals such that $a_{n} \leq b_{n}$. If $\sum b_{n}$ converges then $\sum a_{n}$ converges. Also, if $\sum a_{n}$ diverges then $\sum b_{n}$ diverges.

Proof. Let $s_{n}=a_{1}+a_{2}+\ldots .+a_{n}$ and $t_{n}=b_{1}+b_{2}+\ldots .+b_{n}$ be the partial sum of $\sum a_{n}, \sum b_{n}$ respectively. Then $s_{n} \leq t_{n}$. Since $\sum b_{n}$ converges, we have $\left\{t_{n}\right\}$ converges and is bounded. Now since $\left\{s_{n}\right\}$ is monotonically increasing sequence that is bounded above, we get the convergence of $\left\{s_{n}\right\}$ and hence the convergence of $\sum a_{n}$.
If $\sum a_{n}$ diverges then $s_{n} \rightarrow \infty$. Then $t_{n} \geq s_{n}$ implies t_{n} diverges to infinity.
Examples 1.1.8.

$$
\text { (a) } \sum \frac{1}{2^{n}+n} \text { (b) } \sum \frac{n}{n^{2}-\sin ^{2} n}
$$

For (a), note that $2^{n}+n>2^{n}$ and $\sum \frac{1}{2^{b}}$ converges. For (b) note that $n^{2}-\sin ^{2} n<n^{2}$ and the series $\sum \frac{1}{n}$ diverges.

