Chapter 1

First order Partial Differential Equations

1.1 Transport Equation

In this section we will study the transport equations and its solutions. Consider a fluid flowing through a
thin straight tube whose cross section is A. Suppose fluid contain a contamination or some chemical or trafic
of vehicles, whose concentration at position x at time 7 is u(x,7). Then at time ¢, the amount of contaminant
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Let g(x,t) be the flux through the cross section x at time #. Then amount of contaminant that flows through
a plane cross section at x during the time between #; and 7, is
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The equation of continuity:

The contaminant present at time #, = {The contaminant present at time #; } + { the amount flows in from x;
between time #; and # } - { The contaminant that flows out at x, between times #; and #, }. + { internally
generated amount through internal sources. }

If we assume that there are no internal sources, this implies
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This is true for all intervals (xj,x;) and times #1,#, if

That is,

1 (uA) + 9y (gA) = 0.

The simplest case is when g(x,t) = ou(x,#) for some scalar o > 0. The resultant equation known as trans-
port equation:
w+ou,=0.a>0,t>0,xeR

Initial value problem: Consider the problem of finding u(x,t) satisfying

u+au,=0,t>0,xeR
u(x,0) =h(x), xeR

where a € R is a constant.
To understand this, let us first take a = 0. Then the equation is u, = 0 by integration we find that the
solution is
u(x,t) = c(x)

Now by imposing the initial condition we get u(x,#) = h(x). That is to get a solution at the point (x,7) we
project this point on to x axis and take the initial value at this point as the solution at (x,#). That is we are
traveling back along the lines parallel to ¢-axis to the initial curve to identify the solution. Now we should
think of what situation will lead to the lines/curves that are not parallel to ¢-axis?

We see this equation as directional derivative of a function u(x, 7) in the direction (1,a). So if we consider
the function g: R - R?>and F : R - R

Then
F'(t)=ua+u =0

Therefore F (t) = F(0) = u(g(0)) = u(x,0). Therefore the solution u(x,) is u(x,t) = h(x —at).
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So we see that we can try to integrate along the directions along which the directional derivative is

constant. Using this we can also solve non-homogeneous problem like

u+auy = f(x,t), 1 >0,xeR
u(x,0) = h(x)

In this case, we write the parametric form of lines with slope a as
x(s) =x+as, t(s) =t+s

represents a line in R? : s — (x(s),#(s)) passes through (x,¢). Then define

We immediately see that
F'(s) = uy X' (8) +u '(5) = auy +u; = f(x(s5),t(s)) = f(x+as,t +s5)
This implies
0 ot
F(0)—F(—t)= f(x—l—asJ—i—s)ds:/ fx+(s—1t)a,s)ds
—t 0

On the other hand
F(0)—F(—t) =u(x,t) —u(x(—t),t(—t)) = u(x,t) —u(x —at,0) = u(x,t) — h(x —at)

Therefore,
t
u(x,t) = h(x—at) —|—/ fx+(s—t)a,s)ds, xeR, t > 0.
0

1.2 Method of characteristics

Consider the partial differential equation in two variables x,y
auy +buy = c 2.1

where a, b, c are continuous functions in x,y,u. Let u(x,y) be the solution and let z = u(x,y) be the graph
of u. That is, the level surface S : u(x,y) —z = 0. Let zo = u(xp,y0). The normal to this surface at a point
(X0,¥0,20) is N = (uy, uy,—1) at (xo,0).

The equation in (2.1) implies that the vector Vy = (a,b,¢) is perpendicular to the normal N. Hence Vy
must lie on the tangent plane to the surface z = u(x,y). So our aim is to find the surface z = u(x,y) knowing
that the vector field {a(x,y,z),b(x,¥,z),c(x,y,z)} lies on the tangent place. Such surface is called Integral
surface.

Cauchy Problem: Given a curve I" in R? whose projection on the plane is 7, find a function u(x,y)
satisfying (2.1) such that the level surface z = u(x,y) contains I". In other words, find u(x,y) satisfying
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auyx +buy = ¢ inU

2.2)
u(x,y) = h(x,y) ony

where U is open domain that contains the curve 7.

