Chapter 3
Elliptic Equations

3.1 Green’s Identities

In this section we recall the Divergence theorem and note some consequences which are important for
stating the Dirichlet and Neumann problems: Let us consider an open domain £ and a vector field F
defined in the closure € and differentiable in €2,

/g(V-F)dx:/aQ(F-n)dS

where d€ stands for the boundary of £ and 7 is the unit outward normal vector to this boundary, and the

integral on the right hand side is the surface integral. Taking F' = vVu and using the identity
V.- (wWu) =Vu-Vv+vAu.

and the above divergence theorem, we get

/ s = / Vit Vdx+ / vAudx
Y Y on

Now taking Vu = (0,...w,0,...,0) with w at i'h place, we get Au = ‘9—)‘; and the integration by parts
formula: P
/ v—dx— / w—vdx—|—/ vwn;dS (1.1)
ax, Q 8xi a9

where n; is the i’h component of the unit outward normal. From these identities we can also obtain the

Green’s identity

du dv
/aQ(v%fu%)dS—/Q(vAuquv)dx. (1.2)
If we choose v = 1 we get an important identity
d
/ U s = /Audx (13)
00 dn
If we take u = v we get
d
/ U 45 = / (bt + |Vul)dx (1.4)
20" an
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42 3 Elliptic Equations

Theorem 3.1.1 Uniqueness: Let u € C2(Q)NC' (Q) satisfies Au= 0 in Q and either u =0 or % =0on
dQ. Then from (1.4) we get that u is constant in Q.

Also let us recall the equation of continuity from the flow through a uniform medium. Suppose u(x,t)
measures the temperature at the point x and at the point ¢, then we have the equation

2 () + 2 (ah) = )

where g(x,?) is the flux. In case of heat conduction it observed that the flux follows the Darcy’s law which
says that flux is proporational to %

i) = —B2L >0

Hence we obtain the heat conduction equation

u 2%u
E_B% = f(x,1)

where f(x,t) represent the internal sources. There wil be infinitely many functions satisfying the above
equation. But the temparature distribution is unique. So we look for boundary and initial conditions from
the physical model. The initial temparture distribution is u(x,0) which can be measured. For the boundary
conditions:

Forced boundary conditions: If we assume that the temparature at the both end points x =a and x = b is
maintained at fixed. Say u(a,t) =T and u(b,t) = T».

Natural boundary conditions: Suppose we dont maintain any fixed temparature, then the natural diffusive
property of heat implies the flux at these ends are known. That is % (a,t) =Ty(t) and % (a,t) =T (1).
Steady state temparature: This the state where the tempature does not change with time. That is when
% = 0. In this case the steady state temparature for forced boundary conditions satisfies the following:

Dirichlet Problem: Given the functions f and g, find the u that satisfies

—Au(x) = f(x), inQ
u(x) =g(x) on 9Q.

In case of natural boundary conditions, the steady state tempartures satisfy the problem problem:
Neumann Problem: Given the functions f and g, find the u that satisfies

—Au(x) = f(x), inQ

%(x) =g(x)on Q.

where % is the normal derivative of u on the boundary.

The following equivalent formulation of optimization problem. In case of R” it is easy to show such op-
timization problems has solution using the Lagrange-multiplier methods. In case of PDEs the problems
is posed on infinite dimensional space. These formulations are often used for computing solutions using
numerical methods known as Galarkin methods.
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Dirichlet Principle:
Consider the Dirichlet problem

—Au=f(x)inQ wu=00ndQ (1.5)
and the functional |

I(u) = —/ |Vu|?dx —/ Sfudx

2J0 Q

over o/ = {u € C*(Q)NC(R),u=0o0ndN}. We consider the minimization problem

I(u) = vrvréi&gl(w) (1.6)

Then we have the following

Theorem 3.1.2 The problem (1.5) has a solution in <7 if and only if u solves the problem in (1.6).

Proof. = :If u solves the problem in (1.5). Then for any w € &7, then multiplying the equation in (1.5)
with u —w and integrating by parts, we get

/QVM-(VM—VW):/Qf(u—w)dx

from this we obtain

1
/|Vu|2dx—/ fudx:/ vu.vw—/fwdxg/ —(|Vu|2+|Vw|2)dx—/fwdx
Q Q Q Q Q2 Q

Therere I(u) < I(w) for all w € &7.
To prove the converse, if u solves the minimization problem (1.6). Then ¢ = 0 is a critical point of the real
valued function i : R — R given as

i(t) =I(u+1tw)

/(1) = / (Vi+1Vw)Viwdx — / Fwdx
Q Q
taking r = 0 we get
Oz/ Vu-Vw—/ fwdx, Yw € o
Q Q
Therefore u satisfies (1.5). O

Now consider the Neumann problem

. du
—Au=0in Q2 E—h(x) 29Q. (1.7)

Then it is necessary that [, h(x)dS = 0 (see exercise 16). Consider the functional I over C>(Q) as

1
E(u) = E/g |Vu|2dx—/99hudS.

and the minimization problem
E(u)= min_ E(v). (1.8)

veC2(Q)

Theorem 3.1.3 The problem (1.7) has a solution in C*(Q) if and only if u solves the problem in (1.8).
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Proof. Let u be a solution and let w be any other function. By taking v = u — w, we can show that

I : "~ du
Ew)=Eu)+= [ [V} —/ Vu-v / —
(w) (u)—|—2/g| v|[7dx Ve vdx + a_qvc?nds

1
:E(u)+—/ |Vv|2dx—|—/ vAudx
2Ja Q

> E(u).

The conclusion follows from this. O

3 Elliptic Equations

If we equip the space .7 with norm ([, |[Vu|?dx)!/2, then the functional I(u) = ||u||> — (f,u). In case of

R”, if we take a functional
1) = |x|? —a-x, a € B”

Then it is easy to see that any minimizing sequence (x;) that converges to min/(x) is bounded. By com-

pactness, such there exists a convergent subsequence x,, — xo. Now it is easy to see that xo is the required

minimizer. But this is not possible on .27 as it is infinite dimensional space. However taking a clue from

above discussion we can try to find solution u,, in any finite dimensional subspace and then pass through

the limit n — o=. Such methods leads to the so called Galerkin methods.

However there are some special domains for which we can solve the Elliptic equations by the separating

the variables. For example the rectangle [0,a] x [0,5]:

Example 3.1. Solve the Dirichlet problem

Uy +ttyy =0, u(0,y) = u(a,y) = u(x,0) =0, u(x,b) = f(x).

By assuming that the solution is in the form of X (x)Y (y), we get

X// Y//
R #
X + Y

where is k is a constant. This leads to solving two ODEs

X'=kX,Y" = —kY

Also the boundary conditions

u(0,y) =u(a,y) =0 = X(0) =0,X(a) =0.

