Tutorial sheet: Functions

1. Determine if the following limits exist:
(a) $\lim _{x \rightarrow 0}[x]$
(b) $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$
(c) $\lim _{x \rightarrow 0} \sin \frac{1}{x}$.
(d) $\lim _{x \rightarrow 0} \sqrt{x} \sin \frac{1}{x}$
(e) $\lim _{x \rightarrow 0} x \cos \frac{1}{x}$.
2. Determine if the limits exist: $\lim _{x \rightarrow 0} \frac{x-|x|}{x}$ and $\lim _{x \rightarrow \infty} x^{1+\sin x}$
3. Show that the following function f is continuous only at $x=1 / 2$.

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 1-x & \text { if } x \text { is irrational }\end{cases}
$$

4. Determine which of the following functions are uniformly continuous in the interval mentioned:
(a) $e^{x^{2}} \sin \left(x^{2}\right)$ in $(0,1)$
(b) $|\sin x|$ in $[0, \infty)$
(c) $\sqrt{x} \sin x$ in \mathbb{R}
(d) $\sin \left(x^{2}\right)$ in \mathbb{R}
5. Determine if the following functions are differentiable at 0 . Find $f^{\prime}(0)$ if exists
(a) $\begin{cases}e^{-\frac{1}{x^{2}}} & x \neq 0 \\ 0 & x=0\end{cases}$
(b) $e^{-|x|}, \quad x \in \mathbb{R}$
(c) $\begin{cases}x \cos \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
6. Determine if f^{\prime} is continuous at 0 for the following functions:
(a) $\begin{cases}x^{3} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
(b) $\begin{cases}x^{2} \cos \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
(c) $\left\{\begin{array}{l}x^{2} \ln \frac{1}{|x|} \\ 0\end{array}\right.$
$x \neq 0$
$x=0$
7. Let f be differentiable on \mathbb{R} and $\sup _{\mathbb{R}}\left|f^{\prime}(x)\right|<1$. Select $s_{0} \in \mathbb{R}$ and define $s_{n}=f\left(s_{n-1}\right)$. Prove that $\left\{s_{n}\right\}$ is a convergent sequence.
8. Let f be differentiable on \mathbb{R} and $|f(x)-f(y)| \leq(x-y)^{2}$. Then show that f is constant.
9. Evaluate the following limits

$$
\text { (a) } \lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{x^{2}} \text { (b) } \lim _{t \rightarrow 0} \frac{1-\cos t-\left(t^{2} / 2\right)}{t^{4}} \quad \text { (c) } \lim _{x \rightarrow \infty} x^{2}\left(e^{-1 / x^{2}}-1\right)
$$

10. Find the approximation of $\sin x$ when error is of magnitude no greater than 5×10^{-4} and $|x|<3 / 10$.
11. Estimate the error in the approximation of $\sin h x=x+\left(x^{3} / 3\right.$! $)$ when $|x|<0.5$.
12. Find the radius of convergence of Power Series

$$
\text { (a) } \sum_{n=0}^{\infty}\left(n+1+2^{n}\right) x^{n}(b) \sum_{n=0}^{\infty} \frac{x^{2 n}}{a^{n}}, a \neq 0(c) \sum_{n=0}^{\infty} \frac{x^{n}}{n!n^{n}}(d) \sum_{n=0}^{\infty} \frac{n!x^{n}}{n^{n}}(e) \sum_{n=1}^{\infty} \frac{n^{n^{2}}}{(n+1)^{n^{2}}}(x-1)^{n}
$$

13. Write the Taylor's series around 0 and find the radius of convergence of

$$
\begin{array}{llll}
\text { (1) } \frac{1}{1+x} & \text { (2) } \sinh x & \text { (3) } e^{x} \sinh x & \text { (4) } x \sin x
\end{array}
$$

14. Obtain the Talylor's series around 0 using term by term differentiation/integration and calculate the radius of convergence of series. Is this the maximal interval of validity of the series?

$$
\begin{array}{llll}
\text { (a) } \tan ^{-1}(x), & (b) \sin ^{-1} x, & (c) \sinh ^{-1} x & \text { (d) } \frac{1}{\left(1+x^{2}\right)^{2}}
\end{array}
$$