Fig. 1.1 Integral surface

Let us assume that the surface S is parametrizable and

§ = {(x(s,1),y(s,1),2(s,1)) }

with 7 > 0 and s € I C R. Also let the initial space curve is I' = {(x(s,0),y(s,0),z(s,0))}. Therefore from
the given initial condition u(x,y) = h on y implies z(s,0) = h(x(s,0),y(s,0)) = h(s). We may assume that
x(5,0) = £(s) and (s,0) = g(s).

Since (a,b,c) is perpendicular to the normal, it is proportional to the tangent vector. So it is natural that it
satisfies the system of equations with initial conditions

L:l_); = a(x(s,t),y(s,0)z(s,1)), x(s,0) = f(s)
% = b(x(5,1),(5,1),2(5,1)), ¥(5,0) = g(s)
% = c(x(s,1),y(s,1),2(s,1)), z(s,0) = h(s)

We can solve this system of equations uniquely(Picard’s theorem) for all small ¢ under the assumption that
(a,b,c) are C! functions. The curves so obtained are called characteristic curves. We will find the surface
as union of these curves obtained from the above ODE system. Then at each point (xg,y0,20) the tangent
plane contains the vector V(xo,y0,20) = (a,b,c). In otherwords, smooth union of characteristic curves is
the Integral surface.

Now to obtain the surface in the variables x,y we need to invert the map (x,y) — (s,¢). For this we use
Inverse function theorem. The above map is invertible near # = 0 if the Jacobian is not zero at = 0. i.e.,

ox 9y f(s) &

s ds | — g8$)| _ N
J:‘gk 3‘y|— o l()) =0f'(s)—ag'(s) #0atr =0.

Jr ot a
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Definition 1.2.1 Non-characteristic curve: A curve v is called non-characteristic if b f'(s) —ag’(s) # 0.
We proved the following

Theorem 1.2.1 Let y be a non-characteristic curve and let a,b,c are C' functions. Then the Cauchy prob-

lem in (2.2) has a solution in a neighbourhood of the initial curve 7.

Example 1.1. Solve the Initial value problem:
2uy +3u, =0, (x,y) € R?, u(x,0) = g(x), x€R.
The parametrization of initial curve y = {(s,0,g(s)), s € R}. The Jacobian is

10
23

J= £0.

So the solution exists near the initial curve y. The characteristic equations are

d

d—)::2, x(s,0) =s
dy

= =3 0)=0
o , ¥(5,0)

d

=0, 2(5,0) = g(s)

The solution is
x(s,t) =2t +s, y(s,1) = 3t, z(s,1) = g(s)

Inverting the variables we get

y
== d — — =
3,an S X 3y

Hence u(x,y) =z =g(s) = g(x—3y).

Example 1.2. Characteristic problem:
Consider the problem u, +u, =0, u = g on y. Then show that

(a) Solution exists uniquely if Y is not parallel to y = x.
(b) If y is parallel to y = x, then solution exists if and only if g is constant.

Solution: (a): If y is parallel to y = x, then f(s) = g’(s) = 1 and the Jacobian

11
11

J= =0.

(b) : Let us solve the problem with u(x,0) = g(x). Then

%:1, x(s,0) =s
dy

— =1 0)=0
5 = L v(s.0)
dz

i 0, z(s,0) =g(s)
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Then the solution is x(s,t) =1+, y(s,t) =t, z(s,t) = g(s). Hence
u(x,y) =z=g(x—y)

Therefore on y = x, u(x,x) = g(0). That is, solution of the problem exists if and only u(x,x) = g(x)=
constant. In this case note that g(x —y) solves the equation u, + u, = 0 for any function g. If the initial
condition is u(x,x) = 5 then 54 (x —y)k,k > 0 are all solutions. So the characteristic problem does not

admit solution for all initial values. If solution exists, then there are infinitely many solutions.

1.2.1 Semi linear equations

The first order equation au, + bu, = c is called semi linear equation if a = a(x,y),b = b(x,y) and ¢ =
c(x,y,u).
Example 1.3. Solve the Cauchy problem

wy +2uy = u*, x ER, y >0 u(x,0) = h(x).