Therefore solving the SLP:
X"=kX, X(0) =X (a) =0,

we get the solution
2.2
n°m

. nmw
X(x) = s1n;x, k= —7,}1 = 1,2,3
The second equation now becomes
. nir?
Y' = 7Y7 Y(0)=0

The general solution of this is
T
Y(y) = Asinh =y
a

(1.9)
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where A is an arbitrary constant. Since these are solutions for each n € N, we take

- T T
u(x,y) = Z A, sin %xsinh %y

n=1

Now the unknown constants A, can be found by substituting the final boundary condition u(x,b) = f(x),

o nmw nmw
=) A,sin—xsinh —b
f(x) Z sin p xsin p

n=1

Now using the orthogonality of the functions sinnx,n = 1,2,3.... So A, can be obtained from the relation:
b 9 h a T
Apsinh 222 / sin? % g = / £(x) sin 2 dx.
a Jo a 0 a

O

In case of Neumann problem, the boundary condition in SLP in (1.9), becomes
X'(0) =0, X'(a) =0.

Then the corresponding eigenvalues and eigen functions be taken in the infinite sum.

In the domains like disc B,(0), again one can write u(x,y) = R(r)®(0) where r, 8 are poloar coordinates to
solve the problems. These methods have limitation that the domain has to be a rectanlge or disc. In general
it is not always possible to find the solutions exactly. To understand this we need to study qualitative
properties of solutions with out knowing the solutions.

3.2 Maximum Principles

If we want to solve the Dirichlet problem in a general domain, we need first understant some qualitative
properties of harmonic functions. In this direction we have the following maximum principle:

Theorem 3.2.1 Weak form: Let Q be a bounded domain in R" and let u € C*(Q)NC(Q) satisfies Au >0
in . Then

maxu(x) = max u(x
maxu(x) = max u(x)

Proof. Casel: Au>0in Q.
If xo € © is a point of interior maximum of u. Then by second derivative test a—i‘z‘(xo) < 0. Therefore,

E.
Au(xo) < 0. Contradiction to Au > 0 in Q.
Case2: Au>0in Q.

Now consider the function v(x) = u(x) + &|x|>. Then
Av(x) = Au(x) +2ne > 0.

Then by case 1,
max = max
nax v(x) n v(x)

max u + £min |x|? < max (u(x) + €|x[*) = maxv(x) = maxv(x) < maxu(x) + &£ max |x|?
) ) ) ) 20 20 20
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Taking € — 0, conclusion follows.
Corollary 3.2.1 Ifu € CZ(.Q) ﬂC(ﬁ) satisfies —Au>0in Q, u>00ndQ. Thenu > 0in Q.

Remark 3.2.1 . Incase of Harmonic functions, i.e., Au =0, above theorem holds for —u as well. There-

fore using minu(x) = — max(—u(x)), we obtain

minu = minu.
Q Q

2. Ifu € C*(2)NC(Q) satisfies Au= 0 in Q, then
max |u| = max |u|.
Q 2Q
(follows from |a| = max(a,—a))
3. Ifuc C*(Q)NC(Q) satisfies Au=0in Q and u=00n dQ. Thenu=0in Q.

Theorem 3.2.2 Uniqueness: The Dirichlet problem —Au = f in Q and u = g on dQ has at most one

solution.

Proof. Let u; and u be two solutions, then by considering u = u; — up we see that —Au = 0 in 2 and
u =0 on dQ. Therefore by the the (3) of Remark 1.1, we get u = u; —up =0 in Q.

Mean values: For a continuous function A(x) on R”, let us introduce its spherical mean or average on a
sphere of radius r and center x:

!
Mi(x,r) = —/‘5‘:1h(x+r€) s,

Wn

where w, denotes the area of the unit sphere " ! = {£ € R" : || = 1} and dSg denotes surface measure.

Definition 3.2.1 Mean Value property: A function u € C(Q) is said to satisfy Mean Value property if
u(&) =M, (&,r) for all r > 0 such that B.(§) CC Q.

Theorem 3.2.3 Mean Value theorem (Gauss): If u € C>(Q) satisfies Au =0 in Q then u satisfies mean

value property.

Proof. From (1.3), we get for B,(§) C Q,

0:/ Audx:/ @dsz/ o s,
B/(8) 9B,(£) On —&|=r On

Taking x = & +ry with [y| = 1, dS, = "~ 'dS, we have from above equation

d d

"~ du :
_ n—1 - _ 12 e
0=r /\y\zl ar(é +ry)dS, =r" 5, /\y\zl u(§+ry)dS, =r W"&rM“(é’r)

That is M, (€, r) is independent of r. Therefore,

Mu(57r) = limMu(‘§7r) = u(5)7

r—0

thanks to Lebesgue’s theorem.
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Theorem 3.2.4 Ifu € C*(Q) satisfies Au= 0 in Q. Then

u(é) = i/ u(& 4+ rx)dx.
Wn Jx|<1
Proof. From the above theorem, we have
1
u(é) = —/ u(& +rx)dSy
Wn Jx|=1
L[ & +rpnds
= — u rpx
Wp J|x|=1 P g

since the formula is true for any . Multiplying both sides by p”~! and integrating from 0 to 1, we get

u(’f) _ /(‘)1 p”flu((:)dp _ Win /Olp”,1 /‘x‘:1 M(g +rpx)dS,dp
o,
= \x|§1u(€ + rx)dx.

Corollary 3.2.2 Ifu € C?(Q) satisfies Au >0 in Q. Then u(&) < M, (&, r).

Proof. This follows from the previous theorem by replacing = by <

0< .Audx: . @dS:...:iMu
B, 9B, On ar

That is M, (x, r) is increasing in r. Therefore
My (x,r) > M, (x,0) =u(§).

Corollary 3.2.3 Ifu € C?(Q) and Au>0in Q. Then

u(é) < i/\x|<1u(€ + rx)dx.

Wn
Next we have the converse of Theorem 3.2.3:

Theorem 3.2.5 Ifu c Cz(.Q) satisfies meanvalue property then u is harmonic in 2.

Proof. Assume by contradiction that Au(&) > 0 for some point . Then there exists a ball B, around &
such that Au > 0 in B¢(§) and hence [; z) Audx > 0. But on the other hand, From the Theorem 1.1, we

have 5
Audx = " 'w,—M, (&,
/Bg(i) udx Was (&,r)

Now since u satisfies mean value property, then M, (§,r) = u(&). Therefore from the above equation we

/ Audx = 0.
Be(8)

get

This is a contraction to Au > 0 in B¢(§).

