
Lecture 9

1 Tests for convergence/divegence

Theorem 1.0.1. Cauchy condensation test

Let {an}∞1 be an decreasing sequence of positive numbers. Then
∞∑
n=1

an converges if and only if
∞∑
n=0

2na2n

converges.

Proof. Let sn and tn be the sequence of partial sums of
∑
an and

∑
2na2n respectively. Then sn and

tn are monotonically increasing sequences. We know that such sequences converge if they are bounded

from above. proof follows from the observation that

s2n =
2n∑
k=1

an = a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + ....+ (a2n−1+1 + ....+ a2n)

≥ a1 + a2 + 2a4 + 4a8 + 8a16 + ....2n−1a2n

= a1 +
1

2
tn. (1.1)

Therefore, if {sn} converges then {s2n} converges and hence bounded from above. Now convergence

of {tn} follows from 1.1, {tn}.
On the other hand,

s2n−1 = a1 + (a2 + a3) + (a4 + a5 + a6 + a7) + (a8 + ....a15) + (a2n−1 + ....+ a2n−1)

≤ a1 + 2a2 + 4a4 + 8a8 + ....+ 2n−1a2n−1 = a1 + tn−1

So if {tn} converges, then {s2n−1} converges. Now the conclusion follows from sn ≤ s2n+1−1 and the

fact that {sn} is monotonically increasing sequence. ///

Examples 1.0.2.

1) Consider the series
∞∑
n=1

1

np
, p > 0. Then, we have

∞∑
n=1

2n
1

(2n)p
=
∞∑
n=1

1

(2n)p−1
which converges for

p > 1 and diverges for p ≤ 1.

2) Consider the series
∞∑
n=2

1

n log n
. Here

∞∑
n=2

2n
1

2n log 2n
=

1

log 2

∞∑
n=2

1

n
which diverges. Hence the

given series diverges.

1.1 Absolute convergence

Definition 1.1.1. a) Let
∞∑
n=1

an be a series of real numbers. If
∞∑
n=1
|an| converges, we say that

∞∑
n=1

an

converges absolutely.

b) If
∞∑
n=1

an converges but
∞∑
n=1
|an| diverges, we say that

∞∑
n=1

an converges conditionally.
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Examples 1.1.2.

1) The series
∞∑
n=1

(−1)n

n!
converges absolutely.

2) The series
∑∞

n=1
(−1)n
n2 converges absolutely.

Theorem 1.1.3. If
∞∑
n=1

an converges absolutely, then
∞∑
n=1

an converges.

Proof. Let tn =
n∑

k=1

|ak|. As the series converges absolutely, the sequence {tn}∞1 is Cauchy. Thus, given

ε > 0, there exists N ∈ N such that

|tm − tn| < ε ∀ m,n ≥ N.

Let m > n. Then

|sm − sn| =

∣∣∣∣∣
m∑

i=n+1

ai

∣∣∣∣∣ ≤
m∑

i=n+1

|ai| = |tm − tn| < ε.

Thus the sequence {sn}∞1 is Cauchy and hence converges. Thus
∞∑
1
an converges. ///

Theorem 1.1.4. Let
∞∑
1
an be a series of real numbers. Let pn = max{an, 0} and qn = min{an, 0}.

a) If
∑
an converges absolutely, then both

∑
pn and

∑
qn converges.

b) If
∑
an diverges then one of the

∑
pn or

∑
qn diverges.

b) If
∑
an converges conditionally then both

∑
pn and

∑
qn diverges.

Proof.

a) Observe that pn = (an + |an|)/2 and qn = (an − |an|)/2. Thus the convergence of the two series

follows from the hypothesis.

b) Proof is easy.

c) We leave to this as an exercise.

///

Tests for absolute convergence

Theorem 1.1.5 (Comparison test). Let
∑
an be a series of real numbers. Then,

∑
an converges

absolutely if there is an absolutely convergent series
∑
cn with |an| ≤ |cn| for all n ≥ N,N ∈ N.

Examples 1.1.6.

1) The series
∞∑
n=1

7

7n− 2
diverges because

7

7n− 2
=

1

n− 2/7
≥ 1

n
for all n ∈ N and

∑ 1

n
diverges.
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2) The series
∞∑
n=0

1

n!
converges because

1

n!
≤ 1

2n
and

∞∑
n=0

1

2n
converges.

Theorem 1.1.7 (Limit comparison test). Let {an} and {bn} be two sequences of positive numbers.

Then

a) if lim
n→∞

an
bn

= c > 0,
∑
an and

∑
bn both converge or diverge together;

b) if lim
n→∞

an
bn

= 0 and
∑
bn converges, then

∑
an converges.

c) if lim
n→∞

an
bn

=∞ and
∑
bn diverges, then

∑
an diverges.

Proof. (a) As lim
n→∞

an
bn

= c > 0, for ε = c
2 > 0, there exists N ∈ N such that

n ≥ N =⇒
∣∣∣∣anbn − c

∣∣∣∣ < c

2
.

Thus, for n ≥ N,
−c
2
≤ an
bn
− c ≤ c

2

or equivalently
cbn
2
≤ an ≤

3cbn
2
.

Hence the conclusion follows from the comparison test.

b) Given that lim
n→∞

an
bn

= 0. Hence for ε = 1
2 , there exists N ∈ N such that

n ≥ N =⇒ an
bn

<
1

2

or equivalently,

n ≥ N =⇒ an ≤
bn
2
.

Thus the desired conclusion follows from the comparison test.

c) Here we are given that lim
n→∞

an
bn

= ∞. Hence for any real number M > 0, there exists N ∈ N
such that

n ≥ N =⇒ an
bn
≥M

or equivalently,

n ≥ N =⇒ an ≥Mbn.

Thus if
∑
|bn| diverges, then

∑
|an| diverges by comparison test. ///

Examples 1.1.8.
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1) Consider the series
∞∑
n=1

2n+ 1

(n+ 1)2
. Here an =

2n+ 1

(n+ 1)2
. Let bn =

1

n
. Then

an
bn

=

(
2n+ 1

(n+ 1)2

)
1

n

=

2n2 + n

n2 + 2n+ 1
→ 2 as n → ∞. Further,

∑ 1
n diverges. Thus by limit comparison theorem, the

given series diverges.

2) Consider the series
∞∑
1

1

2n − 1
. Here an =

1

2n − 1
. Let bn =

1

2n
. Then

an
bn

=
2n

2n − 1
→ 1. Further,∑ 1

2n
converges and hence the given series converges.

3) Consider the series
∑ e−n

n2 . Here an = e−n

n2 and bn = 1
n2 . Then an

bn
= e−n → 0 as n → ∞.

Further,
∑ 1

n2 converges and hence the given series converges.

4) Consider the series
∑ e−n

n . Here an = e−n

n and bn = 1
n2 . Then an

bn
= ne−n → 0 as n → ∞.

Further,
∑ 1

n2 converges and hence the given series converges.
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