A parametrization of initial curve is {(s,0,4(s)), s € R}. The characteristic equations are

dx

Z 1, x(s,0)=s
dy
— =2 0)=0
5 =2 v(s.0)
d
d_f =%, 2(5,0) =g(s)
The Jacobian J is
J— Xs Vs _ 12 £0.
Xt Yt 10
Therefore
2t t+s, and -1 t !
= N X = S7 _—= _——_—
Y z ()
Inverting the variables, we get
y y h(s)
t==,s=x—%,andz= .
2 T T T T
The characteristic lines are y = 2x+ 2s and the solution is
h(x—3)
u(x,y) =z=-—>7 )
1—3h(x—%

which is defined upto 1 — %h(x— % )£0. O

Example 1.4. Characteristic problem: Consider the initial problem

2
uy+xuy, =, x,y ER, u (-xu %) =g(x).
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¢
1—cx

Show that solution exists if and only if g(x) =

A Parametrization of the initial curve is {(s, %, g(s)) : s € R}. The Jacobian J is equal to

1s
ls

Xs Vs

Xt YVt

J= =0.

So the problem is characteristic problem. As earlier let us consider the initial condition

u(0,y) =h(y), yeR
This space curve can be parametrized as {(0,s,4(s)); s € R}. Then the The characteristic equations are

dx

= 1, x(s,0)=0
% =X, y(s,O) =S
d
L2 50 =iy
Solving this we get
2
h
t=ux, y:%—i—s, and z = %
Inverting the variables we get
x2
_ hhy—7%)
u(x,y) =z =———"73.
1 —xh(y— 7)
Therefore on y = %2, u(x, "72) = %. Hence solution of the given problem exists if
c
g('x) - 1 _xc'

In this case there are infinitely many solutions exists, a family of them is

c+f@—§)
L—x(c+fy—%5)

M('x7y) =

for any f with f(0)=0. O

1.2.2 Quasilinear Equations

The most important equation that appears in the study of fluid flows is Burgers equation
uty +u;, =0 (2.3)

This is seen as an idealistic case of 1-d Navier Stokes equations with no pressure gradient

_v+ &_ 3_2\/_0
pdt pv&x 'u8x2_
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where p is the density, v is velocity and u is the viscosity of fluid. When the viscosity of the fluid is assumed
to be almost zero, this would lead to an equation of the form (1.1). In this case the initial value problem
looks like

une+uy, =0, x,y €R, u(x,0) =h(x), xR

The characteristic equations are

d

d—);:z, x(s,0) =s
dy

o 0)=0
5 = L v(s.0)

d

d—f:o, 2(s,0) = h(s)

Solving this we get
y=t,z=nh(s)andx = h(s)t+s

The characteristic lines are x = h(s)y+ s and the speed is le_; = h(s). Inverting the variables we get
t=y s=x—2zy,
and the solution can be defined implicitly as
u(x,y) = 2= hlx—zy) = h(x — uy)

Now let 9; be the characteristic curve at s; with starting speed as A(s;) and let 9, be the characteristic curve
at sp with starting speed A(sz). If these curves intersect, then

s1+h(s1)y=s2+h(s2)y

Therefore
S —82

h(s2) —h(s1)

So y > 0if s1 > sp and h(s2) > h(s1). That is if & is decreasing function, then the characteristic lines

y:t:

intersect at a point y > 0. This phenomena is called Gradient catastrope. Imagine this phenamena a wave
moving from left with height /; is clashing another wave moving from right with height /4, with different
speeds. When the two waves meet there is a blowup.

fime

Fig. 1.2
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That is if #'(sg) < O at any sp, then the solution does not exist “globally”. On the other hand if /'(sg) > 0,
then solution exists globally. Given the original physical model, we can interpret as: If the initial velocity of
the fluid flow form a non-decreasing function of position, then the fluid moves out in a smooth fashion. If
the initial velocity is decreasing function, then the fluid flow undergo a "Shock” that correspond to collision
of particles. That is the integral surface folds itself.

Example 1.5. Solve the problem
une+yuy =x, x,y €R, u(x,1)=2x, xR

A parametrization of I is {(s,1,2s) : s € R}. The Jacobain is

o Fsys B
X Vs 10
The characteristic equations are
% =z, x(s5,0)=s
i% =y ¥(5,0)=1
% =ux, z(s,0) =2s

The solution of this problem is
y(s:t) =c(s)e’, y(5,0) =1 = y=¢

d d
—(x+z)=x+z,and —(x—z) =z—x

dt dt
Therefore
x+z=23s¢, x—z=—s€
Simplifying this we get
3 1 1 —t 3 ! 1 —t !
X = Ese —Ese , 2= Ese —|—§se ,y=¢e
Hence
32 +1
u(x,y) :x3y2 —

We have the following important example where the initial condition is only continuous function.