Next we have the following
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Theorem 3.2.6 Strong form of Maximum principle
Let Q be a connected domain and let u € C*(Q) satisfies Au > 0 in Q, then either u is constant or
u(&) < supu(x) forall & € Q.

x€Q

Proof. Let A = sup,.q u(x) < co. By continuity of u, we know that the set
M={xeQ ulx)=A}

is relatively closed in 2. Now we claim that this is also open in €.
If u(£) = A. Then by above corollary, taking & +rx =y

1 1
<— +r2)dS, = / ds,.
@) < o [ uE s = oo [ s,
Therefore,
0< / u(y)dSy —w,r" 1A = (u(y) —A)dS,.
E—yl=r E—yl=r

But u(y) —A < 0 and u is continuous. Therefore u(y) = A for all small p and y € dB,(&). Thatis y € M
for all y in a neighbourhood of &. Hence M is relatively open in Q. Since Q is connected, we get a
contradiction. Therefore & & Q°.

Corollary 3.2.4 If Q is connected domain and u € C*(Q2)NC(Q) satisfy Au > 0 in Q. Then either u is
constant OR u(&) < maxyq u forall & € Q.

Corollary 3.2.5 Stability: Ifu,v € C*(Q)NC(RQ) satisfy Au= f in Q and |u(x) —v(x)| < € forall x € I Q.
Then
lu(x) —v(x)| < e forallx € Q.

Moreover, one can show that if u € C() is enough. In fact we have the following
Theorem 3.2.7 Suppose that u € C(Q) has the mean value property. Then u € C*(Q) and is harmonic.

Proof. Letn € C() be radially symmetric function with support in B¢(x) CC Q2 and [ 1 = 1. Then we
claim that (1 *u)(x) = u(x) and D*(n *u) = D*N *u.

mew@= [ n-yue)dy= [ n@u-2dz

J|x—y|<e Jlz|l<e

B /08 (/amm n{rizutx= ’Z)dS(Z)) P ldr
- /08 (/931(0) ulr - rZ)dS(Z)) P (r)dr

= wpu(x) /Os n(r)r ldr

—u() [ )y =utw).
Be(x)
Next we will show that D%(1 *u) = D% xu:

9 Iy —he) - n(x—y)u()
o) = Jim [ ; d

y
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Now since 7 is C* function with compact support, we have

nx—y—he)—nx—y) dIn

Y — a—Xi|(x— ¥) uniformly in y.
Hence, 5 5 5
2 _ [ 9 —(2n

T = [ S yutdy = (G ()

This concludes the proof.

Remark 3.2.2 The above theorems imply that if u satisfies mean value property then it is harmonic and

u € C*(Q). If u is harmonic then it satisfies mean value property and hence is C*(Q2).

More generally, the following theorem is due to Weyl.

Theorem 3.2.8 (Weyl):
Let u: Q — R be measurable and locally integrable in Q. If u satisfies Au =0 in &', in the sense of

distributions,. Then u is harmonic and C* ().
Next we have the following Hopf maximum principle.

Definition 3.2.2 Interior ball condition The boudary 0 satisfies interior ball condition at x if there is

a ball B¢(x1) C Q such that dQ NBe(x1) = {xo}

Theorem 3.2.9 (Hopf, Oleinik): Let u € C>(2)NC'(Q), Au>0in Q and let Q be a domain with its
boundary dQ satisfying interior ball condition at x° where x° is the point of maximum of u such that
u(x°) > u(x) for all x € Q. Then u is either constant OR %(xo) > 0.

Proof. Let us assume that there is a ball B, C Q such that B, N dQ = {x°}. Without loss of generality, let
B, = B,(0). Consider the function v = e M oA e B,(0). Then we can check that

vy, = e_M"‘z(—le,')
Let R = B,(0)\B,/2(0) and let A be fixed as large so that

AV = ei/l‘x‘z (42422)(:[2 - 224)
= ¢ (4252 —2n1) > 0in R

Now A(u+ev—u(x?)) > 0in R and u+ &v — u(x®) < 0 on IR for & small. By weak maximum principle,
u+ev—u(x’) <0inR

and since v(x°) =0
u(x®) +ev(x®) —u(x") =o0.

Therefore % (u+ Sv)Lo > 0. Hence

ou, o v
)z e,

ov x;

ZEE a0 AR S 0.
ox; r

() =~
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3.3 Distributions

In this chapter we study briefly the thoery of Distributions. Let £2 be a open subset of R". Then we
define the function space

2(Q2) ={ueC”(Q) : support of u is a compact subset of Q}

Example 3.2. The function

—1
el x| < 1,
0 |x| > 1.
is C(R") with support equal to B;(0).
We defin the topology of Z by convergent sequences

Definition 3.3.1 A sequence {u,} C 2(Q) converges to 0 in the topology of 2(Q) if there exists a compact
set K C Q such that support(u,) C K and {D%u, } converges uniformly to 0 for all multi index .

Example 3.3. The sequence {¢, } defined as ¢, (x) = %q) (x) converges to 0 in Z(R"). Indeed the supoort of
¢ (x) = B1(0) and for all x,

1
[, (x)] < - — 0asn— co.

Example 3.4. The sequence {¢,} defined as ¢,(x) = %(j)(nx) does NOT converge in Z(R"). The support

of ¢, = B1(0) C B1(0) := K and {¢,(x)} converges uniformly to 0. But {D%¢,} for |&| > 2 does not
converge.

Example 3.5. The sequence {@,(x) = Lo (x+n1)}. T=(1,1,...,1) does NOT converge in Z(R"). In this

case {D%@,} converges to 0 uniformly for all ¢. But the support of ¢, = B (n1) which is NOT contained
in one compact set.

Definition 3.3.2 A function T : 2(Q) — R is called distribution if it is linear and continuous. That is T is
an element of the dual space 2'(Q2) of 2(Q).

Example 3.6. Regular distribution: If f € L], (). Then the distribution generated by f is defined as
Ty (0) = /Q F(¥)6(x)dx, forall ¢ € Z(Q).
In fact, if K is the support of ¢, then
T(9)] <119l [ 17(lax

If ¢, — 0 in 2(Q). Then there exists a compact set K C Q such that support(¢,) C K and D%¢, — 0

uniformly on K. Therefore,

77001 < 19ull [ 1l < Cly]l > Oasn— oo

Example 3.7. Let 1 be a Borel measure such that p1(K) < e for any compact subset. Then u defines a
distribution
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T.(9) :/Qqsdm for all ¢ € Z(Q).

If ¢, — 0in 2(€2). Then Then there exists a compact set K C £ such that support(¢,) C K and D*¢, — 0

uniformly on K.
T ()] < ||¢n||oo|/Kd#| = 1 (K)[[[@nle — O asn — co.

Remark 3.3.1 The distribution generated by measure need not be a regular distribution. For example,

Example 3.8. For any xg € €2, define

T(¢)=¢(xp), forall ¢ € Z(Q).

Then it is easy to check T defines a distribution. This is also denoted as &y, and is called Dirac delta

distribution.

