Lecture 9

1 Tests for convergence/divegence

Theorem 1.0.1. Cauchy condensation test

Let $\{a_n\}_1^\infty$ be an decreasing sequence of positive numbers. Then $\sum_{n=1}^\infty a_n$ converges if and only if $\sum_{n=0}^\infty 2^n a_{2^n}$ converges.

Proof. Let s_n and t_n be the sequence of partial sums of $\sum a_n$ and $\sum 2^n a_{2^n}$ respectively. Then s_n and t_n are monotonically increasing sequences. We know that such sequences converge if they are bounded from above. proof follows from the observation that

$$s_{2^{n}} = \sum_{k=1}^{2^{n}} a_{n} = a_{1} + a_{2} + (a_{3} + a_{4}) + (a_{5} + a_{6} + a_{7} + a_{8}) + \dots + (a_{2^{n-1}+1} + \dots + a_{2^{n}})$$

$$\geq a_{1} + a_{2} + 2a_{4} + 4a_{8} + 8a_{16} + \dots + 2^{n-1}a_{2^{n}}$$

$$= a_{1} + \frac{1}{2}t_{n}.$$
(1.1)

Therefore, if $\{s_n\}$ converges then $\{s_{2^n}\}$ converges and hence bounded from above. Now convergence of $\{t_n\}$ follows from 1.1, $\{t_n\}$.

On the other hand,

$$s_{2^{n}-1} = a_{1} + (a_{2} + a_{3}) + (a_{4} + a_{5} + a_{6} + a_{7}) + (a_{8} + \dots + a_{15}) + (a_{2^{n-1}} + \dots + a_{2^{n-1}})$$

$$\leq a_{1} + 2a_{2} + 4a_{4} + 8a_{8} + \dots + 2^{n-1}a_{2^{n-1}} = a_{1} + t_{n-1}$$

So if $\{t_n\}$ converges, then $\{s_{2^n-1}\}$ converges. Now the conclusion follows from $s_n \leq s_{2^{n+1}-1}$ and the fact that $\{s_n\}$ is monotonically increasing sequence. ///

Examples 1.0.2.

- 1) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, p > 0. Then, we have $\sum_{n=1}^{\infty} 2^n \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \frac{1}{(2^n)^{p-1}}$ which converges for p > 1 and diverges for $p \le 1$.
- 2) Consider the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$. Here $\sum_{n=2}^{\infty} 2^n \frac{1}{2^n \log 2^n} = \frac{1}{\log 2} \sum_{n=2}^{\infty} \frac{1}{n}$ which diverges. Hence the given series diverges.

1.1 Absolute convergence

Definition 1.1.1. a) Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. If $\sum_{n=1}^{\infty} |a_n|$ converges, we say that $\sum_{n=1}^{\infty} a_n$ converges absolutely.

b) If
$$\sum_{n=1}^{\infty} a_n$$
 converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, we say that $\sum_{n=1}^{\infty} a_n$ converges conditionally.

Examples 1.1.2.

- 1) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$ converges absolutely.
- 2) The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely.

Theorem 1.1.3. If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Let $t_n = \sum_{k=1}^n |a_k|$. As the series converges absolutely, the sequence $\{t_n\}_1^\infty$ is Cauchy. Thus, given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|t_m - t_n| < \epsilon \ \forall \ m, n \ge N,$$

Let m > n. Then

$$|s_m - s_n| = \left|\sum_{i=n+1}^m a_i\right| \le \sum_{i=n+1}^m |a_i| = |t_m - t_n| < \epsilon.$$

Thus the sequence $\{s_n\}_1^\infty$ is Cauchy and hence converges. Thus $\sum_{n=1}^{\infty} a_n$ converges. ///

Theorem 1.1.4. Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers. Let $p_n = \max\{a_n, 0\}$ and $q_n = \min\{a_n, 0\}$.

- a) If $\sum a_n$ converges absolutely, then both $\sum p_n$ and $\sum q_n$ converges.
- b) If $\sum a_n$ diverges then one of the $\sum p_n$ or $\sum q_n$ diverges.
- b) If $\sum a_n$ converges conditionally then both $\sum p_n$ and $\sum q_n$ diverges.