Example 1.6. Find the solution of the initial value problem near the initial curve:

1 x<0
uy +uuy =0,x R,y >0, u(x,0)=h(x)=q1-x xc(0,1)
0 x>1

The characteristic lines are y(s,t) = and
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x(s,t) =s+th(s)

s+t s<0
=S s+1(l—s) s€(0,1),
K s>1

For y < 1, the characteristic lines does not intersect. So given a point (x,y) with y < 1, we can draw the
backward through characteristics

x—y x<y
s= % y<x<l1
X x>1

The characteristic lines are show below.

T

#=s+yh(s)
Fig. 1.3 local solution
The solution for y < 1 is computed as follows:

s=x—y,5s<1 = x<y

s=x—y+ys,s€(0,1) = s= i

I—y
s=x,5>21 = x>1
Therefore,
1 x<y<l
u(oy) =h(s) = {132 y<x<l
0 x>1
At the point y = 1 we see that u is
1 x<1

0 x>1
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1.2.3 Propagation of discontinuities
There are situations where the initial condition has a discontinuity. In this case we cannot expect the so-

lution to be classical (C') solution. One such problem is Riemann problem. To understand the propagation

of the discontinuity along the characteristic curve let us consider the following problem:

Example 1.7. Consider the initial value problem

uy+uu, =0, x R,y >0,

1 x<0,
u(x,0) = h(x) =
0 x>0.
The characteristic curves are
+s5, <0,
x=h(s)y+s= Y
s s>0

x=h(s)y+s

Fig. 1.4 propagation of discontinuity and shock

The characteristic lines intersect for all x > 0.

If we choose the initial condition as

Then the characteristic lines are

s s<0

x=h(s)y+s=< " ’

y+s s>0
The characteristic lines does not intersect. It is important to understand how one can define the solution in
this type of situations. We can use integration by parts to define the so called generalized solutions or weak
solutions.
We recall the following integration by parts formula: Let 2 C R? be an open set. Then

/uvxldx:/ uvnlds—/ vy, dx
Q o0 Q

where 7 is the first component of the unit outward normal f) = (11, 12) to dQ and the first integral on the

right hand side is the line integral. We will study the weak solutions in the later section.
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e
e
P
A
N
Al
P ey
/
=0

x=h{s)y+s

Fig. 1.5 propagation of discontinuity and fan

1.3 General solution

Theorem 1.3.1 Suppose there exist functions ¢ and W such that ¢(x,y,z) and ¥(x,y,z) are constant along

d_x:@:d_z. (3.4)
a b c

Then F(¢,w) =0 is the general solution of au, + buy, = ¢, where F is such that F¢2 + Fuz, #0.

Proof. Let x(t),y(t),z(t) be the solution of (3.4) and let ¢ (x(¢),y(¢),z(¢)) = c1, w(x(¢),y(t),z(t)) = ¢, for
some constants ¢y and c¢;. Then the differential of ¢ and y are zero. Therefore,

Opdx+ ¢ydy+ ¢.dz=0
Yedx+ yYydy+ y.dz=0.

Therefore
a —b c

OV — V0. OV — OV DY — O

Since z = z(x,y), we have F = F (¢, y) = 0 is a function of x,y. Therefore its total derivative is zero. That

(3.5)

is
dF = Fdx+F,dy=0 — F,=0,F,=0

But by chain rule,
Fo = Fy(0x + 0.2¢) + Fp (W +y.20) =0

Fy = Fy(9y 4 ¢:2y) + Fo (W + yzy) = 0.
Since (Fy)? + (Fy)? # 0, the above system has non-trivial solution. That is

Ox + 0:20 Wa+ Wzx
Oy + 92y Wy + Y2y

Then again thank s to (3.5) this is equal to saying az, + bz, = c.
Example 1.8. Find the general solution of uu, + yu, = x.

