Tutorial Sheet:Multivariable Calculus

1. Examine if the limits as $(x, y) \rightarrow(0,0)$ exist?
(a) $\begin{cases}\frac{x^{3}+y^{3}}{x^{2}-y^{2}} & x \neq y \\ 0 & x=y\end{cases}$
(b) $x y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)$
(c) $\begin{cases}x \sin \frac{1}{y}+y \sin \frac{1}{x} & x y \neq 0 \\ 0 & x y=0\end{cases}$
(d) $\frac{\sin (x y)}{x^{2}+y^{2}}$.
2. Examine the continuity of the following functions.
(a) $\begin{cases}\frac{x y^{3}}{x^{2}+y^{6}}, & (x, y) \neq(0,0) \\ 0, & \text { otherwise. }\end{cases}$
(b) $\begin{cases}x^{2}+y^{2}, & x^{2}+y^{2} \leq 1 \\ 0, & \text { otherwise }\end{cases}$
(c) $\begin{cases}\frac{\sin ^{2}(x-y)}{|x|+|y|}, & (x, y) \neq(0,0) \\ 0, & \text { otherwise. }\end{cases}$
(d) $\begin{cases}\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}}, & (x, y) \neq(0,0) \\ 0, & \text { otherwise. }\end{cases}$
3. Discuss the differentiability of the following functions at $(0,0)$.
(a) $f(x, y)=\left\{\begin{array}{l}x \sin \frac{1}{x}+y \sin \frac{1}{y} \quad x y \neq 0 \\ 0 x y=0\end{array}\right.$
(b) $\begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & x^{2}+y^{2} \neq 0 \\ 0 & x=y=0\end{cases}$
(c) $\begin{cases}\frac{x^{6}-2 y^{4}}{x^{2}+y^{2}} & x^{2}+y^{2} \neq 0 \\ 0 & x=0, y=0\end{cases}$
4. Let $f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}, y \neq 0$ and $f(x, 0)=0$. Show that f has all directional derivatives at $(0,0)$ but it is not differentiable at $(0,0)$.
5. Let $f(x, y)=||x|-|y||-|x|-|y|$. Is f continuous at $(0,0)$? Which directional derivatives of f exist at $(0,0)$? Is f differentiable at $(0,0)$? Give reasons.
6. Let $f(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+\tan ^{-1}\left(\frac{y}{x}\right), P=(1,3)$. Find the direction in which $f(x, y)$ is increasing the fastest at P. Find the derivative of $f(x, y)$ in this direction.
7. A heat-seeking bug is a bug that always moves in the direction of the greatest increase in heat. Discuss the behavior of a heat seeking bug placed at a point $(2,1)$ on a metal plate heated so that the temperature at (x, y) is given by $T(x, y)=50 y^{2} e^{\frac{-1}{5}\left(x^{2}+y^{2}\right)}$.
8. Suppose the gradient vector of the linear function $z=f(x, y)$ is $\nabla z=(5,-12)$. If $f(9,15)=17$, what is the value of $f(11,11)$?
9. Suppose $f(8,3)=24$ and $f_{x}(8,3)=-3.4, f_{y}(8,3)=4.2$. Estimate the values $f(9,3), f(8,5)$, and $f(9,5)$. Explain how you got your estimates.
10. Find the quadratic Taylor's polynomial approximation of $e^{-x^{2}-2 y^{2}}$ near $(0,0)$.