Proof.

- a) Observe that $p_n = (a_n + |a_n|)/2$ and $q_n = (a_n |a_n|)/2$. Thus the convergence of the two series follows from the hypothesis.
- b) Proof is easy.
- c) We leave to this as an exercise.

///

Tests for absolute convergence

Theorem 1.1.5 (Comparison test). Let $\sum a_n$ be a series of real numbers. Then, $\sum a_n$ converges absolutely if there is an absolutely convergent series $\sum c_n$ with $|a_n| \leq |c_n|$ for all $n \geq N, N \in \mathbb{N}$.

Examples 1.1.6.

1) The series
$$\sum_{n=1}^{\infty} \frac{7}{7n-2}$$
 diverges because $\frac{7}{7n-2} = \frac{1}{n-2/7} \ge \frac{1}{n}$ for all $n \in \mathbb{N}$ and $\sum \frac{1}{n}$ diverges.

2) The series
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$
 converges because $\frac{1}{n!} \leq \frac{1}{2^n}$ and $\sum_{n=0}^{\infty} \frac{1}{2^n}$ converges.

Theorem 1.1.7 (Limit comparison test). Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive numbers. Then

Proof. (a) As $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, for $\epsilon = \frac{c}{2} > 0$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \implies \left| \frac{a_n}{b_n} - c \right| < \frac{c}{2}$$

Thus, for $n \geq N$,

$$\frac{-c}{2} \le \frac{a_n}{b_n} - c \le \frac{c}{2}$$

or equivalently

$$\frac{cb_n}{2} \le a_n \le \frac{3cb_n}{2}.$$

Hence the conclusion follows from the comparison test. b) Given that $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$. Hence for $\epsilon = \frac{1}{2}$, there exists $N \in \mathbb{N}$ such that

$$n \ge N \implies \frac{a_n}{b_n} < \frac{1}{2}$$

or equivalently,

$$n \ge N \implies a_n \le \frac{b_n}{2}$$

Thus the desired conclusion follows from the comparison test. c) Here we are given that $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$. Hence for any real number M > 0, there exists $N \in \mathbb{N}$ such that

$$n \ge N \implies \frac{a_n}{b_n} \ge M$$

or equivalently,

$$n \ge N \implies a_n \ge M b_n$$

Thus if $\sum |b_n|$ diverges, then $\sum |a_n|$ diverges by comparison test. |||

Examples 1.1.8.

1) Consider the series $\sum_{n=1}^{\infty} \frac{2n+1}{(n+1)^2}$. Here $a_n = \frac{2n+1}{(n+1)^2}$. Let $b_n = \frac{1}{n}$. Then $\frac{a_n}{b_n} = \frac{\left(\frac{2n+1}{(n+1)^2}\right)}{\frac{1}{n}} = \frac{1}{n}$.

 $\frac{2n^2+n}{n^2+2n+1} \rightarrow 2 \text{ as } n \rightarrow \infty. \text{ Further, } \sum \frac{1}{n} \text{ diverges. Thus by limit comparison theorem, the given series diverges.}$

- 2) Consider the series $\sum_{n=1}^{\infty} \frac{1}{2^n 1}$. Here $a_n = \frac{1}{2^n 1}$. Let $b_n = \frac{1}{2^n}$. Then $\frac{a_n}{b_n} = \frac{2^n}{2^n 1} \to 1$. Further, $\sum \frac{1}{2^n}$ converges and hence the given series converges.
- 3) Consider the series $\sum \frac{e^{-n}}{n^2}$. Here $a_n = \frac{e^{-n}}{n^2}$ and $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = e^{-n} \to 0$ as $n \to \infty$. Further, $\sum \frac{1}{n^2}$ converges and hence the given series converges.
- 4) Consider the series $\sum \frac{e^{-n}}{n}$. Here $a_n = \frac{e^{-n}}{n}$ and $b_n = \frac{1}{n^2}$. Then $\frac{a_n}{b_n} = ne^{-n} \to 0$ as $n \to \infty$. Further, $\sum \frac{1}{n^2}$ converges and hence the given series converges.