Lecture 8

1 Infinite Series

1.1 Definitions & convergence

Definition 1.1.1. Let $\{a_n\}$ be a sequence of real numbers.

a) An expression of the form

 $a_1 + a_2 + \ldots + a_n + \ldots$

is called an infinite series.

- b) The number a_n is called as the n^{th} term of the series.
- c) The sequence $\{s_n\}$, defined by $s_n = \sum_{k=1}^n a_k$, is called the sequence of partial sums of the series.
- d) If the sequence of partial sums converges to a limit L, we say that the series converges and its sum is L.
- e) If the sequence of partial sums does not converge, we say that the series diverges.

Examples 1.1.2.

1) If 0 < x < 1, then $\sum_{n=0}^{\infty} x^n$ converges to $\frac{1}{1-x}$.

Solution. Let us consider the sequence of partial sums $\{s_n\}$, where $s_n = \sum_{k=0}^n x^k$. Here

$$s_n = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x} - \frac{x^{n+1}}{1 - x}, \ n \in \mathbb{N}.$$

As, 0 < x < 1, $x^{n+1} \to 0$ as $n \to \infty$. Hence $s_n \to \frac{1}{1-x}$. Thus $\sum x^n$ converges to $\frac{1}{1-x}$. ///

2) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Solution. Consider the sequence of partial sums $\{s_n\}$, where $s_n = \sum_{k=1}^n \frac{1}{k}$. Now, let us examine the subsequence s_{2^n} of $\{s_n\}$. Here

$$s_2 = 1 + 1/2 = 3/2,$$

 $s_4 = 1 + 1/2 + 1/3 + 1/4 > 3/2 + 1/4 + 1/4 = 2.$

Suppose $s_{2^n} > (n+2)/2$, then

$$s_{2^{n+1}} = s_{2^n} + \sum_{k=1}^{2^n} \frac{1}{2^n + k}$$

> $\frac{n+2}{2} + \sum_{k=1}^{2^n} \frac{1}{2^{n+1}}$
= $\frac{n+2}{2} + \frac{2^n}{2^{n+1}} = \frac{(n+1)+2}{2}.$

Thus the subsequence $\{s_{2^n}\}$ is not bounded above and as it is also increasing, it diverges. Hence the sequence diverges, i.e., the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. ///

3) (Telescopic series:) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges to 1.

Solution. Consider the sequence of partial sums $\{s_n\}$. Then

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^k \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1} \to 1.$$

Summarizing this observation, one has the following theorem on Telescopic series

Theorem 1.1.3. Suppose $\{a_n\}$ is a sequence of real numbers such that $a_n \to L$. Then the series $\sum (a_n - a_{n+1})$ converges to $a_1 - L$.

Lemma 1.1.4.

If ∑[∞]_{n=1} a_n converges to L and ∑[∞]_{n=1} b_n converges to M, then the series ∑[∞]_{n=1} (a_n + b_n) converges to L + M.
 If ∑[∞]_{n=1} a_n converges to L and if c ∈ ℝ, then the series ∑[∞]_{n=1} ca_n converges to cL.

Lemma 1.1.5. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

Proof. Suppose $\sum_{n=1}^{\infty} a_n = L$. Then the sequence of partial sums $\{s_n\}$ also converges to L. Now

$$a_n = s_n - s_{n-1} \to L - L = 0. ///$$

Example 1.1.6. If x > 1, then the series $\sum_{n=1}^{\infty} x^n$ diverges.

Solution. Assume to the contrary that the series $\sum_{n=1}^{\infty} x^n$ converges. Then the n^{th} term, i.e., $x^n \to 0$. But as x > 1, $x^n \ge 1$ for all $n \in \mathbb{N}$ and hence $\lim_{n \to \infty} x^n \ge 1$, which is a contradiction. Hence the series $\sum_{n=1}^{\infty} x^n$ diverges. /// As a first result we have the following comparison theorem:

Theorem 1.1.7. Let $\{a_n\}, \{b_n\}$ be sequences of positive reals such that $a_n \leq b_n$. If $\sum b_n$ converges then $\sum a_n$ converges. Also, if $\sum a_n$ diverges then $\sum b_n$ diverges.

Proof. Let $s_n = a_1 + a_2 + \dots + a_n$ and $t_n = b_1 + b_2 + \dots + b_n$ be the partial sum of $\sum a_n, \sum b_n$ respectively. Then $s_n \leq t_n$. Since $\sum b_n$ converges, we have $\{t_n\}$ converges and is bounded. Now since $\{s_n\}$ is monotonically increasing sequence that is bounded above, we get the convergence of $\{s_n\}$ and hence the convergence of $\sum a_n$.

If $\sum a_n$ diverges then $s_n \to \infty$. Then $t_n \ge s_n$ implies t_n diverges to infinity. ///

Examples 1.1.8.

(a)
$$\sum \frac{1}{2^n + n}$$
 (b) $\sum \frac{n}{n^2 - \sin^2 n}$

For (a), note that $2^n + n > 2^n$ and $\sum \frac{1}{2^b}$ converges. For (b) note that $n^2 - \sin^2 n < n^2$ and the series $\sum \frac{1}{n}$ diverges.