The equations in (3.4) imply
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ie.,
xdx—zdz=0 = d(x* —y*) =0

Therefore ¢ (x,y,z) = x> — z°.

Also

xdy—ydx=xy—yz=yx—zy=ydz—zdy = (x+z)dy—y(dx+dz) =0

Therefore d(i) = y= 2
xX+z . X=z
Therefore the general solution is

Yy
x—l—u)'

Here we point out that the general solution does not represent all solutions.

W’ =x+ f(

1.4 Nonlinear Equations

In this section we will study the nonlinear equation

F(x,y,u,ux,uy) :O

We introduce two more variables p = u,, and g = u,. So we have the five variable function

F(x,y,2,p,4) =0

Suppose F has the quasilinear form

F =a(x,y,2)p+b(x,y,2)g —c(x,y,z) =0

Then
dr  dx
dp —  dr
dF dy
dq dr
dFF dF b4
TR =aptbg=c=—-

Taking this as motivation, we write three equations

dx dy dz
ai P T g TPt

We nee equations satisfied by p and g as well. For this, we notice

dp d
Z = E”x(xuy) = uxxxl(t)+uxyy/(t) :Fppx"_FqCIx

But we don’t want p, and g,. Differentiating the equation F = 0 with respect to x, we get

Fe+Fax+Fppe+Fq: =0

13

(4.6)
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That is
Fpr"'Fqu =—-F—-Fp

Therefore

dp dq
U = —F,—pF,, and ar =-F—-Fq @.7)

These five equations in (3.5) and (4.6) form characteristic strip. The initial condition u(y) = h gives
x(5,0) = f(s), ¥(s,0) = g(s), 2(5,0) = h(s)
The initial values for of p and g are obtained as follows:
u(f(s),8(s)) =h(s) = H(s) =ucf'(s) +uyg (s) = pf'+qg

Therefore pg and go must satisfy strip condition”

pof'(s)+qog'(s) = (s) (4.8)

But such pg and gop may not be few. There could be infinitely many. Also

F(f(s),&(s),h(s), po(s),q0(s)) = 0 (4.9)

be satisfied on the initial curve. So pg,qo are such that (4.8) and (4.9) holds. The solution of these char-
acteristic equations determine a characteristic strip similar to the curves in the semilinear case. These
characteristic strips form a smooth surface which is the integral surface. This is like scales on the surface
of fish forming a smooth surface on the body of fish.

Example 1.9. Solve the initial value problem
uctty =u, x,y € R, u(0,y) =y

F(p,q) = pq — z and parametrization of initial curve is {(0,s,s%) : s € R}. Therefore f(s) = 0,g(s) =
h(s) = s%. The initial values for p and g satisfy

po0+qol =25, pogo—h=0 = po2s—s>=0

Therefore py = 5. The characteristic strip satisfy

dx
E:Fp:q, x(s5,0) =0
dy
E:Fq:pa y(S,O):S

dz
— = pF,+qF; = pq+ pq=2pq =2z, z(s,0) =s

dt

dp s
2= B-Fp=-» p(s,0) ==
d

d_j‘] =g, ¢(5,0)=2s

Therefore p(s,t) = gse', g(s,t) = 2se’ and z(s,1) = se?.
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d
d—): =2s¢' = x=2s¢' —2s
dy 1,
ar PTe T
Therefore
)—26 +2y = 2sé'
squaring this we get
X
(Z+y)2 — 2 —,

Therefore u(x,y) = (§ +)’)2-

1.4.1 Complete integral and Singular solutions

Let A C R? be an open set which is parameter set. Let

2 Ua Uxa; Uya
(Dgu,Diu) = [

Uay Uxay Uyay
Definition 1.4.1 A C? function u = u(x,a) is said to be a complete integral in Q x A of the equation
F(x,y,u,uy,uy) = 0in Q (4.10)

if u(x,a) solves (4.10) and rank of (Dyu, D%,u) = 2.
Example 1.10. Find a complete integral of u,u, = u
From the given equation F' = pg — z and the characteristic equations are

dx _ dy dz_, dp_ dq _
a Par TPy T TP

On integrating we get
. ! _ ! _ 2t _ ! _ 2
p=cie,.gq=ce,z=cice” +c3,x=cre' +b,andy=cie' +a