Theorem 3.3.1 Let f,g € L} (Q). Then

loc
f=g = Tr=1,

Proof. Itis obvious thatif f = g then Ty = T,,. For the converse if Ty = T,. Then we have

0=T7(¢)~Ty(9) = | (/= g)¢dx, forall ¢ € 7(2).
Now the result follows from the following lemma. O
Lemma 3.3.1 For f € L] (), lf/Q f()9(x)dx=0 forall € D(Q). Then f(x) =0 a.e. in Q.
Next we have the following important theorem

Theorem 3.3.2 For T € Z(R), if %L =0 then T = T¢ distribution generated by constant C.

Calculus of Distributions Suppose ¢ and f are smooth functions with compact support in 2. Then by
integration by parts formula, we have

of

Q 0x;

9
®o0) =~ [ rw5ax
Motivated from this, we define

Definition 3.3.3 The derivative g—XT of a distribution T is also a distribution defined as

g_f(¢) = —T(%),forallq) € 9(Q).

For any multi index «,

(D*T)(9) = (—DI¥T(D%9), forall ¢ € D(Q).

Definition 3.3.4 Multiplication by functions: For v € C*(Q), yT is a distribution defined by

(WT)(¢) =T(y9), forall ¢ € F(Q).
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Lemma 3.3.2 (Product rule): For y € C* and T € 2(Q) we have the following

P aw ar

Proof. Let ¢ € 2(Q2). Then for all ¢ € 2(Q2)

VI (0) = S (wp)
=15 0w) = —Tw5e + 5¥)
d d
“af,) (aZTxm

Hence the conclusion follows 0O

3.4 Fundamental solution

A fundamental solution K (x) for the Laplace operator is a “distribution” satisfying the relation
AK(x) = 8(x) in Z'(R"),

where & is the delta distribution supported at x = 0. That is, K(x) is a "locally integrable” function that
satisfies,

/K )A@ (x)dx = 9(0) for all ¢ € C7(R").
To obtain such solutions, we first assume that u(x) = v(r),r = |x|. By chain rule,

n—1

uxi:v/(r)ﬁ, Au=1V"(r)+ Vv (r)
r

r

Therefore solving for Au = 0 we get

blogr+c n=2,
v(r) =

srte, >3,

E

where b, ¢ are constants of integration.

Definition 3.4.1 For x # 0, the function

ﬁlog|x| n=2

—(2 T |x|>~" n>3.

PD(x) =

where wy, is the surface area of the unit ball in R" is called the fundamental solution of Laplacian operator.

Poisson’s equation: The equation
—Au = f(x)inR".
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is known as Poisson equation. Here the problem is to find u for a given f. From the theory of distributions,
we know that (@ x f)(x) is a distributional solution of Poisson equation if f is a regular distribution with
compact support. Now we will show that this is actually classical solution if we assume more regularity on
the function f(x).

From the construction above we see that x — @ (x) is harmonic for all x # 0. If we shift the orgin to another
point y the PDE remains the same. Also the function x — &(x —y) is also harmonic as a function of x,
x #y. Now for a function f(x) the mapping x — @ (x —y) f(y), (x # y) is harmonic for each point y € R".
We will show that the convolution

(@+1)00) = [ @x=1)f()dy

Rn

solves the problem. The important observation here is “differentiation under integral sign” is not allowed.
Otherwise A(® * f) = [ AP(x—y)f(y) = 0. The reason is the second derivative of @ is not integrable
near 0.

Theorem 3.4.1 Assume that f € C2(R") and let u(x) = (@ * f)(x). Then u € C*(R") and —Au(x) = f(x)
in R".

Proof. First note that (@ f)(x) = (f * P)(x) = [icqupp(r) P(x—)f(y)dy and so

u(x+he;) —u(x x—y+he) — flx—

M_/ D(y) flx—y )—fx—y) dy
]’l n h

Also since f € C2(Rm), Loythe) fry) _, of

= 2% (x —y) uniformly. Therefore,

ou af Pu 9°f
P /Rn P(y) 5 (x—y)dy, and PP /R" D(y) ox,0x, (x—y)dy.

Xi

Therefore,
Au(x) = [ @OIAS—y)dy= [ BOLIAf(x=y)dy

= + D(y)A —y)d
Lo * o (EOIAS (e )a)
:Is+J£

We can estimate /I and J, as follows
< 1A sl [ @0y
Be(0)

€
C||Af||L°°// 1|y|2*”r”’lm'rde n>3
0 JS§—

S e r2m
C||Af||L°°/ / (logr)rdrd n=2
o Jo
o(€?) n>3
o(e’loge) n=2
—0ase—0.

Integration by parts on J;, we get
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82 I’f
=y -
€ — IZI "\Bg ayl ( y) y
0P df
= ds, / —y)d
IZI/HBE x y i IZI "\ Bg (0 3)’1 3)’1( y) Y
= Le +Ks
As above, we can estimate L. as follows
Ll < |V w/ ®(y)|dS
Ll <IVFle= [, 1@ 0ls,
c/ £27"d0 =Ce n>3
< 9B¢(0)
c/ log|€]d6 = C(log|e|)(2me) n =2
B¢ (0)
—0ase—0.

To estimate K, we again use integration by parts and using the fact that A® = 0 away from 0, we get

" 9D If
K. =— d
) ,Zi/R"\BE 3yl 3yl( )y

= — dS / AD —v)d
; /a o ayl (coymds, = [ A@()fe-)dy

:_2/638 ayl (x —y)nidSy

and using the definition of @ and n = —ﬁ on dBg,
od oD (—yi 1 v 1 gl
= o w2l oo
Vi yi (n—2)wy y| r wy Wy
Therefore,
—1
K:—/ x—y)dy — —f(x), as € = 0.
= o [P 1)

Therefore Au = lirr(l) (o(eloge) +Ke) = —f(x).
£—
From the above theorem we infer that
u(x) = / @ (x —y)Au(y)dy whenever u € Cy (R").

The following result generalizes this formula allowing boundary terms.

Theorem 3.4.2 If Q is a smooth bounded domain in R", u € C*(Q), and x € Q, then

atpx y) du(y)
/dix y)Au(y dy+/ ( 8ny —P(x—y) . ds,.

Moregenerally, (4.10) holds if u € C?(2)NC'(Q) and the integral over  converges.

Proof. Recall the Green identity (1.2):

(4.10)
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du  Jdv
/(m (V% - ua)dS = /Q (vAu —uAv)dx.

Foru € C*(Q)andx € 2,0 < € < dist(x,0Q), let Q¢ = Q\B¢(x). Applying the above identity on £, we
get

CD(x—y)Au(y)dy:/(952 (dﬁ(x—y)%—u(y)a;:(x y)) ds, —|—/ UA®(x —y)dy 4.11)

Qe

Now note that A@ = 0 in €, and using the fact that ®@(x —y) € L' (), we get

lim | P(x—y)Au( )dy:/qu(x—y)Au(y)dy

e—0JQ,

The boundary of € consists of dQ2 and dB¢(0):

fo= oo,
20  Jaa  JoaBew)

2—n
/ D(x— )a”d ‘é lulle, fioyje €S n>3
e lulla2me([loge])  n=2

—0ase—0.

