Lecture 9

1 Tests for convergence/divegence

Theorem 1.0.1. Cauchy condensation test

(o] (o)
Let {an }3° be an decreasing sequence of positive numbers. Then Y ay, converges if and only if Y 2™ agn
n=1 n=0

converges.

Proof. Let s, and t, be the sequence of partial sums of ) a,, and > 2"agn respectively. Then s,, and
t, are monotonically increasing sequences. We know that such sequences converge if they are bounded
from above. proof follows from the observation that

27l

Son = Zan =a1+ax+ (a3 +as) + (a5 + as + a7+ ag) + ... + (agn-1,1 + .... + azn)
k=1

> a1 + ao + 2a4 + 4ag + 8aig + ....2”_1a2n

1
=ai + §tn (11)

Therefore, if {s,} converges then {san} converges and hence bounded from above. Now convergence
of {t,} follows from 1.1, {¢,}.
On the other hand,

Son_1 = ay + (a2 + a3) -+ (a4 + a5 + ag + a7) + (ag + ....a15) + <a2n71 + ...+ agn_l)
< aj+ 2a9 + 4a4 + 8ag + .... + 2”_1a2n_1 =a; +th_1

So if {t,} converges, then {saon_;} converges. Now the conclusion follows from s, < son+1_; and the
fact that {s,} is monotonically increasing sequence. ///

Examples 1.0.2.

1) Consider the series >, —, p > 0. Then, we have Z M —— = —
n=11F n=1 ( ) n=1 ( )

p > 1 and diverges for p < 1.

T which converges for

x 1 1 X1 _ .
Here > 27 = > — which diverges. Hence the

2) Consider th N
) Consider the series anogn =7 2nlog2n  log2,%Hn

given series diverges.

1.1 Absolute convergence

oo oo o0
Definition 1.1.1.  a) Let ) _ a, be a series of real numbers. If Y |ay| converges, we say that > ap
n=1 n=1 n=1

converges absolutely.

b) If Ean converges but Z lay| diverges, we say that Zan converges conditionally.

— n=1



Examples 1.1.2.

Ve,
1) The series ) ~—— converges absolutely.
n=1 T

n

2) The series y o, % converges absolutely.

o0 o0
Theorem 1.1.3. If " a, converges absolutely, then Y a, converges.
n=1 n=1

n
Proof. Let t, = > |ag|. As the series converges absolutely, the sequence {¢,,}7° is Cauchy. Thus, given
k=1
€ > 0, there exists N € N such that

|tm — tn| < €V m,n > N.

Let m > n. Then

m m
s = $nl = | D ai| < D il = [tm —ta] <€
i=n+1 i=n+1
o0
Thus the sequence {s,}7° is Cauchy and hence converges. Thus » a,, converges. ///
1

o0
Theorem 1.1.4. Let Y a, be a series of real numbers. Let p, = max{an,0} and ¢, = min{a,,0}.
1

a) If > ay, converges absolutely, then both Y p, and Y’ q, converges.

b) If > a, diverges then one of the Y py or > q, diverges.

b) If > a, converges conditionally then both > p, and >_ q, diverges.
Proof.

a) Observe that p, = (a, + |an|)/2 and ¢, = (a,, — |an|)/2. Thus the convergence of the two series
follows from the hypothesis.

b) Proof is easy.
c) We leave to this as an exercise.
/1]
Tests for absolute convergence

Theorem 1.1.5 (Comparison test). Let > a, be a series of real numbers. Then, Y a, converges
absolutely if there is an absolutely convergent series Y ¢n, with |ay| < |cy| for alln > N, N € N.

Examples 1.1.6.

e 7 1 1 1
1) The series ngl e diverges because g = T 577 > - for allm € N and > - diverges.




1
2) The series Z — converges because — < o 2n and Z — converges.
n=0T

Theorem 1.1.7 (Limit comparison test). Let {a,} and {b,} be two sequences of positive numbers.
Then

a) if lim 2 = ¢ > 0, > an and ) by, both converge or diverge together;

n—o0

b) if lim b— =0 and ) b, converges, then Y a, converges.

n—oQ

¢) if lim b— = o0 and > _ by, diverges, then Y a, diverges.

n—o0

Proof. (a) As lim dn _¢ >0, for e = § >0, there exists N € N such that
n—o0 by,

Gn c
n>N — — < —.
by, ' 2
Thus, forn > N,
—Cc _ ay c
— < — —c< =
2 7 b, 2
or equivalently
cbp, <a, < 3cbh,
2 - 7T 2
Hence the conclusion follows from the compam'son test.
Gn
b) Given that lim — = 0. Hence for e = , there exists N € N such that
n—o0 by,
an 1
n>N —= — < —
- bn 2

or equivalently,
b
n>N = a, < En

Thus the desired conclusion follows from the comparison test.

n
c) Here we are given that h_>m b— = o0. Hence for any real number M > 0, there exists N € N
n—oo
such that
n>N = 2 >M
bn,

or equivalently,

n>N — a, > Mb,.
Thus if Y |by| diverges, then Y |a,| diverges by comparison test. ///

Examples 1.1.8.



2n+1
> 2n+1 2n+1 1 Then & — (n+1)2

1) Consider the series T;lm Here a,, = m Let b, = " b, l =
n
2’ — co. Further, S 1 di Thus by limit son th th
—_ as n oo. Further = diverges. us imit comparison theorem, the
n?+2n+1 Ten J Y P ’
given series diverges.
9) Consider the series S ——— . H L ethy= 2 Then ™ = 2 1 Furth
onsider the series > ———. Here ap, = ——. Le =—. Then — = . Further
/2" — "ogn "o b, 2n—1 ’

1 _ .
> on converges and hence the given series converges.

. . -n -n —
3) Consider the series Y <. Here a, = <5 and b, = L. Then pr=e " —=0asn — oo
n n n n

Further, " & converges and hence the given series converges.
n

4) Consider the series Z% Here a,, = % and b, = n—IQ Then 3= = ne™™ — 0 as n — oo.

Further, " & converges and hence the given series converges.
n