Therefore
ulx,y) =z=(x—b)(y—a)+c3

for u(x,y) to be a solution we need ¢3 = 0. Then we get
u(x,y) :xy+ab+ (avb) ' (x,y)

Easy to check that
b+x10

Du,Dzu:
(ll xa) Ll—|—y01

whose rank is 2. Therefore u(x,y) is a complete integral.
There can be more than one complete integral as we see below
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p=cie,q=ce = S:aandpq:z

This implies

p=+tvaz qz:l:\/g

From the strip condition, we get

de _ dv dy
ar Par
dx zdy
=4az— /==
\/a_zdt adt
Integrating this
A/Z:i(ﬁx—k%)—kq

Therefore

u(x,y)=b+ %(\/Ex—i- %)2

is a complete integral if a > 0. (check!).
In the above example, in both complete integral, No choice of a and b will give trivial solution u = 0.
But u = 0 is also a solution. This motivates us to study

1.4.2 Singular solutions

In this section we study how to build more complicated solutions for nonlinear first order PDEs. We will
construct these new solutions as envelopes of complete integrals.

Definition 1.4.2 Suppose u(x,y,a1,as) be a C' function on U x A where U is open subset of R? and A be
an open subset of R2. If the equations

d
a—u(x,y,al,az) =0,xelU,acA,i=1,2..n
a;

can be solved for the parameter a and has solution ay = ¢(x,y), a» = Y(x,y). That is

du .
g(w,cb(x,y)ﬂlf(x,y)) =0,i=1,2,...,n

Then we call the function v(x) = u(x,y, ¢ (x), W(x)), the envelope of the functions {u(.,a)}4ea-

Theorem 1.4.1 Singular solutions:
Suppose for each (ay,a,) € A as above that u = u(.,ay,ay) solves the partial differential equation (4.10).
Assume further that the envelope v, defined by

0
a—u(x,)@ahag) =0,xc€U,acA,i=1,2...n
a;

v(x,y) = u(x,y,¢(x, ), w(x,y))

exists and is a C' function. Then v also solves (4.10).
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Proof. We have v(x,y) = u(x,y,¢ (x.y), ¥(x.y)) and so

Vy = Mx(xuy7¢u lll) +Ma1 (x7y7¢7 W)¢x+ua2(-x7yu¢u W)‘px = ux(-x7y7¢7 IV)
Vy = “y(x,)’,‘]), V) + g, (x,,9, ‘/’)‘Py + Uq, (x,3,9, ‘/’)‘Py = ux(%,y,0,¥)

Hence foreachx € U,
F (30t h,ty) = F (10,3, 0, )05, 3, 0, W), 1 (1,3, 9, ¥) = 0
Example 1.11. Find complete integral and singular solution of
u)zr + u)z =142u

Here F = p®> + ¢> — 1 — 2z and the characteristic equations are

dx dy dp dq
FTIR A TiE ria Jr vt

solving this we get § =aand p? +¢*> — 1 —2z =0, This implies

(1+a*)g* =142z

1+2z 1427
p a\/ 1—|—a2’q 1+4a?

Therefore

Now from the strip condition

di_ dv dy
a Par T
1427
=+ e (adx+dy)
Integrating
+y
Vit2z=+25 4p
V1+a?
Therefore

1/ ax+ 2
u('xvyva?b):§< 1+22+b> 75

is the complete integral. Now solving

ax—+y
V1+a?

u, =0, up =0 = +b=0.

Therefore singular solution is u = —%.

To generate more solutions from the complete integral, we vary the above construction. Choose an open
set A’ C R and any C! function /1 : A’ — R, so that the graph of & lies within A.

Definition 1.4.3 The general integral (depending on h) is the envelope v(x) of the functions

u(x,y,ar) = u(x,y,ar,h(ar)), (x,y) €U, ac A’



18 1 First order Partial Differential Equations
provided this envelope exists and is C'.
Example 1.12. Find a general integral of u,u, = u.