1 2- m Xi —Yi
P X — —— n>3,
P (n—2)wy /\x y|=e¢ Z&yl =l € -
b=y Su(y)W(x—y)dSy: 1 X —Ji
i — — (log |x— —l, n=2,
> /‘H‘ B Z 3y, logk =) ==
1 e (i)
— u)pe—y['"Y F—== n>3
_ ) WnJlx—yl=e E{ 82
1 1 i
_/ u(y) (-xl y:) n=2.
27 Jiyi=e =y €

— u(x)as € — 0.

3.4.1 Dirichlet Problem

From (4.10), if u is a harmonic function, we get

Theorem 3.4.3 If Q is a smooth bounded domain in R", u € C*(Q) is a harmonic function, and x € €,

then
u(x) :/(m <u()’)%ny_y)—¢(x—y)ag;y)>d%. (4.12)

Dirichlet Problem: Given f and g find u satisfying:

—Au(x) = f(x) inQ2, u(x)=g(x)ondQ. (4.13)

So we need to modify the fundamental solution ®@. We do this by adding “’corrector” to @ so that one of
the term on the Right hand side of (4.12) is zero. To achieve this we take a harmonic function w(x) and
consider the function G(x,y) = ®@(x —y) + wy(y). Then taking v(y) = wy(y) in the Green’s identity (1.2),
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/ wAudy+/ u&_w —w@ ds=0.
Q 00 \ dn on

we get

Also from (4.10), we have

/qu y)Au(y dy+/ < —y)— qb(x—y)g—;;)dSy:u(x)

Adding these two equations, we get

/nyAu +/ ( any G(xy)aa >dS

where G(x,y) = @(x —y) + wy(y) Now if we can choose wy(y) satisfying G(x,y) =0 for all y € dQ2. That
is,

Aw,(y) =0, in 2, wy(y) = —P(x—y) forallxe Q2, y € Q.

Then
' : JdG
u) = [ Gy audy+ [ ()5 (xy)as, (414

Therefore we have

Theorem 3.4.4 If u(x) solves the problem (4.13). Then

: : G
= [ 6wnroiay+ [ 5 wy)as, @15)
Proof. follows from (4.14).

To prove the converse of the above theorem, we investigate the regularity of the integral in

0= [ @-3)f0)dy

As mentioned in the beginning of the section, if f is locally integrable, by extending the function f(x) to
be zero outside €2, we get a compactly supported function and is a distributional solution of the equation
—Au= f(x)in Z'(Q). The following theorem expresses ways in which additional regularity of f improves
the regularity of u.

Theorem 3.4.5 For a bounded domain Q and f € L' (Q) define u(x) by

()= [ @t—nr0)ay

Then

1. wis harmonic and C* in R"\ Q.
2. if f is bounded on Q, then u € C'(R").
3. if f €CH(Q), thenu € C*(Q).

Proof. (1): For any x € R"\Q, &(x —y) is a smooth function as x —y # 0 for any y € Q. So we can
differentite under integral sign and since & is harmonic we get Au(x) = 0.
(2): for j =1,2,...n we define
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dP(x—y)
. — =\ d
M] (x) /Q axj f (y ) s

which is well defined because d P /dx; is O(|x —y|' ") as |x —y| — 0. We first approximate u by smooth
functions as follows: Let 1 € C*(R") satisfy n(t) =0forr < 1,n(r) =1forz >2,and 0 < n(r) <1 and
0<n'(¢) <2 forall ¢, we define

we(n) = [ @l 3)s0)ar. @) =@ ().

3

Then u, is smooth function as @ = 0 for |x — y| < €. It is not difficult to check that ug — u uniformly on
compact subsets of R”. Indeed, if x € K,

ue(s) -l =| [ (@0 om (B3 - 0t )) s
€

< e (1-n(25) )

—0 ase—0.

Here we used the fact that 1( ‘X;y‘) =1 for |x —y| > 2¢&. Next we will show that % — u;. For this,
J

‘ Jug B i B |x—y] B
ww-Gew=[ 2 (12 ) et s @16
_ n'2/8) zj gy (12 94’(Z)] B
= st{ : |Z|<P(z) <1 n(g)) 3 flx—2)dz 4.17)
Now using the facts:
L. Iln’(t)l <1
2. g/\z\<28 D(z)dz=o(€)
3. |%|§28,
lz]<2¢e 3Zj

we see that 3—)"5 converges uniformly to 38_;, Therefore u € C' (R").

(3): We let again v = %, then introduce
J

2
) = [ G @) f)

92
kaxj

82
= o 3z ENO) ~ F)dy+ 10 [ 5o @l @i

By divergence theorem

82
Q kaxj

-0
P(x—y)dy = _/B.Q Edﬁ(x—y)nkdsy.
J

Again we use the smoothing trick

vels) = [, o=y ey



58 3 Elliptic Equations
and calculate,

= Lo g emm 2 G0 - i [ oo | S ot-yn(2h | oy

8xk Q 8xk 8xj €

Again using divergence theorem on the second term, we obtain

et on (e

d
= _/39 8—x]<13(x y)nidSy. (4.19)

provided € > 0 small enough such that 2& < dist(x,d€), and hence n(Jx —y|/€) = 1 for all y € Q2. Thus
we have from (4.18) and (4.19)

n) =it = [ ety (1-n (E20)) | 00— st

since the boundary integrals cancel each other. Estimating as earlier and noting that %@(z) =o(|z]'™),
we get
p) 2
Vi(x) — 5—ve(x)| < o(e) + P(x— d
)~ el <o) [ 5ty ) 1)y
SCSU.p' ( ) ( )| |x—y|1_”dy:0(8)
yeQ |x—y| Jlx—y|<2e

where C(g) — 0 as € — 0. But f € C'(Q) ensures that the supremum is finite, so we conclude that v €
C'(£) and hence u € C*(Q).

Remark 3.4.1 A close observation at the proof suggests that f(x) € CO%(Q) is enough to get the C?

regularity.

The domain Green’s function is of the form @(x —y) +w,(y) where w is a harmonic function. So now we

aG
need to understand the regularity boundary intergral /(9 o g(y)ds,.
Q on

Poisson Integral formula: We want to solve the problem of finding harmonic functions with prescribed
boundary values. Let 2 be a domain in R” with boundary dQ: Given g, find u satisfyng

(P):Au=0in , u(y)=g(y)ondQ.

