Tutorial Sheet: Multivariable Integral Calculus

- 1. Evaluate the double integrals:
 - (a) $\iint_{\mathbb{R}} x^2 dA$, where R is the region bounded by $y = x^2, y = x + 2$
 - (b) $\iint_{R} (x^2 + y^2) dA$, where $R: 0 \le y \le \sqrt{1 x^2}, 0 \le x \le 1$.
 - (c) $\iint_{\mathbb{R}} (a^2 x^2 y^2) dA$, where R is the region $x^2 + y^2 \le a^2$.
- 2. Evaluate the following double integrals by changing the order of integration if needed: (a) $\int_0^3 \int_{-y}^y (x^2 + y^2) dx dy$ (b) $\int_0^1 \int_2^{4-2x} dy \ dx$

(a)
$$\int_0^3 \int_{-y}^y (x^2 + y^2) dx dy$$

(b)
$$\int_{0}^{1} \int_{2}^{4-2x} dy \ dx$$

$$(c)\int_0^\pi \int_x^\pi \frac{\sin y}{y} dy \ dx$$

$$(c) \int_0^{\pi} \int_x^{\pi} \frac{\sin y}{y} dy dx \qquad (d) \int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} dy dx$$

- 3. Find the volume of the following:
 - (a) Region under the paraboloid $z = x^2 + y^2$ and above the triangle enclosed by the lines y = x, x = 0, and x + y = 2 in the xy plane.
 - (b) Region bounded above by the cylinder $z = x^2$ and below by the region enclosed by the parabola $y = 2 - x^2$ and the line y = x in the xy plane.
 - (c) Region bounded in the first octant bounded by the coordinate planes, the cylinder $x^2 + y^2 =$ 4, and the plane z + y = 3.
 - (d) Solid cut from the first octant by the cylinder $z = 12 3y^2$ and the plane x + y = 2.
 - (e) Tetrahedron bounded by the planes y = 0, z = 0, x = 0 and -x + y + z = 1.
- 4. Use the given transformations to transform the integrals and evaluate them:
 - (a) u = 3x + 2y, v = x + 4y and $I = \iint_R (3x^2 + 14xy + 8y^2) dA$ where R is the region in the first quadrant bounded by the lines $y + \frac{3}{2}x = 1$, $y + \frac{3}{2}x = 3$, $y + \frac{1}{4}x = 0$, and $y + \frac{1}{4}x = 1$.
 - (b) u = x + 2y, v = x y and $I = \int_{0}^{2/3} \int_{0}^{2-2y} (x + 2y)e^{(y-x)} dA$
 - (c) $u=xy, v=x^2-y^2$ and $I=\iint_R (x^2+y^2)dA$, where R is the region bounded by $xy=1, xy=2, x^2-y^2=1$ and $x^2-y^2=2$.
- 5. Using appropriate transformation evaluate $\iint_{\mathcal{P}} dA$, where R is the parallelogram with vertices (1,0),(3,1),(2,2) and (0,1).
- 6. Find the area of the following:
 - (a) The region lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1 in the first quadrant.
 - (b) The region common to the interiors of the cardioids $r = 1 + \cos \theta$ and $r = 1 \cos \theta$.

- 7. Find the volume of the following solids:
 - (a) Cylinder whose base lies inside the cardioid $r = 1 + \cos \theta$ and outside the circle r = 1 and the top lies in the plane z = x.
 - (b) Cylinder whose base is enclosed by $r^2 = 2\cos 2\theta$ and top is bounded by the sphere $z = \sqrt{2-r^2}$.
- 8. Evaluate the following volume integrals:

(a)
$$\iiint_D (z^2x^2 + z^2y^2) \ dV$$
, where $D = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, -1 \le z \le 1\}$

(b)
$$\iiint_D xyz \ dV$$
 where $D = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, \ 0 \le z \le x^2 + y^2\}$

(c)
$$\iiint_D e^{(x^2+y^2+z^2)^{3/2}} dV \text{ where } D = \{(x,y,z) \in \mathbb{R}^3: \ x^2+y^2+z^2 \le 1\}$$