Earlier we found a complete integral as
u(x,y.a.b) = (x —a)(y—b) = xy+ab — ay— bx
Leth: R — R be i(a) = a. Then

u(x,y,a,a) = xy+a®> —ay—ax

ua:2a—y—x:0:>a:¢(x7y):x¥
Therefore )
x+y x+y x4y 1
uleyoley) =gt CELTEN, Ty e

1.5 Weak solutions

In this section we will study the weak solutions of the Initial value problem

w+ (f(u)y=0,1>0,x€R, (5.11)
u(x,0) = h(x), x e R. (5.12)

where f : R — R is a continuous function. Let v : R x [0,00) — R is a smooth function with compact
support. Multiplying (5.11) with v(x,) and integrating by parts, we get

0:/Ow/:outvdxdt+/0w/:°(f(u))xvdxdt
= _/Ooo /:o uvy dxdt — /Ooo /:o(f(u))vx dxdt—l—/j:ou(x,O)v(x,O) dx

Motivated by this, we define

Definition 1.5.1 We call any bounded measurable function u(x,t) as a weak solution if

[ o papme) dsie = [ ute 00 d

forallv e CZ(R x [0,0)).

It is easy to see that all classical solutions are weak solutions. But not all weak solutions are classical
solutions. If u is a weak solution, then it need not be even continuous. Suppose u(x,¢) is a weak solution of
(5.11) such that u(x,) is discontinuous across a curve x = x(¢), but u(x,#) is smooth on either side of x(7).
Let u™ (x,1) be the limit of u approaching (x,) from the left and let u™ (x,7) be the limit of u approaching
x(t) from right. We claim that such a curve x(¢) cannot be arbitrary.

Theorem 1.5.1 (Rankine-Hugoniot condition)
If u(x,t) is a weak solution of (5.11) above such that u(x,t) is discontinuous across the curve x = x(t) but

u is smooth on either side of curve D~ and D*. Then u(x,t) must satisfy the condition
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_ S) — fu’)

u= —ut
where u~ is the limit of u from D~ and u™ is limit of u from D .

Proof. Let D™ = {(x,): 0 <t <oo, —oo <x<x(t)} and D" — = {(x,) : 0 <7 < oo, x(t) <x < oo}. Then
if u(x,0) = 0, we have by divergence theorem on D~ we get

// [uvy + f (u)vy] dxdt = // [us + vdxdt+/ u vy +f(u_)vn1)ds (5.13)

—xt

where n = (n1,n;) is the outward unit normal to D~. Similarly,

[uv + f(u)vy]dxdt = [ + (f (1)) vdxdt — utvny + f(ut)vny) ds (5.14)
// // /x:x(t) ( )

Fig. 1.6 weak solution
By assumption u; + (f(u))y = 0in D~ and D". Therefore from (5.11) and (5.13) we get

/x:x(t) (u_vnz +f(u_)vn1) ds = /x:x(t) (u+vn2 +f(u+)vn1) ds

holds for all v € CZ°(R x [0,0)). Therefore
wony+ f(u)ny =uny+ f(uh)m

This implies
m_ flu) )

n u- —ut

On the curve x = x(¢),
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dx 1 ny

dt  x(1) n

Hence the result.

Recall the example in 1.6. We defined the classical solution for # < 1(take y = r). Now beyond the line
y =1, we assume that the solution is smooth on either side of a curve x = x(f). We note that = 0,u~1. BY

Rankine-Hugoniot condition,
flu )= fu?)

1

/
1) = —
*(t) u— —ut 2

So x = x(r) = §,x(1) = 1. Therefore the equation of shock is x = 5 4 1. Hence

1 ox<
u(x’t): 0 > 1+t
X 3.

2

We can even define weak solution in case the initial condition has discontinuity like in the example 1.7. In

the first case ! .
X (t) = E,x(O) =0 = x= 3

The solution is
1 x<4%
u(x,t) = f
0 x> 7
In the second case, the wave on the right moves faster and the wave on the left moves slower. So there is

no shock. In this case one can define continuous solution which are called rarefaction wave solution like

0 x<0
ur(x,t) =4¢% 0<x<rs
1 x>t

But even in this case one can introduce shock and define shock wave solution as

0 x<i&
up(x,t) = X >f
x —_

2

The solution u; is NOT physically feasible solution. But the solution in #; is more realistic which is known

as entropy solution.

1.6 Problems

1. Solve the given IVP and determine the values of x and y for which it exists;

a. Xy +uy =y, u(x,0)=x2
b. uy—2uy =u, u(0,y) =y.