Theorem 3.4.6 Consider the domain Q =R = {x € R",x, > 0} and let g is continuous and bounded.
Then the solution of problem

(P): Au=0,inR’, u(y)=g(y)ondR
is given by the Poission Integral formula:

ux) = [ H(x,y)g()dy, (4.20)
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2%,

where H(x,y) = x € R",y € IR is called Poisson Kernel.

waly —x|"”
Proof. The proof is by constructing Green’s function for the domain R’} . We need to define the harmonic
function w,(y) satisfying
Awx(y) =0in 2, wi(y) = —P(x—y), y € IR".
We use the notation
R} = {(X,x,) = (x1,%2, .0, %), X, > 0}
For x = (¥,x,) € R, Define its reflextion x* = (x1,x2,...,—x,) & R’.. Then the function ®(y —x*) is
harmonic for all y € R”.. Moreover, for y = (y1,...,yn,—1,0) € IR, we have
ly = =ly—x7|
Therefore, @(y —x) = @(y —x*). Hence taking wy(y) = —P(y —x)

G(x,y) = @(y—x) — P(y—x7)

is the Green’s function for R’ . Now to solve the problem (P) we use the formula (4.15), we notice that for
y€dRL, xe R
P Yn —Xn

y—x)=——[y—x|"",
8yn( ) WnI |

aG(yv'x)__ a_(p( _ )_a(p( _ *) _ yﬂ_-xn| _ |—n_y”_x;;| _ *|—n
n = ayﬂy X 8yny X = —w y—Xx —Wn y—x

n

For y € dR"., we have |y — x| = |y —x*| and x}, = —x,,. Therefore,

JIG(y,x) 7|y—XI‘”(

an Wy yn*-xnfyn*xn)

2x,
=—|y—x|":=H
Sy x| " = H)
Hence by (4.20) we get
2xn
Wi Jorn pe—y["
for y € dR’.. Now since x — G(y,x) is harmonic for x # y, we have x — H(y,x) = _g_yG,, (y,x) is harmonic

because x € R and y € JR”.. Hence defining u(x) as (4.20) and applying Laplacian on u(x), for x € R,

Au(x) = - AcH (y,x)g(y)dS, = 0.
+

Claim: lim u(x) = g(x°) for x0 € IR,

X—X
to prove the claim, choose x” € JR", and let € > 0. Choose § > 0 such that |g(y) — g(x°)| < € whenever
ly—x° < 8,y € IR™. Then if x € R with [x —x°| < g, we have
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) =5()| = [ Hu)(80) ~ s,

</ +/ =J+1
IR%\B5(x0)  JIR"NB5(x0)

Now since H is integrable, we estimate I as

7] ge/a H(y,x)dy — 0as € —0.
Rn

+

For J, as x — x°, we have |x —x°| < g and |y —x%| > §. Therefore,
0 0 6 1 0
=2l <ly—af+ = < fy—al+ o <[y—al+ 7y —7).
from this we see that g < 1y —x9| < |y — x]|. Therefore, we can estimate J as

1< 20gle- [ Hody
IR"

< 2x,lg||L=2" /a]R+ ly—x°| "dy = 2)cn||g||Le<~2”/és r " 2dr — 0asx, — 0.

Note that in the above proof we have taken y € R’ .

Green’s function for Disc B,(0):
Here again we use the reflection/inverse point to define the correction function w(x). For x € B,(0), define

*

2 L . . .
Xt = ﬁ This point is called inverse point with respect to the boundary |y| = a. Note that

y =X = (y—x")- (y—x7) = y]> = 2p-x" + [x*?
4|3C|2

=a’ -2y X+ X P=a* 2y C+a <P

| |2
2
| |2 (|X|2 2x- y+|y| ) | |2|X—y|2

, —“y;:“ = % for all y such that |y| = a. Now define

) =~ (Elyr))

This is an anlytic function for y € B,(0) and moreover w,(y) = —®(y —x) for y € dB,(0). The unit normal

Therefore

in this case is i = 2. So %—f =1#i-VG.
2G 0P d |x| .
St =9 g-o (Elo-x))

5‘15( ) 1 Yi —Xi
—(y—x)=—
dyi Wy [y — x|
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o0d (x|, .\ 1 (" . -
o (Ho-m) = (2) oisb-r
RN A )
—Wn<a> (aly L) i)
|x] 2 n yilx? —a’x;
={7 ) b e

11
o |y x|~ ”(y,|x —ale)

T a
Therefore,
G 1 1 2 2
e = (= e e
1 n
_ Vi 2 2
a2Wn|y_x|n (a —|X| )
Hence
G _i dG vy
no 509y a
1 2 2 yi2
x i
oy x|,,( x| ),; .
1 2 2 .
:m((l —|x| ) since |y| =d.
n

So from the formula (4.20) we obtain

az—xz
u(x):J/aB( 8(y) as,

W 0) [x—yl"

Now following the similar steps as in the previous case one can show

lim  u(x) = g(x°), for any point x° € 9B, (0).

X—x0.XEB4(0)

O
In case of general domains the following is useful.

Theorem 3.4.7 If u is harmonic function and O is an orthogonal n X n matrix. Then v(x)
harmonic function.
Proof. Let O = [0;;]. We can compute

n

Div(x) = Z Dju(Ox)oy;,
k=1

n
Z Dklu Ox oklolj
1k=1

||
=

—
I

Since 00T =1. We have forall k,l = 1,...n

61

= u(Ox) is also
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1 1 k=1
Zokioli = .
i=1 0 k#l
Thus
n n n
Av(x) = Z Z Z Dyu(Ox)oyo;;

Il
—
=
Il
—_
-~
I
—_

|
™=
™=

n
Dyyu(Ox) (Z Oki01i>
i=1

Dklu(Ox)&d = AM(OX) =0.

N
Il
—_
~
I
—_

I
=
=

~
Il
—_
x~
Il
—_

From the above discussions we established the following:

Theorem 3.4.8 Let Q be a domain in R" such that the Green’s function G(x,y) = P (x,y) + wx(y) exists.
Then u(x) defined in (4.15) is the unique solution to the Dirichlet Problem (4.14) when f € C'(Q) with all
its first oder partial derivatives are in L™ () and g € C(dQ)NL* (I Q).

Proof. Proof now follows from the Theorem 3.4.5 and the above Poisson integral formula. This as left as

an exercise.

3.4.2 Properties of harmonic functions

Theorem 3.4.9 (Harnack’s inequality): Suppose u € C*(Q) is a non-negative harmonic function and let
Q| CC Q2 be bouned sub domain. Then there exists C| depending only on £ such that

supu < Cyinfu.
Q, o}

Proof. From Poison integral formula for ball B,(0), we have

2 12
u(x) =2 X / u() ds, 4.21)
aw,  JaB,(0) [x—y["

Now using the fact that
a— | < lv—y| S a+xl, for|y| = a, x € B(0),

and 1
0) = / ds.
u(0) = aBa(O)M(y) )
from (4.21), we get
a+|x| /
< ds.
u(x) < awy(a— |x|)n—1 aBa(O)u(y) y
_d"*(a+x])

= a1
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Similarily, we get
a"?(a—|x|)

(a+x])

From this we can show that by taking supremum and infimum over B% we get

u(x) > u(0)

sup u(x) <C inf u(x).
By (o) 50

Now for any relatively compact set £ use a finite cover of a/2 balls.

