Tutorial Sheet-1

- 1. Let A and B be bounded subsets of \mathbb{R} . Show that
 - (i) $\inf(A+B) = \inf A + \inf B$.
 - (ii) $\sup(A+B) = \sup A + \sup B$.
- 2. Let $r \in \mathbb{R}$. Prove that there exists a sequence $\{x_n\}$ of rational numbers such that $\lim_{n \to \infty} x_n = r$.
- 3. (a) If $\{a_n\}$ is a sequence of real numbers and if the subsequences $\{a_{2n}\}_{n=1}^{\infty}$ and $\{a_{2n-1}\}_{n=1}^{\infty}$ both converge to the same limit, then show that a_n also converges to the same limit.
 - (b) If $\{a_n\}$ is a bounded sequence and $\{b_n\}$ is another sequence which converges to 0, show that the product sequence also converges to 0. What can you say about the product sequence, if $\{b_n\}$ converges, but to a non-zero point?
- 4. Let $\{a_n\}$ be a sequence of real numbers. Define the sequence $\{s_n\}$ by $s_n = \frac{1}{n} \sum_{i=1}^n a_i$.
 - (i) If $\{a_n\}$ is monotone and bounded show that $\{s_n\}$ is also monotone and bounded.
 - (ii) If $\{a_n\}$ converges to a, then show that the sequence $\{s_n\}$ also converges to a.
- 5. Let $\lim a_n = a$, $\lim b_n = b$ and let $t_n = \max\{a_n, b_n\}$, $s_n = \min\{a_n, b_n\}$. Show that $\{t_n\}$ and $\{s_n\}$ are convergent and

$$\lim t_n = \max(a, b), \quad \lim s_n = \min(a, b)$$

- 6. If $a_1 > 0$ and for $n \ge 1$, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$, then show that the sequence $\{a_n\}$ is nonincreasing and bounded. Also, find the limit.
- 7. For $a \in \mathbb{R}$, let $x_1 = a$ and $x_{n+1} = \frac{1}{4}(x_n^2 + 3)$ for all $n \ge 2$. Examine the convergence of the sequence $\{x_n\}$ for different values of a. Also, find $\lim x_n$ whenever it exists.
- 8. Prove or disprove that the sequence $\sum_{k=0}^{n} \frac{1}{(n+k)^2}$ converges to 0.
- 9. Check if the following sequences are Cauchy sequences or not

(a)
$$a_n = \sum_{k=1}^n \frac{1}{k!}$$

(b) $a_1 = 1, a_{n+1} = \left(1 + \frac{(-1)^n}{2^n}\right) a_n, n \in \mathbb{N}$
(c) Given $a, b \in \mathbb{R}$, let $x_1 = a, x_2 = b$ and $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for $n \ge 3$

10. Find the limit superior and the limit inferior for the sequence $\{(-1)^n \left(1+\frac{1}{n}\right)\}_{n=1}^{\infty}$.