- 9. Find the volume of the following regions using triple integrals:
 - (a) The region in the first octant bounded by the coordinate planes and the planes x + z = 1, y + 2z = 2.
 - (b) The region in the first octant bounded by the coordinate planes, the plane y + z = 2, and the cylinder $x = 4 y^2$.
 - (c) The tetrahedron in the first octant bounded by the coordinate planes and the plane x + y/2 + z/3 = 1.
 - (d) The region common to the interiors of the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
 - (e) The region cut from the cylinder $x^2 + y^2 = 4$ by the plane z = 0 and the plane x + z = 3.
 - (f) The region enclosed by $y = x^2, y = x + 2, 4z = x^2 + y^2$ and z = x + 3.
 - (g) The region bounded above by the sphere $x^2 + y^2 + z^2 = 2$ and below by the paraboloid $z = x^2 + y^2$.
 - (h) The solid bounded by the cone $z = \sqrt{x^2 + y^2}$ and paraboloid $z = x^2 + y^2$.
- 10. Find the mass of the solid, center of mass, moment of inertia and the radii of gyration of a solid cube in the first octant bounded by x = 1, y = 1 and z = 1. The density $\delta(x, y, z) = x + y + z + 1$
- 11. Find the mass of solid and center of mass of a solid in the first octant bounded by the planes y=0, z=0 and by the surfaces $z=4-x^2$ and $x=y^2$ and its density is $\delta(x,y,z)=kxy,k$ is a constant.
- 12. Using the given transformation transform the given integrals and evaluate them:

(a)
$$x = au, y = bv, z = cw$$
, and $I = \iiint_D dV$ where D is the ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

(b)
$$u = x, v = xy, w = 3z$$
 and $I = \iiint_D (x^2y + 3xyz) dV$ where $D = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x \le 2, \ 0 \le xy \le 2, \ 0 \le z \le 1\}.$

- 13. Find the surface area of the following:
 - (a) The surface cut from the paraboloid $x^2 + y^2 z = 0$ by the plane z = 2.
 - (b) The surface of the region cut from the plane x+2y+2z=5 by the cylinder whose walls are $x=y^2$ and $x=2-y^2$
 - (c) The cap cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$
 - (d) The surface cut from the paraboloid $x^2 + y + z^2 = 2$ by the plane y = 0.
 - (e) The surface cut from the cylinder $x^2 + y^2 = 4$ by the cylinder $y^2 + z^2 = 4$.
 - (f) The surface cut from the cone $x^2 + y^2 = z^2$ by $x^2 + y^2 = 4x$.
 - (g) The surface of the cylinder $x^2 + y^2 = 4x$ which lies between the plane z = 0 and the cylinder $x^2 + y^2 = z^2$.
 - (h) The surface area of the part of the cylinder $x^2 + y^2 = a^2$ which lies between the plane z = 2x and z = 0.
 - (i) The surface area of the part of the cylinder $x^2 + y^2 = 2x$ which lies above xy-plane and is bounded above by the paraboloid $x^2 + y^2 + z = 4$.
- 14. Evaluate the following line integrals:
 - (a) $\int_C \overrightarrow{r} \cdot d\overrightarrow{r}$, C being the helical path $x = \cos t$, $y = \sin t$, z = t joining the points determined by t = 0 and $t = \pi/2$.
 - (b) $\int_C \overrightarrow{v} \cdot d\overrightarrow{r}$, where $\overrightarrow{v} = \hat{i}y + (2x)\hat{j}$, C being an arc of a circle of radius 1 centered at the origin joining (1,0) and (0,1).
 - (c) $\int_C (y-z)dx + (z+x)dy + (x-y)dz$, C being a circle formed by the intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane x + y + z = 0.
 - (d) $\int_C \overrightarrow{F} \cdot d\overrightarrow{r}$, where $\overrightarrow{F} = y\hat{i} + x\hat{j} + xyz^2\hat{k}$ and C is the circle: $x^2 2x + y^2 = 2, z = 1$.