1

c. y lupt+uy =1, u(x,1)=x

2. Solve the given IVP and determine the values of x,y and z for which it exists:
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a. XUy +yuy +u; = u, u(x,y,0) = h(x,y)
b. Uy + Uy +2U; = M3, “(xvya 1) = h(xay)

. Solve the given IVP and determine the values of x and y for which it exists;

@) ux+uPuy =1, u(x,0) =1 (b) uy++/uuy =0, u(x,0) =x>+1

. Find a general solution:

(@) (x+uuy+ (y+u)uy =0 (b) (x? 4 3y* + 3u?)u, — 2xyu, +2xu =0

. Consider the equation u, +u, = /u. Derive the general solution u(x,y) = (x+ f(x —y))?/4. Observe

that the trivial solution u(x,y) = 0 is not covered by the general solution.

. Solve the IVP a(u)u, +u, = 0 with u(x,0) = h(x), and show that solution become singular for some

y > 0 unless a(h(s)) is a nondecreasing function of s.
x2

7. Solve u2 + yu, — u = 0 with initial condition u(x, 1) = T tL

10.

11.

12.

13.

14.

15.

16.

. Solve u = xuy + yuy + (uf +u?) /2 with initial condition u(x,0) = (1—x*/2)
. Consider u = u? + u§ with the initial condition u(x,0) = ax?. For what positive constants a is there a

solution? Is it unique? Find all solutions.

Show that family of spheres S, given by (x —a)? +y? +z> = 1 has as its envelope ¢ the unit cylinder
V+2=1.

Consider ¢?(u2 + u)z) = 1, where ¢ = ¢(x,y). Derive the characteristic equations. In the special case
¢ = |x| with initial condition u(x,0) = 0, find the solution to be

VX2 +y

u(x,y) = —logf, forx >0

Consider the eikonal equation in three dimensions 2 + u)z + u% =1

a. Solve the initial value problem with u = k = constant on the plane ax+ y+z=0
b. Find a complete integral.

Find complete integral of

(@) utwcuy = uy +uy (b) uk+u} = xu

Given the complete integral, find the singular solution of
a. Uty =2, u = xy+ab+ (ab)(xy)
b. uf+u; =1 u=(xy)(cosa.sina)+b

Consider uu, + u, = 0 with the initial condition

x>0,

0 x<0
u(x,0) = h(x) = {uo(x— N

where ug > 0. There is a weak solution u(x,y) that has a jump discontinuity along a curve x = £ (y).
Find this curve and describe the weak solution.
Find a simple wave equation u(x,y) = u(3) for (G(u))x +uy =0, when G(u) = u* /4. Use this to define

a continuous weak solution of the problem for y > 0 that satisfies

M@Z{O x>0

—1x<0,
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17.

18.

19.

20.

21.
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Consider uu, +u, = 0 with

h(x):{o x>0
uy x <0,

where up < 0. In addition to the rarefaction solution described in the text, show that there is a weak
solution with a shock along x = ugy/2.
A reasonable model for low-density traffic is j—g Px+ pr = 0 with j—g = ¢, where c is a constant.

a. Show that p is constant along the (characteristic) curves x = ct + xp.
b. If car is alone on the highway, what does p(x,0) look like? What does p(x,) look like ?
c. Explain why c represents the free speed of highway.

If pmax denotes the maximum density of cars on a highway(i.e. under bumper-to-bumper conditions),
then a reasonable relation between ¢ and p is given by G(p) = cp(1 — Iﬁ) where the constant ¢ is
the free speed of the highway (cf. Exercise 16). Suppose the initial density is

1
p(xao):{ meax x<0
Pmax x>0,

Find the shock curve and describe the weak solution. Interpret your result for the traffic flow.
Using G(p) as in Exercise above, describe the tralfic flow alter a long red light turns green at r = 0;

p(x,0) = {pm"‘" <0

that is , the initial density is

0 x>0,

In particular, find the density at the green light, p(0,7), while the light remains green.
Consider uu, + u;, = 0 with the initial condition

2 x<0
u(x,0) =h(x)=¢ 1 x€(0,1)
0 x>1,

Describe the weak solution. Show that there is only one shock as ¢ is large.



