## Tutorial Sheet: Multivariable Integral Calculus

1. Evaluate the double integrals:
(a) $\iint_{R} x^{2} d A$, where $R$ is the region bounded by $y=x^{2}, y=x+2$
(b) $\iint_{R}\left(x^{2}+y^{2}\right) d A$, where $R: 0 \leq y \leq \sqrt{1-x^{2}}, 0 \leq x \leq 1$.
(c) $\iint_{R}\left(a^{2}-x^{2}-y^{2}\right) d A$, where $R$ is the region $x^{2}+y^{2} \leq a^{2}$.
2. Evaluate the following double integrals by changing the order of integration if needed:
(a) $\int_{0}^{3} \int_{-y}^{y}\left(x^{2}+y^{2}\right) d x d y$
(b) $\int_{0}^{1} \int_{2}^{4-2 x} d y d x$
(c) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$
(d) $\int_{0}^{2} \int_{0}^{4-x^{2}} \frac{x e^{2 y}}{4-y} d y d x$
3. Find the volume of the following:
(a) Region under the paraboloid $z=x^{2}+y^{2}$ and above the triangle enclosed by the lines $y=x, x=0$, and $x+y=2$ in the $x y$ plane.
(b) Region bounded above by the cylinder $z=x^{2}$ and below by the region enclosed by the parabola $y=2-x^{2}$ and the line $y=x$ in the $x y$ plane.
(c) Region bounded in the first octant bounded by the coordinate planes, the cylinder $x^{2}+y^{2}=$ 4 , and the plane $z+y=3$.
(d) Solid cut from the first octant by the cylinder $z=12-3 y^{2}$ and the plane $x+y=2$.
(e) Tetrahedron bounded by the planes $y=0, z=0, x=0$ and $-x+y+z=1$.
4. Use the given transformations to transform the integrals and evaluate them:
(a) $u=3 x+2 y, v=x+4 y$ and $I=\iint_{R}\left(3 x^{2}+14 x y+8 y^{2}\right) d A$ where $R$ is the region in the first quadrant bounded by the lines $y+\frac{3}{2} x=1, y+\frac{3}{2} x=3, y+\frac{1}{4} x=0$, and $y+\frac{1}{4} x=1$.
(b) $u=x+2 y, v=x-y$ and $I=\int_{0}^{2 / 3} \int_{y}^{2-2 y}(x+2 y) e^{(y-x)} d A$
(c) $u=x y, v=x^{2}-y^{2}$ and $I=\iint_{R}\left(x^{2}+y^{2}\right) d A$, where $R$ is the region bounded by $x y=$ $1, x y=2, x^{2}-y^{2}=1$ and $x^{2}-y^{2}=2$.
5. Using appropriate transformation evaluate $\iint_{R} d A$, where $R$ is the parallelogram with vertices $(1,0),(3,1),(2,2)$ and $(0,1)$.
6. Find the area of the following:
(a) The region lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$ in the first quadrant.
(b) The region common to the interiors of the cardioids $r=1+\cos \theta$ and $r=1-\cos \theta$.
7. Find the volume of the following solids:
(a) Cylinder whose base lies inside the cardioid $r=1+\cos \theta$ and outside the circle $r=1$ and the top lies in the plane $z=x$.
(b) Cylinder whose base is enclosed by $r^{2}=2 \cos 2 \theta$ and top is bounded by the sphere $z=$ $\sqrt{2-r^{2}}$.
8. Evaluate the following volume integrals:
(a) $\iiint_{D}\left(z^{2} x^{2}+z^{2} y^{2}\right) d V$, where $D=\left\{(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2} \leq 1,-1 \leq z \leq 1\right\}$
(b) $\iiint_{D} x y z d V$ where $D=\left\{(x, y, z) \in \mathbb{R}^{3}, x^{2}+y^{2} \leq 1,0 \leq z \leq x^{2}+y^{2}\right\}$
(c) $\iiint_{D} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$ where $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$
9. Find the volume of the following regions using triple integrals:
(a) The region in the first octant bounded by the coordinate planes and the planes $x+z=$ $1, y+2 z=2$.