Theorem 3.4.10 Liouville’s Theorem:

If u(x) is bounded and harmonic in R". Then u(x) is a constant.

Proof. From (4.21), differentiating H (x,y) with respect to x;, we get

1 —2x; Vi —Xj
H, (x.y) = ( ’+n(a2—|x|2>#)

awn \ |x—y[" b — y|rt2
Therefore
_na yj
ij (an) - W_na”+2
_
- Wnan+l

Therefore from (4.21), we get

du
35 O1= [ HOu0)as,

n

/H yju(y)dsy
y|=a

n n
< rrd sup Ju(y)| < = suplu(y)]

ly|=a Bq

= w,,a’”rl

This can be proved for any ball around a point x. That is, we get ay
n
N < — o 4.22
i ()] = 2l (o) (4.22)

This shows that u is infinitely differentiable. Now since u is harmonic in the whole of R”, taking a; — oo

we get i is constant.

We can extend (4.22) to compact subset 2; C € in which u is harmonic. Let d > 0 be the distance of £
to 02, pick an increasing sequence d;, — d. We can apply (4.22) to each of By, (&) for every £ Q;:

|§—§j<5>|

< max Ju(x)| < = |u]
T dy 9By (§) =g )

Now taking maximum over & and taking limit in d; we get

Ju n
max | 22 (2) < § ul @23)
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Theorem 3.4.11 [fu; € C*>(Q) is a uniformly bounded sequence of harmonic function in Q and let Q) CC
Q, then uy contains a subsequence that converges uniformly on £21. Moreover the limit is also harmonic

function.
Proof. Using (4.22) on uy, we get replacing a by a/2
2n\?
i 0] < (%) supluty).
a Bu/Z

Taking supremum over B, we get

m\?
SUP [ity;x; ()| < (—) sup [u(x)]
By a

Q

following the argument as in (4.23), we get for any 2, a compact subset of 2:

2\ 2
Sup fueyx; (x)] < (7) sup [u(x)|
Q Q

where d is the distance from Q; to dQ2 Then by Ascoli-Arzela theorem there exists a subsequence that
converges uniformly. Then applying the above inequality to u; — u; shows that the second order derivatives
of the u; also converge uniformly on B,(x). Then applying the above inequality to u,, — u, we get that for

this sub sequence we have Auy — Au. But Auy = 0 implies Au = 0. Moreover, u is C™.
Theorem 3.4.12 If u € C?(Q) is harmonic, then u € C*(Q).

Proof. For § € Q, choose a ball B,(§) CC 2 and upp, (&) := g € C(dB4(&)). Then by the existence of

Green’s function, we can show that there exists u; € C(Q) such that
Au; =0 inBy(€), u;=gondB,(§).
But by uniqueness we have u = u; in B,(&). Therefore u € C*(Q).

Theorem 3.4.13 Ifu € C?(R) is harmonic, then u is real analytic in Q.

Proof. Pick a point xp € 2 and a > 0 so that B,(xg) C €. For simplicity xo = 0. We want to show that
for a; small, the Taylor series for u converges to u on the ball By, (0). for small a;. Let a; = €a. Then the

Remainder term in the Taylor’s theorem

D%u(tx)

pw x%*, forsome 0 <t <1.

Ry(x) = Z

lo|=N

Let M = supg_|u(x)|. Then following (4.23),

ID%u(tx)| < M <(1’i’—’z)a>N

Now using the estimate |a|/® < Ca!(en)!®! and |x*| < |x[|%], we get
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1 NN N
D u(e) ¢ [ "

N
<CM—— | ———| (ea)
- nV (l—s)a} (ea)

72N N N eN

(1—¢e)NaV

=CM

<n268>N
=CM
1—¢

gen?
1-¢

Now we can choose € small so that < % So

Ry(x)| < Y, cm2™V <CM2 M (N+1)" = 0asN — o.
|a|=N

That is, the Taylor’s series converges. Hence u is real analytic.

3.5 Existence Theory: Perron’s method

In this section we will prove the existence of harmonic function in general bounded domains (where Green’s
function is difficult to evaluate explicitely) with prescribed boundary values u# = g on the boundary. Moti-
vated from the Corollary 3.2.2, we have the following

Definition 3.5.1 A function u € C(Q) is called subharmonic if

u(G) <My(&,r)

forallE € Q and B,(§) CC Q.
We note that the theorem 3.2.6, is indeed holds for any subharmonic functions:

Theorem 3.5.1 Let 2 be a connected domain and let u be a subharmonic function. Then either u is con-

stant or u(€) < supu(x) forall & € Q.
xX€Q

Theorem 3.5.2 Comparison theorem: Let u be a harmonic function with u = g on 02 and let v is sub-
harmonic function in  with v < g on dQ. Then v(x) < u(x) in Q.

Proof. By Mean value theorem 3.2.3 we have

u(G) =My(&,r), and v(§) < M,(&,r)

Therefore, (v —u)(&) <M, ,(&,r). Hence v — u is subharmonic function and (v —u)(x) < g(x) —g(x) =0
on the boundary. Therefore by the above theorem 3.5.1 we get v < u in Q.

Therefore, we consider the class of functions
Sg={u € C(Q) : uis subharmonic in Q and u < gon dQ }

Then S, is nonempty for g bounded and continuous function in dQ. Indeed, let k be a constant such
that k < minyg g(x), then k € S,. Also, if M = maxyq |g(y)|, then for any u € Sg, u(x) < M. Moreover,
u—M € Sy. For g € C(dQ), define
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we(x) =sup{u(x) : u€S,}.

Then we have the following existence result

Theorem 3.5.3 w, is harmonic in  and lim u(x) = g(xo) for all xo € Q.

X—X(

Before we prove this, we need the following results:
For a subharmonic function u, define its harmonic representative as g .(x)

Aiig , = 0in B,(§), iig , =uondB,(§), B,(§)CCQ

and its continuous extension ug ,(x)

u(x) xe€Q\Br(S)

ue (x) =
e, rene)

Lemma 3.5.1 We have

(a) u(x) <ug ,(x)forall x € Q and

(b) ug , is subharmonic in Q.

Proof. (a) u—ug , is subharmonic in B,(&) and u — ug , = 0 on dB,(&). Then by theorem 3.5.2, u(x) <
ug (x) in B,(§). Also u(x) = ug ,(x) for all x € Q\B,(&).
(b) Claim: ug ,(x) <M, (x,p) forall x € 2 and By (x) CC Q.

