Tutorial Sheet-1

1. Let A and B be bounded subsets of \mathbb{R}. Show that
(i) $\inf (A+B)=\inf A+\inf B$.
(ii) $\sup (A+B)=\sup A+\sup B$.
2. Let $r \in \mathbb{R}$. Prove that there exists a sequence $\left\{x_{n}\right\}$ of rational numbers such that $\lim _{n \rightarrow \infty} x_{n}=r$.
3. (a) If $\left\{a_{n}\right\}$ is a sequence of real numbers and if the subsequences $\left\{a_{2 n}\right\}_{n=1}^{\infty}$ and $\left\{a_{2 n-1}\right\}_{n=1}^{\infty}$ both converge to the same limit, then show that a_{n} also converges to the same limit.
(b) If $\left\{a_{n}\right\}$ is a bounded sequence and $\left\{b_{n}\right\}$ is another sequence which converges to 0 , show that the product sequence also converges to 0 . What can you say about the product sequence, if $\left\{b_{n}\right\}$ converges, but to a non-zero point?
4. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Define the sequence $\left\{s_{n}\right\}$ by $s_{n}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$.
(i) If $\left\{a_{n}\right\}$ is monotone and bounded show that $\left\{s_{n}\right\}$ is also monotone and bounded.
(ii) If $\left\{a_{n}\right\}$ converges to a, then show that the sequence $\left\{s_{n}\right\}$ also converges to a.
5. Let $\lim a_{n}=a, \lim b_{n}=b$ and let $t_{n}=\max \left\{a_{n}, b_{n}\right\}, s_{n}=\min \left\{a_{n}, b_{n}\right\}$. Show that $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ are convergent and

$$
\lim t_{n}=\max (a, b), \quad \lim s_{n}=\min (a, b)
$$

6. If $a_{1}>0$ and for $n \geq 1, a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{2}{a_{n}}\right)$, then show that the sequence $\left\{a_{n}\right\}$ is nonincreasing and bounded. Also, find the limit.
7. For $a \in \mathbb{R}$, let $x_{1}=a$ and $x_{n+1}=\frac{1}{4}\left(x_{n}^{2}+3\right)$ for all $n \geq 2$. Examine the convergence of the sequence $\left\{x_{n}\right\}$ for different values of a. Also, find $\lim x_{n}$ whenever it exists.
8. Prove or disprove that the sequence $\sum_{k=0}^{n} \frac{1}{(n+k)^{2}}$ converges to 0 .
9. Check if the following sequences are Cauchy sequences or not
(a) $a_{n}=\sum_{k=1}^{n} \frac{1}{k!}$
(b) $a_{1}=1, a_{n+1}=\left(1+\frac{(-1)^{n}}{2^{n}}\right) a_{n}, n \in \mathbb{N}$
(c) Given $a, b \in \mathbb{R}$, let $x_{1}=a, x_{2}=b$ and $x_{n}=\frac{1}{2}\left(x_{n-1}+x_{n-2}\right)$ for $n \geq 3$.
10. Find the limit superior and the limit inferior for the sequence $\left\{(-1)^{n}\left(1+\frac{1}{n}\right)\right\}_{n=1}^{\infty}$.