(b) The region in the first octant bounded by the coordinate planes, the plane $y+z=2$, and the cylinder $x=4-y^{2}$.
(c) The tetrahedron in the first octant bounded by the coordinate planes and the plane $x+$ $y / 2+z / 3=1$.
(d) The region common to the interiors of the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$.
(e) The region cut from the cylinder $x^{2}+y^{2}=4$ by the plane $z=0$ and the plane $x+z=3$.
(f) The region enclosed by $y=x^{2}, y=x+2,4 z=x^{2}+y^{2}$ and $z=x+3$.
(g) The region bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the paraboloid $z=x^{2}+y^{2}$.
(h) The solid bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and paraboloid $z=x^{2}+y^{2}$.
10. Find the mass of the solid, center of mass, moment of inertia and the radii of gyration of a solid cube in the first octant bounded by $x=1, y=1$ and $z=1$. The density $\delta(x, y, z)=x+y+z+1$
11. Find the mass of solid and center of mass of a solid in the first octant bounded by the planes $y=0, z=0$ and by the surfaces $z=4-x^{2}$ and $x=y^{2}$ and its density is $\delta(x, y, z)=k x y, k$ is a constant.
12. Using the given transformation transform the given integrals and evaluate them:
(a) $x=a u, y=b v, z=c w$, and $I=\iiint_{D} d V$ where $D$ is the ellipsoid: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(b) $u=x, v=x y, w=3 z$ and $I=\iiint_{D}\left(x^{2} y+3 x y z\right) d V$ where $D=\left\{(x, y, z) \in \mathbb{R}^{3}: 1 \leq x \leq\right.$ $2,0 \leq x y \leq 2,0 \leq z \leq 1\}$.
13. Find the surface area of the following:
(a) The surface cut from the paraboloid $x^{2}+y^{2}-z=0$ by the plane $z=2$.
(b) The surface of the region cut from the plane $x+2 y+2 z=5$ by the cylinder whose walls are $x=y^{2}$ and $x=2-y^{2}$
(c) The cap cut from the sphere $x^{2}+y^{2}+z^{2}=2$ by the cone $z=\sqrt{x^{2}+y^{2}}$
(d) The surface cut from the paraboloid $x^{2}+y+z^{2}=2$ by the plane $y=0$.
(e) The surface cut from the cylinder $x^{2}+y^{2}=4$ by the cylinder $y^{2}+z^{2}=4$.
(f) The surface cut from the cone $x^{2}+y^{2}=z^{2}$ by $x^{2}+y^{2}=4 x$.
(g) The surface of the cylinder $x^{2}+y^{2}=4 x$ which lies between the plane $z=0$ and the cylinder $x^{2}+y^{2}=z^{2}$.
(h) The surface area of the part of the cylinder $x^{2}+y^{2}=a^{2}$ which lies between the plane $z=2 x$ and $z=0$.
(i) The surface area of the part of the cylinder $x^{2}+y^{2}=2 x$ which lies above $x y$-plane and is bounded above by the paraboloid $x^{2}+y^{2}+z=4$.
14. Evaluate the following line integrals:
(a) $\int_{C} \vec{r} \cdot d \vec{r}, C$ being the helical path $x=\cos t, y=\sin t, z=t$ joining the points determined by $t=0$ and $t=\pi / 2$.
(b) $\int_{C} \vec{v} \cdot d \vec{r}$, where $\vec{v}=\hat{i} y+(2 x) \hat{j}, C$ being an arc of a circle of radius 1 centered at the origin joining $(1,0)$ and $(0,1)$.
(c) $\int_{C}(y-z) d x+(z+x) d y+(x-y) d z, C$ being a circle formed by the intersection of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the plane $x+y+z=0$.
(d) $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=y \hat{i}+x \hat{j}+x y z^{2} \hat{k}$ and $C$ is the circle: $x^{2}-2 x+y^{2}=2, z=1$.