(i) If x € B,(&), then for small p such that, B, (x) C B,(&), we have ug , is harmonic in B,(& ). There-
fore claim holds.
(i) If x € Q\B(&), then choose B, C Q\B,(&) and u is subharmonic in £ proves the claim.
(iii) If x € dB,(&). Then for x € Q we have u(x) < ug ,(x). Therefore

M,(x,p) < My, (x,p) (5.24)
Now x € dB,(&) and u is subharmonic in £ implies
g, (x) = u(x) < M, (x,p) (5.25)
From (5.24) and (5.25), we get
g, (x) = u(x) < My(x.p) < My, (5,p)

Lemma 3.5.2 Ifuy,uy,...,u; are subharmonic in Q, then v = max{u,uy,...u; } is subharmonic in Q.

Proof.
uj is subharmonic = u;(§) <M, (&,r)

uj <y — Muj(ﬁ,r) SMV(éar)

Therefore,

v(€) = max{u (xi),u2(&), ..ux(§)} < max {My, (&, r), M, (&, 7). My (&, 1)} <M, (E,r)}
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Hence v is subharmonic in £2.

Lemma 3.5.3 wyg is harmonic in .

Proof. It is enough to show that w is harmonic in B (&) C Br(&) C Q. The proof is divided into several
steps:

1. By the definition of w,, we can find functions ui € S, such that

we(§) = lim ”](5)

je
2. Letm =min{g(x) : x € dQ} and M = max{g(x) : x € dQ}. Then

m < u(x) <M, forall x € Q

3. We can replace u/ by “é,r in the limit in step 1 as u/ < uér Still the limit will be same and so with out
of loss of generality we may assume «/ in the limit in step 1 is harmonic in B, ().

4. By step 2, {u/} is uniformly bounded and by step 3 {u/} is harmonic in B,. Therefore u/ converges to
a harmonic function w(x) in B, »(§).

5. w(x) = wy(x) for all x in B, »(§). Since wy is supremum, w(x) < wg(x) for all x € B, ,. Now if there
exists a point x' € B,/ such that w(x’) < wg(x). That means there exists v € Sg such that w(x') <
v(x') < wy(x’). Now replacing u/ by max{u/,v} and its harmonic replacement, we obtain the limit 7
such that

w(x) < n(x) < wg(x), forallx € B,y and w(§) =1(&)

On the other hand we also have w(&) = w,(&). Therefore

1 1 1
w0z o [ ey = @ =@ = [ oy
|Br/2| B, |Br/2| B, |Br/2| B,
The only possibility is w = 1 in B, . But this is a contradiction as
n(x) >v(x) > wX).

Therefore w =w, in B, 5. O
To proceed further we need the following
Definition 3.5.2 Barrier function: Q. € C(Q) is called barrier function at 7 € AR if

1. Q, is subharmonic in 2
2. 0:(2)=0
3. Q:(x) <0 foranyx € 0Q\{z}.

Definition 3.5.3 Regular boundary:
A point 7 € € is regular if there exists a barrier function at z and dQ is regular if all z € dQ are regular.

Example 3.9. If dQ satisfies exterior sphere condition at z € d€, then z is a regular point. In this case if
B¢ (&) is exterior sphere at z € d€2, then we can take
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Lemma 3.5.4 [fg € C(dQ) and z € I is regular then

limwg(x) = g(z)

X—=2Z

Proof. Consider the function u_(x) = g(z) — € + kQ,(x) (where €,k will be chosen later). Then u_ is
subharmonic in €.

Claim 1: u_(x) < g(x) for all x € 9Q.

By continuity of g, there exists § > 0 such that

x—z] <6 = |g(x) —g(z) <e.
If x € dQ2 and |x —z| < 8. Then
u ()~ 8(x) = 8(2) — 8(x) — £+ kQ:(x) <0
If x € dQ, |x—z| > 8. Then choose k such that kQ,(x) < —2M where M = maxygq |g(x)|. Then again,
u_(x) —g(x) <2M —e+kQ,(x) <0.
Therefore, u_(x) < g(x) on d€ and u_ is subharmonic. Hence u_ < g and
u_(x) <wg(x) forallx € Q.

Similarly, defining
ui(x) = g(z) + € —kQ:(x)

Then u, € C(Q) and —u. is subharmonic.
Claim 2: —u, < —gondQ.

=2 <& = —u, () +g(x) = —g(2) + g(x) — £ +KQ=(x) < O
If |x —z] > & as earlier choose k such that kQ,(x) < —2M.
—uy(x) +g(x) = —g(z) +8(x) —€+kQ:(x) <2M —e —2M < 0.

Therefore, —u4 (x) < —g(x) on 9Q.
Therefore for any u € S,, u —u, is subharmonic and u —u < 0 on d2. Hence by Maximum principle,
u < uy in 2. Again by the definition of w,, we get

We(x) < uy(x) in Q.

Hence from the cliams, we have
u_(x) <wg(x) <ug(x)in Q.

Now using the fact that Q. (x) — 0 as x — z we get [w,(x) —g(z)| = 0. O
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3.6 Problems

1.

10.
11.

12.
13.

14.

Let Q be a bounded domain in R". Suppose u € C*(2)NC(Q) satisfies

"9
Au+za—3—u207 inQ, u=0 ondQ.
i=1 l

Then show that u < 0 in Q.

Prove the weak form of maximum principle for general second order elliptic opeator
u n
L“—Za uax) Y &g > ClEP s R

Suppose g(x) > 0 for x € Q and consider solutions u € C*(2)NC'(Q) of Au—g(x)u =0 in Q.
Establish uniqueness theorem for Dirichlet problem.
If Q is a bounded domain and u € C?(2) N C(L) is harmonic in £, then show that

mﬁax lu(x)| = max lu(x)].
Construct the Green’s function for the domain
(@) {(x,y) €R?: x>0,y>0} (b) {(x,y):x>0, > +y*> <1}

Show that @ (x) is a distributional solutoin of —Au = § in R”".
Suppose u € C(2) satisfies mean value property in Q. Then show that boundary values on B,(§) C Q

uniquely determine u.

Show that the bounded solution of the Dirichlet problem in a half-space is unique. What can you say
about unbounded solutions?

Let Q = B,(0), Q4 = QNR" and Qp = {x € Q,x, = 0}. If u € C2(Q) NC(2+ UL) is harmonic in
Q. ,and u =0 on . Prove that u may be extended to a harmonic function on all of Q (use reflection).
Show that u € C?(Q) is subharmonic then Au > 0 in Q.

Let f, g be continuous and bounded functions and let u is a smooth solution of —Au= finB(0,1), u=
gon dB(0,1). Then Prove the following stability estimate: There exists a constant C, depending only
on n, such that

<C
rr(loaflul (agl(g)i)lglﬂr(lgﬁlfl)

Prove the stability estimate in problem 11 above for any bounded domain € instead of B(0, 1).

Let Q =R" and let u € C?(Q2) NC(2) such that Au =0 in 2 and u = 0 on the boundary. If u(x) is
bounded then show that u = 0. If u is not bounded, then show that there can be more than one such
functions.

Let u be a solution of Neumann Problem

Au=0in Q %:h(x)onaﬂ.

Then show that [, h(x)dS = 0.



